| 1 | #include "slalib.h" | 
|---|
| 2 | #include "slamac.h" | 
|---|
| 3 | void slaV2tp ( float v[3], float v0[3], float *xi, float *eta, int *j ) | 
|---|
| 4 | /* | 
|---|
| 5 | **  - - - - - - - - | 
|---|
| 6 | **   s l a V 2 t p | 
|---|
| 7 | **  - - - - - - - - | 
|---|
| 8 | ** | 
|---|
| 9 | **  Given the direction cosines of a star and of the tangent point, | 
|---|
| 10 | **  determine the star's tangent-plane coordinates. | 
|---|
| 11 | ** | 
|---|
| 12 | **  (single precision) | 
|---|
| 13 | ** | 
|---|
| 14 | **  Given: | 
|---|
| 15 | **     v         float[3]    direction cosines of star | 
|---|
| 16 | **     v0        float[3]    direction cosines of tangent point | 
|---|
| 17 | ** | 
|---|
| 18 | **  Returned: | 
|---|
| 19 | **     *xi,*eta  float       tangent plane coordinates of star | 
|---|
| 20 | **     j         int         status:   0  =  OK | 
|---|
| 21 | **                                     1  =  error, star too far from axis | 
|---|
| 22 | **                                     2  =  error, antistar on tangent plane | 
|---|
| 23 | **                                     3  =  error, antistar too far from axis | 
|---|
| 24 | ** | 
|---|
| 25 | **  Notes: | 
|---|
| 26 | ** | 
|---|
| 27 | **  1  If vector v0 is not of unit length, or if vector v is of zero | 
|---|
| 28 | **     length, the results will be wrong. | 
|---|
| 29 | ** | 
|---|
| 30 | **  2  If v0 points at a pole, the returned xi,eta will be based on the | 
|---|
| 31 | **     arbitrary assumption that the RA of the tangent point is zero. | 
|---|
| 32 | ** | 
|---|
| 33 | **  3  This routine is the Cartesian equivalent of the routine slaS2tp. | 
|---|
| 34 | ** | 
|---|
| 35 | **  Last revision:   27 November 1996 | 
|---|
| 36 | ** | 
|---|
| 37 | **  Copyright P.T.Wallace.  All rights reserved. | 
|---|
| 38 | */ | 
|---|
| 39 | #define TINY 1e-6f | 
|---|
| 40 | { | 
|---|
| 41 | float x, y, z, x0, y0, z0, r2, r, w, d; | 
|---|
| 42 |  | 
|---|
| 43 |  | 
|---|
| 44 | x = v[0]; | 
|---|
| 45 | y = v[1]; | 
|---|
| 46 | z = v[2]; | 
|---|
| 47 | x0 = v0[0]; | 
|---|
| 48 | y0 = v0[1]; | 
|---|
| 49 | z0 = v0[2]; | 
|---|
| 50 | r2 = x0 * x0 + y0 * y0; | 
|---|
| 51 | r = (float) sqrt ( (double) r2 ); | 
|---|
| 52 | if ( r == 0.0f ) { | 
|---|
| 53 | r = 1e-20f; | 
|---|
| 54 | x0 = r; | 
|---|
| 55 | } | 
|---|
| 56 | w = x * x0 + y * y0; | 
|---|
| 57 | d = w + z * z0; | 
|---|
| 58 | if ( d > TINY ) { | 
|---|
| 59 | *j = 0; | 
|---|
| 60 | } else  if ( d >= 0.0f ) { | 
|---|
| 61 | *j = 1; | 
|---|
| 62 | d = TINY; | 
|---|
| 63 | } else if ( d > -TINY ) { | 
|---|
| 64 | *j = 2; | 
|---|
| 65 | d = -TINY; | 
|---|
| 66 | } else { | 
|---|
| 67 | *j = 3; | 
|---|
| 68 | } | 
|---|
| 69 | d *= r; | 
|---|
| 70 | *xi = ( y * x0 - x * y0 ) / d; | 
|---|
| 71 | *eta = ( z * r2 - z0 * w ) / d; | 
|---|
| 72 | } | 
|---|