| 1 | #include "slalib.h"
|
|---|
| 2 | #include "slamac.h"
|
|---|
| 3 | void slaTpv2c ( float xi, float eta, float v[3], float v01[3],
|
|---|
| 4 | float v02[3], int *n )
|
|---|
| 5 | /*
|
|---|
| 6 | ** - - - - - - - - -
|
|---|
| 7 | ** s l a T p v 2 c
|
|---|
| 8 | ** - - - - - - - - -
|
|---|
| 9 | **
|
|---|
| 10 | ** Given the tangent-plane coordinates of a star and its direction
|
|---|
| 11 | ** cosines, determine the direction cosines of the tangent-point.
|
|---|
| 12 | **
|
|---|
| 13 | ** (single precision)
|
|---|
| 14 | **
|
|---|
| 15 | ** Given:
|
|---|
| 16 | ** xi,eta float tangent plane coordinates of star
|
|---|
| 17 | ** v float[3] direction cosines of star
|
|---|
| 18 | **
|
|---|
| 19 | ** Returned:
|
|---|
| 20 | ** v01 float[3] direction cosines of TP, solution 1
|
|---|
| 21 | ** v02 float[3] direction cosines of TP, solution 2
|
|---|
| 22 | ** *n int number of solutions:
|
|---|
| 23 | ** 0 = no solutions returned (note 2)
|
|---|
| 24 | ** 1 = only the first solution is useful (note 3)
|
|---|
| 25 | ** 2 = both solutions are useful (note 3)
|
|---|
| 26 | **
|
|---|
| 27 | ** Notes:
|
|---|
| 28 | **
|
|---|
| 29 | ** 1 The vector v must be of unit length or the result will be wrong.
|
|---|
| 30 | **
|
|---|
| 31 | ** 2 Cases where there is no solution can only arise near the poles.
|
|---|
| 32 | ** For example, it is clearly impossible for a star at the pole
|
|---|
| 33 | ** itself to have a non-zero xi value, and hence it is meaningless
|
|---|
| 34 | ** to ask where the tangent point would have to be.
|
|---|
| 35 | **
|
|---|
| 36 | ** 3 Also near the poles, cases can arise where there are two useful
|
|---|
| 37 | ** solutions. The argument n indicates whether the second of the
|
|---|
| 38 | ** two solutions returned is useful; n=1 indicates only one useful
|
|---|
| 39 | ** solution, the usual case. Under these circumstances, the second
|
|---|
| 40 | ** solution can be regarded as valid if the vector v02 is interpreted
|
|---|
| 41 | ** as the "over-the-pole" case.
|
|---|
| 42 | **
|
|---|
| 43 | ** 4 This routine is the Cartesian equivalent of the routine slaTps2c.
|
|---|
| 44 | **
|
|---|
| 45 | ** Last revision: 5 June 1995
|
|---|
| 46 | **
|
|---|
| 47 | ** Copyright P.T.Wallace. All rights reserved.
|
|---|
| 48 | */
|
|---|
| 49 | {
|
|---|
| 50 | float x, y, z, rxy2, xi2, eta2p1, sdf, r2, r, c;
|
|---|
| 51 |
|
|---|
| 52 |
|
|---|
| 53 | x = v[0];
|
|---|
| 54 | y = v[1];
|
|---|
| 55 | z = v[2];
|
|---|
| 56 | rxy2 = x * x + y * y;
|
|---|
| 57 | xi2 = xi * xi;
|
|---|
| 58 | eta2p1 = eta*eta + 1.0f;
|
|---|
| 59 | sdf = z * (float) sqrt ( (double) ( xi2 + eta2p1 ) );
|
|---|
| 60 | r2 = rxy2 * eta2p1 - z * z * xi2;
|
|---|
| 61 | if ( r2 > 0.0f ) {
|
|---|
| 62 | r = (float) sqrt( (double) r2 );
|
|---|
| 63 | c = ( sdf * eta + r ) /
|
|---|
| 64 | ( eta2p1 * (float) sqrt ( (double) ( rxy2 * ( r2 + xi2 ) ) ) );
|
|---|
| 65 | v01[0] = c * ( x * r + y * xi );
|
|---|
| 66 | v01[1] = c * ( y * r - x * xi );
|
|---|
| 67 | v01[2] = ( sdf - eta * r ) / eta2p1;
|
|---|
| 68 | r = - r;
|
|---|
| 69 | c = ( sdf * eta + r ) /
|
|---|
| 70 | ( eta2p1 * (float) sqrt ( (double) ( rxy2 * ( r2 + xi2 ) ) ) );
|
|---|
| 71 | v02[0] = c * ( x * r + y * xi );
|
|---|
| 72 | v02[1] = c * ( y * r - x * xi );
|
|---|
| 73 | v02[2] = ( sdf - eta * r ) / eta2p1;
|
|---|
| 74 | *n = ( fabs ( sdf ) < 1.0f ) ? 1 : 2;
|
|---|
| 75 | } else {
|
|---|
| 76 | *n = 0;
|
|---|
| 77 | }
|
|---|
| 78 | }
|
|---|