1 | #include "slalib.h"
|
---|
2 | #include "slamac.h"
|
---|
3 | double slaZd ( double ha, double dec, double phi )
|
---|
4 | /*
|
---|
5 | ** - - - - - -
|
---|
6 | ** s l a Z d
|
---|
7 | ** - - - - - -
|
---|
8 | **
|
---|
9 | ** HA, Dec to Zenith Distance.
|
---|
10 | **
|
---|
11 | ** (double precision)
|
---|
12 | **
|
---|
13 | ** Given:
|
---|
14 | ** ha double Hour Angle in radians
|
---|
15 | ** dec double declination in radians
|
---|
16 | ** phi double observatory latitude in radians
|
---|
17 | **
|
---|
18 | ** The result is in the range 0 to pi.
|
---|
19 | **
|
---|
20 | ** Notes:
|
---|
21 | **
|
---|
22 | ** 1) The latitude must be geodetic. In critical applications,
|
---|
23 | ** corrections for polar motion should be applied.
|
---|
24 | **
|
---|
25 | ** 2) In some applications it will be important to specify the
|
---|
26 | ** correct type of hour angle and declination in order to
|
---|
27 | ** produce the required type of zenith distance. In particular,
|
---|
28 | ** it may be important to distinguish between the zenith distance
|
---|
29 | ** as affected by refraction, which would require the "observed"
|
---|
30 | ** HA,Dec, and the zenith distance in vacuo, which would require
|
---|
31 | ** the "topocentric" HA,Dec. If the effects of diurnal aberration
|
---|
32 | ** can be neglected, the "apparent" HA,Dec may be used instead of
|
---|
33 | ** the topocentric HA,Dec.
|
---|
34 | **
|
---|
35 | ** 3) No range checking of arguments is done.
|
---|
36 | **
|
---|
37 | ** 4) In applications which involve many zenith distance calculations,
|
---|
38 | ** rather than calling the present routine it will be more efficient
|
---|
39 | ** to use inline code, having previously computed fixed terms such
|
---|
40 | ** as sine and cosine of latitude, and perhaps sine and cosine of
|
---|
41 | ** declination.
|
---|
42 | **
|
---|
43 | ** Last revision: 4 April 1994
|
---|
44 | **
|
---|
45 | ** Copyright P.T.Wallace. All rights reserved.
|
---|
46 | */
|
---|
47 | {
|
---|
48 | double sh, ch, sd, cd, sp, cp, x, y, z;
|
---|
49 |
|
---|
50 | sh = sin ( ha );
|
---|
51 | ch = cos ( ha );
|
---|
52 | sd = sin ( dec );
|
---|
53 | cd = cos ( dec );
|
---|
54 | sp = sin ( phi );
|
---|
55 | cp = cos ( phi );
|
---|
56 |
|
---|
57 | x = ch * cd * sp - sd * cp;
|
---|
58 | y = sh * cd;
|
---|
59 | z = ch * cd * cp + sd * sp;
|
---|
60 |
|
---|
61 | return atan2 ( sqrt ( x * x + y * y ), z );
|
---|
62 | }
|
---|