1 | #include <iomanip>
|
---|
2 | #include <iostream>
|
---|
3 |
|
---|
4 | #include <TF1.h>
|
---|
5 | #include <TH2.h>
|
---|
6 | #include <TProfile2D.h>
|
---|
7 | #include <TFile.h>
|
---|
8 | #include <TFitResult.h>
|
---|
9 | #include <TStyle.h>
|
---|
10 |
|
---|
11 | #include "MLog.h"
|
---|
12 | #include "MLogManip.h"
|
---|
13 | #include "MStatusArray.h"
|
---|
14 | #include "MStatusDisplay.h"
|
---|
15 | #include "MHCamera.h"
|
---|
16 | #include "MGeomCamFACT.h"
|
---|
17 | #include "MParameters.h"
|
---|
18 | #include "MArrayI.h"
|
---|
19 | #include "MRawRunHeader.h"
|
---|
20 |
|
---|
21 | using namespace std;
|
---|
22 |
|
---|
23 | // --------------------------------------------------------------------------
|
---|
24 |
|
---|
25 | // Fit function for a single pe spectrum
|
---|
26 | Double_t fcn_g(Double_t *xx, Double_t *par)
|
---|
27 | {
|
---|
28 | const Double_t ampl = par[0];
|
---|
29 | const Double_t gain = par[1];
|
---|
30 | const Double_t sigma = par[2]*gain;
|
---|
31 | const Double_t cross = par[3];
|
---|
32 | const Double_t shift = par[4];
|
---|
33 | const Double_t noise = par[5];
|
---|
34 | const Double_t expo = par[6];
|
---|
35 |
|
---|
36 | Double_t y = 0;
|
---|
37 | for (int N=1; N<14; N++)
|
---|
38 | {
|
---|
39 | const Double_t muN = N*gain + shift;
|
---|
40 | const Double_t sigN = TMath::Sqrt(N*sigma*sigma + noise*noise);
|
---|
41 |
|
---|
42 | const Double_t p = TMath::Power(cross, N-1) * TMath::Power(N, -expo);
|
---|
43 |
|
---|
44 | y += TMath::Gaus(xx[0], muN, sigN) * p / sigN;
|
---|
45 | }
|
---|
46 |
|
---|
47 | const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise);
|
---|
48 | return ampl*sig1*y;
|
---|
49 | }
|
---|
50 |
|
---|
51 | // Calculate the crosstalk from the function parameters
|
---|
52 | Double_t xtalk(TF1 &f)
|
---|
53 | {
|
---|
54 | Double_t cross = f.GetParameter(3);
|
---|
55 | Double_t expo = f.GetParameter(6);
|
---|
56 |
|
---|
57 | Double_t y = 0;
|
---|
58 | for (int N=2; N<14; N++)
|
---|
59 | y += TMath::Power(cross, N-1) * TMath::Power(N, -expo);
|
---|
60 |
|
---|
61 | return y / (y + 1);
|
---|
62 | }
|
---|
63 |
|
---|
64 | // calculate the integral in units per millisecond
|
---|
65 | double integral(TF1 &func, TH1 &hist)
|
---|
66 | {
|
---|
67 | const Double_t sigma = func.GetParameter(2)*func.GetParameter(1);
|
---|
68 | const Double_t cross = func.GetParameter(3);
|
---|
69 | const Double_t noise = func.GetParameter(5);
|
---|
70 | const Double_t expo = func.GetParameter(6);
|
---|
71 |
|
---|
72 | Double_t sum = 0;
|
---|
73 | for (int N=1; N<14; N++)
|
---|
74 | sum += TMath::Power(cross, N-1) * TMath::Power(N, -expo);
|
---|
75 |
|
---|
76 | const Double_t scale = hist.GetBinWidth(1);
|
---|
77 | const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise);
|
---|
78 | const Double_t integ = func.GetParameter(0)*sum*sig1*sqrt(TMath::TwoPi())/scale;
|
---|
79 |
|
---|
80 | return integ/1e-9/1e6;
|
---|
81 | }
|
---|
82 |
|
---|
83 |
|
---|
84 | // --------------------------------------------------------------------------
|
---|
85 |
|
---|
86 | // Print function parameters
|
---|
87 | void PrintFunc(TF1 &f, float integration_window=30)
|
---|
88 | {
|
---|
89 | //cout << "--------------------" << endl;
|
---|
90 | cout << "Ampl: " << setw(8) << f.GetParameter(0) << " +/- " << f.GetParError(0) << endl;
|
---|
91 | cout << "Gain: " << setw(8) << f.GetParameter(1) << " +/- " << f.GetParError(1) << endl;
|
---|
92 | cout << "Rel.sigma: " << setw(8) << f.GetParameter(2) << " +/- " << f.GetParError(2) << endl;
|
---|
93 | cout << "Baseline: " << setw(8) << f.GetParameter(4)/integration_window << " +/- " << f.GetParError(4)/integration_window << endl;
|
---|
94 | cout << "Crosstalk: " << setw(8) << f.GetParameter(3) << " +/- " << f.GetParError(3) << endl;
|
---|
95 | cout << "Pcrosstalk: " << setw(8) << xtalk(f) << endl;
|
---|
96 | cout << "Noise: " << setw(8) << f.GetParameter(5)/sqrt(integration_window) << " +/- " << f.GetParError(5)/sqrt(integration_window) << endl;
|
---|
97 | cout << "Expo: " << setw(8) << f.GetParameter(6) << " +/- " << f.GetParError(6) << endl;
|
---|
98 | //cout << "--------------------" << endl;
|
---|
99 |
|
---|
100 | }
|
---|
101 |
|
---|
102 | // --------------------------------------------------------------------------
|
---|
103 |
|
---|
104 | // The parameters for the function are the filenam from the gain extraction
|
---|
105 | // and the output filename
|
---|
106 | int fit_spectra(const char *filename = "20130222_018_018.root",
|
---|
107 | const char *outfile = "20120802_247_247-fit.root" )
|
---|
108 | {
|
---|
109 | // It is more correct to fit the integral, but this is super
|
---|
110 | // slow, especially for 1440 pixel. To get that, one would have
|
---|
111 | // to analytically integrate and fit this function.
|
---|
112 | // (Currently the integral is switched off for the 1440 individual
|
---|
113 | // spectra in all cases)
|
---|
114 | bool fast = false; // Switch off using integral
|
---|
115 |
|
---|
116 | // Values which should be read from the file but not available atm
|
---|
117 | Int_t integration_window = 30;
|
---|
118 |
|
---|
119 | // Map for which pixel shall be plotted and which not
|
---|
120 | TArrayC usePixel(1440);
|
---|
121 | memset(usePixel.GetArray(), 1, 1440);
|
---|
122 |
|
---|
123 | // List of Pixel that should be ignored in camera view
|
---|
124 | usePixel[424] = 0;
|
---|
125 | usePixel[923] = 0;
|
---|
126 | usePixel[1208] = 0;
|
---|
127 | usePixel[583] = 0;
|
---|
128 | usePixel[830] = 0;
|
---|
129 | usePixel[1399] = 0;
|
---|
130 | usePixel[113] = 0;
|
---|
131 | usePixel[115] = 0;
|
---|
132 | usePixel[354] = 0;
|
---|
133 | usePixel[423] = 0;
|
---|
134 | usePixel[1195] = 0;
|
---|
135 | usePixel[1393] = 0;
|
---|
136 |
|
---|
137 | cout << setprecision(3);
|
---|
138 |
|
---|
139 | // ======================================================
|
---|
140 | // Read data and histograms from file
|
---|
141 |
|
---|
142 | TFile file(filename);
|
---|
143 | if (file.IsZombie())
|
---|
144 | {
|
---|
145 | gLog << err << "Opening file '" << filename << "' failed." << endl;
|
---|
146 | return 1;
|
---|
147 | }
|
---|
148 |
|
---|
149 | MStatusArray arr;
|
---|
150 | if (arr.Read()<=0)
|
---|
151 | {
|
---|
152 | gLog << err << "Reading of MStatusArray from '" << filename << "' failed." << endl;
|
---|
153 | return 2;
|
---|
154 | }
|
---|
155 |
|
---|
156 | TH2 *hsignal = (TH2*)arr.FindObjectInCanvas("Signal", "TH2F", "MHSingles");
|
---|
157 | if (!hsignal)
|
---|
158 | {
|
---|
159 | gLog << err << "Histogram Signal not found in '" << filename << "'." << endl;
|
---|
160 | return 3;
|
---|
161 | }
|
---|
162 | TH2 *htime = (TH2*)arr.FindObjectInCanvas("Time", "TH2F", "MHSingles");
|
---|
163 | if (!htime)
|
---|
164 | {
|
---|
165 | gLog << err << "Histogram Time not found in '" << filename << "'." << endl;
|
---|
166 | return 4;
|
---|
167 | }
|
---|
168 | TProfile2D *hpulse = (TProfile2D*)arr.FindObjectInCanvas("Pulse", "TProfile2D", "MHSingles");
|
---|
169 | if (!hpulse)
|
---|
170 | {
|
---|
171 | gLog << err << "Histogram Pulse not found in '" << filename << "'." << endl;
|
---|
172 | return 5;
|
---|
173 | }
|
---|
174 | TH2F *hbase = (TH2F*)arr.FindObjectInCanvas("Baseline", "TH2F", "MHBaseline");
|
---|
175 | if (!hbase)
|
---|
176 | {
|
---|
177 | gLog << err << "Histogram Baseline not found in '" << filename << "'." << endl;
|
---|
178 | return 6;
|
---|
179 | }
|
---|
180 |
|
---|
181 | MRawRunHeader header;
|
---|
182 | if (header.Read()<=0)
|
---|
183 | {
|
---|
184 | gLog << err << "MRawRunheader not found in '" << filename << "'." << endl;
|
---|
185 | return 7;
|
---|
186 | }
|
---|
187 |
|
---|
188 | MParameterI par("NumEvents");
|
---|
189 | if (par.Read()<=0)
|
---|
190 | {
|
---|
191 | gLog << err << "NumEvents not found in '" << filename << "'." << endl;
|
---|
192 | return 8;
|
---|
193 | }
|
---|
194 |
|
---|
195 | MArrayI ext;
|
---|
196 | if (ext.Read("ExtractionRange")<=0)
|
---|
197 | {
|
---|
198 | gLog << err << "ExtractionRange not found in '" << filename << "'." << endl;
|
---|
199 | return 9;
|
---|
200 |
|
---|
201 | }
|
---|
202 |
|
---|
203 | // ======================================================
|
---|
204 |
|
---|
205 | MStatusDisplay *d = new MStatusDisplay;
|
---|
206 |
|
---|
207 | // Camera geometry for displays
|
---|
208 | MGeomCamFACT fact;
|
---|
209 |
|
---|
210 | // ------------------ Spectrum Fit ---------------
|
---|
211 | // Instantiate the display histograms
|
---|
212 | MHCamera cRate(fact);
|
---|
213 | MHCamera cGain(fact);
|
---|
214 | MHCamera cRelSigma(fact);
|
---|
215 | MHCamera cCrosstalk(fact);
|
---|
216 | MHCamera cBaseline(fact);
|
---|
217 | MHCamera cNoise(fact);
|
---|
218 | MHCamera cChi2(fact);
|
---|
219 | MHCamera cNormGain(fact);
|
---|
220 | MHCamera cFitProb(fact);
|
---|
221 | MHCamera cCrosstalkP(fact);
|
---|
222 | MHCamera cCoeffR(fact);
|
---|
223 |
|
---|
224 | // Set name and title for the histograms
|
---|
225 | cRate.SetNameTitle ("Rate", "Dark count rate");
|
---|
226 | cGain.SetNameTitle ("Gain", "Gain distribution");
|
---|
227 | cRelSigma.SetNameTitle ("RelSigma", "Rel. Sigma");
|
---|
228 | cCrosstalk.SetNameTitle("Crosstalk", "Crosstalk probability");
|
---|
229 | cBaseline.SetNameTitle ("Baseline", "Baseline per sample");
|
---|
230 | cNoise.SetNameTitle ("Noise", "Noise per sample");
|
---|
231 | cChi2.SetNameTitle ("Chi2", "\\Chi^2");
|
---|
232 | cNormGain.SetNameTitle ("NormGain", "Normalized gain");
|
---|
233 | cFitProb.SetNameTitle ("FitProb", "Root's fit probability");
|
---|
234 | cCrosstalkP.SetNameTitle("Pxtalk", "Crosstalk coeff. P");
|
---|
235 | cCoeffR.SetNameTitle ("CoeffR", "Coefficient R");
|
---|
236 |
|
---|
237 | // Instantiate 1D histograms for the distributions
|
---|
238 | TH1F hRate ("Rate", "Dark count rate", 150, 0, 15);
|
---|
239 | TH1F hGain ("Gain", "Gain distribution", 100, 0, 400);
|
---|
240 | TH1F hRelSigma ("RelSigma", "Rel. Sigma", 160, 0, 0.40);
|
---|
241 | TH1F hCrosstalk("Crosstalk", "Crosstalk probability", 90, 0, 0.30);
|
---|
242 | TH1F hBaseline ("Baseline", "Baseline per sample", 75, -7.5, 7.5);
|
---|
243 | TH1F hNoise ("Noise", "Noise per sample", 60, 0, 30);
|
---|
244 | TH1F hChi2 ("Chi2", "\\Chi^2", 200, 0, 4);
|
---|
245 | TH1F hNormGain ("NormGain", "Normalized gain", 51, 0.5, 1.5);
|
---|
246 | TH1F hFitProb ("FitProb", "FitProb distribution", 100, 0, 1);
|
---|
247 | TH1F hCrosstalkP("Pxtalk", "Crosstalk coeff.", 90, 0, 0.3);
|
---|
248 | TH1F hCoeffR ("CoeffR", "Coefficient R", 90, -1, 2);
|
---|
249 |
|
---|
250 | // Histigram for the sum of all spectrums
|
---|
251 | TH1F hSum("Sum1", "Signal spectrum of all pixels",
|
---|
252 | hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
|
---|
253 | hSum.SetXTitle("pulse integral [mV sample]");
|
---|
254 | hSum.SetYTitle("Counts");
|
---|
255 | hSum.SetStats(false);
|
---|
256 | hSum.Sumw2();
|
---|
257 |
|
---|
258 | // Histogram for the sum of all pixels excluding the ones with faulty fits
|
---|
259 | TH1F hSumClear("SumC", "Signal spectrum of all pixels",
|
---|
260 | hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
|
---|
261 | hSumClear.SetXTitle("pulse integral [mV sample]");
|
---|
262 | hSumClear.SetYTitle("Counts");
|
---|
263 | hSumClear.SetStats(false);
|
---|
264 | hSumClear.SetLineColor(kBlue);
|
---|
265 | hSumClear.Sumw2();
|
---|
266 |
|
---|
267 | // Arrival time spectrum of the extracted pulses
|
---|
268 | TH1F hTime("Time", "Arrival time spectrum", htime->GetNbinsY(), htime->GetYaxis()->GetXmin(), htime->GetYaxis()->GetXmax());
|
---|
269 | hTime.SetXTitle("pulse arrival time [sample]");
|
---|
270 | hTime.SetYTitle("Counts");
|
---|
271 | hTime.SetStats(false);
|
---|
272 |
|
---|
273 | // average pulse shape of the extracted pulses
|
---|
274 | TH1F hPulse("Puls", "Average pulse", hpulse->GetNbinsY(), hpulse->GetYaxis()->GetXmin(), hpulse->GetYaxis()->GetXmax());
|
---|
275 | hPulse.SetXTitle("pulse arrival time [sample]");
|
---|
276 | hPulse.SetYTitle("Counts");
|
---|
277 | hPulse.SetStats(false);
|
---|
278 |
|
---|
279 | // Spektrum for the normalized individual spectra
|
---|
280 | TH1F hSumScale("Sum2", "Signal spectrum of all pixels", 120, 0.05, 12.05);
|
---|
281 | hSumScale.SetXTitle("pulse integral [pe]");
|
---|
282 | hSumScale.SetYTitle("Rate");
|
---|
283 | hSumScale.SetStats(false);
|
---|
284 | hSumScale.Sumw2();
|
---|
285 |
|
---|
286 | // define fit function for Amplitudespectrum
|
---|
287 | TF1 func("spektrum", fcn_g, 0, hSum.GetXaxis()->GetXmax(), 7);
|
---|
288 | func.SetNpx(2000);
|
---|
289 | func.SetParNames("Maximum", "Gain", "Sigma", "XtalkProb", "Offset", "Noise", "Expo");
|
---|
290 | func.SetLineColor(kRed);
|
---|
291 |
|
---|
292 | //--------------------- fill sum spectrum --------------------------------
|
---|
293 |
|
---|
294 | d->SetStatusLine("Calculating sum spectrum", 0);
|
---|
295 |
|
---|
296 | // Begin of Loop over Pixels
|
---|
297 | for (Int_t pixel = 0; pixel < hsignal->GetNbinsX(); pixel++)
|
---|
298 | {
|
---|
299 | //jump to next pixel if the current is marked as faulty
|
---|
300 | if (usePixel[pixel]==0)
|
---|
301 | continue;
|
---|
302 |
|
---|
303 | TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
|
---|
304 | hSum.Add(hist);
|
---|
305 | delete hist;
|
---|
306 | }
|
---|
307 |
|
---|
308 | //----------------- get starting values -------------------------------
|
---|
309 |
|
---|
310 | hSum.GetXaxis()->SetRangeUser(150, hSum.GetXaxis()->GetXmax());
|
---|
311 |
|
---|
312 | const Int_t maxbin = hSum.GetMaximumBin();
|
---|
313 | const Double_t maxpos = hSum.GetBinCenter(maxbin);
|
---|
314 | const Double_t binwidth = hSum.GetBinWidth(maxbin);
|
---|
315 | const Double_t ampl = hSum.GetBinContent(maxbin);
|
---|
316 |
|
---|
317 | double fwhmSum = 0;
|
---|
318 |
|
---|
319 | //Calculate full width half Maximum
|
---|
320 | for (int i=1; i<maxbin; i++)
|
---|
321 | if (hSum.GetBinContent(maxbin-i)+hSum.GetBinContent(maxbin+i)<ampl)
|
---|
322 | {
|
---|
323 | fwhmSum = 2*(i-0.5)*binwidth;
|
---|
324 | break;
|
---|
325 | }
|
---|
326 |
|
---|
327 | if (fwhmSum==0)
|
---|
328 | {
|
---|
329 | gLog << warn << "Could not determine start value for sigma." << endl;
|
---|
330 | }
|
---|
331 |
|
---|
332 | Double_t sigma_est = fwhmSum/2.3548; // FWHM = 2*sqrt(2*ln(2))*sigma
|
---|
333 |
|
---|
334 | Double_t fitmin = maxpos-3*sigma_est; // was 3
|
---|
335 | Double_t fitmax = hSum.GetXaxis()->GetXmax();
|
---|
336 |
|
---|
337 | // ------------------- fit --------------------------------
|
---|
338 |
|
---|
339 | //Fit and draw spectrum
|
---|
340 | func.SetParLimits(0, 0, 2*ampl); // Amplitude
|
---|
341 | func.SetParLimits(1, 0, 2*maxpos); // Gain
|
---|
342 | func.SetParLimits(2, 0, 1); // Sigma
|
---|
343 | func.SetParLimits(3, 0, 1); // Crosstalk
|
---|
344 | func.SetParLimits(5, 0, 150); // Noise
|
---|
345 |
|
---|
346 | func.SetParameter(0, ampl); // Amplitude
|
---|
347 | func.SetParameter(1, maxpos); // Gain
|
---|
348 | func.SetParameter(2, 0.1); // Sigma
|
---|
349 | func.SetParameter(3, 0.15); // Crosstalk
|
---|
350 | func.SetParameter(4, 0*integration_window); // Baseline
|
---|
351 | func.SetParameter(5, 1.*sqrt(integration_window)); // Noise
|
---|
352 | func.SetParameter(6, 0.4); // Expo
|
---|
353 |
|
---|
354 | func.SetRange(fitmin, fitmax);
|
---|
355 | hSum.Fit(&func, fast?"N0QSR":"IN0QSR");
|
---|
356 |
|
---|
357 | Double_t res_par[7];
|
---|
358 | func.GetParameters(res_par);
|
---|
359 |
|
---|
360 | //func.FixParameter(6, func.GetParameter(6)); // Expo
|
---|
361 |
|
---|
362 | // ------------------ display result -------------------------------
|
---|
363 |
|
---|
364 | cout << "--------------------" << endl;
|
---|
365 | cout << "AmplEst: " << ampl << endl;
|
---|
366 | cout << "GainEst: " << maxpos << endl;
|
---|
367 | cout << "SigmaEst: " << sigma_est << endl;
|
---|
368 | PrintFunc(func, integration_window);
|
---|
369 | cout << "--------------------" << endl;
|
---|
370 |
|
---|
371 | gROOT->SetSelectedPad(0);
|
---|
372 | TCanvas &c11 = d->AddTab("SumHist");
|
---|
373 | c11.cd();
|
---|
374 | gPad->SetLogy();
|
---|
375 | gPad->SetGridx();
|
---|
376 | gPad->SetGridy();
|
---|
377 | hSum.GetXaxis()->SetRange();
|
---|
378 | hSum.DrawCopy("hist");
|
---|
379 | func.DrawCopy("same");
|
---|
380 |
|
---|
381 | // ===================================================================
|
---|
382 | // Gain Calculation for each Pixel
|
---|
383 | // ===================================================================
|
---|
384 |
|
---|
385 | // counter for number of processed pixel
|
---|
386 | int count_ok = 0;
|
---|
387 |
|
---|
388 | // Begin of Loop over Pixels
|
---|
389 | for (Int_t pixel=0; pixel<hsignal->GetNbinsX(); pixel++)
|
---|
390 | {
|
---|
391 | // User information
|
---|
392 | d->SetStatusLine(Form("Fitting pixel #%d", pixel), 0);
|
---|
393 | d->SetProgressBarPosition((pixel+1.)/hsignal->GetNbinsX(), 1);
|
---|
394 |
|
---|
395 | // Skip pixels known to be faulty
|
---|
396 | if (usePixel[pixel]==0)
|
---|
397 | continue;
|
---|
398 |
|
---|
399 | //Projectipon of a certain Pixel out of Ampl.Spectrum
|
---|
400 | TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
|
---|
401 | hist->SetDirectory(0);
|
---|
402 |
|
---|
403 | if (hist->GetEntries()<100)
|
---|
404 | {
|
---|
405 | gLog << warn << pixel << " ...histogram empty." << endl;
|
---|
406 | usePixel[pixel] = 0;
|
---|
407 | delete hist;
|
---|
408 | continue;
|
---|
409 | }
|
---|
410 |
|
---|
411 | //Rebin Projection
|
---|
412 | hist->Rebin(2);
|
---|
413 |
|
---|
414 | // Fit range
|
---|
415 | hist->GetXaxis()->SetRangeUser(150, hist->GetXaxis()->GetXmax());
|
---|
416 |
|
---|
417 | // Determine start values
|
---|
418 | const Int_t maxBin = hist->GetMaximumBin();
|
---|
419 | const Double_t maxPos = hist->GetBinCenter(maxBin);
|
---|
420 |
|
---|
421 | const Double_t gain = res_par[1];
|
---|
422 | const Double_t GainRMS = res_par[2];
|
---|
423 |
|
---|
424 | const double fit_min = maxPos-GainRMS*gain*2.5;
|
---|
425 | const double fit_max = fitmax;//maxPos+gain*(maxOrder-0.5);
|
---|
426 |
|
---|
427 | TArrayD cpy_par(7, res_par);
|
---|
428 |
|
---|
429 | cpy_par[0] = hist->GetBinContent(maxBin);
|
---|
430 | cpy_par[1] = maxPos-res_par[4]; // correct position for avg baseline
|
---|
431 |
|
---|
432 | func.SetParameters(cpy_par.GetArray());
|
---|
433 | func.SetParLimits(0, 0, 2*cpy_par[0]);
|
---|
434 | func.SetParLimits(1, 0, 2*cpy_par[1]);
|
---|
435 |
|
---|
436 | // For individual spectra, the average fit yields 1 anyway
|
---|
437 | func.SetParameter(6, 0); // Expo
|
---|
438 |
|
---|
439 | // ----------- Fit Pixels spectrum ---------------
|
---|
440 |
|
---|
441 | const TFitResultPtr rc = hist->Fit(&func, /*fast?*/"LLN0QS"/*:"LLIN0QS"*/, "", fit_min, fit_max);
|
---|
442 |
|
---|
443 | // ----------- Calculate quality parameter ---------------
|
---|
444 |
|
---|
445 | Int_t b1 = hist->GetXaxis()->FindFixBin(fit_min);
|
---|
446 | Int_t b2 = hist->GetXaxis()->FindFixBin(fit_max);
|
---|
447 |
|
---|
448 | Double_t chi2 = 0;
|
---|
449 | Int_t cnt = 0;
|
---|
450 | for (int i=b1; i<=b2; i++)
|
---|
451 | {
|
---|
452 | if (hist->GetBinContent(i)<1.5 || func.Eval(hist->GetBinCenter(i))<1.5)
|
---|
453 | continue;
|
---|
454 |
|
---|
455 | const Double_t y = func.Integral(hist->GetBinLowEdge(i), hist->GetBinLowEdge(i+1));
|
---|
456 | const Double_t v = hist->GetBinContent(i)*hist->GetBinWidth(i);
|
---|
457 |
|
---|
458 | const Double_t chi = (v-y)/v;
|
---|
459 |
|
---|
460 | chi2 += chi*chi;
|
---|
461 | cnt ++;
|
---|
462 | }
|
---|
463 |
|
---|
464 | chi2 = cnt==0 ? 0 : sqrt(chi2/cnt);
|
---|
465 |
|
---|
466 | // ----------------- Fit result --------------------
|
---|
467 |
|
---|
468 | const double fit_prob = rc->Prob();
|
---|
469 |
|
---|
470 | const float fRate = integral(func, *hist)/(ext[pixel]*0.5);
|
---|
471 | const float fGain = func.GetParameter(1);
|
---|
472 | const float fGainRMS = func.GetParameter(2);
|
---|
473 | const float fCrosstalkP= func.GetParameter(3);
|
---|
474 | const float fCrosstlk = xtalk(func);
|
---|
475 | const float fOffset = func.GetParameter(4);
|
---|
476 | const float fNoise = func.GetParameter(5)/sqrt(integration_window);
|
---|
477 | const float fCoeffR = func.GetParameter(6);
|
---|
478 |
|
---|
479 | // Fill histograms with result values
|
---|
480 | cRate.SetBinContent( pixel+1, fRate);
|
---|
481 | cGain.SetBinContent( pixel+1, fGain);
|
---|
482 | cRelSigma.SetBinContent( pixel+1, fGainRMS);
|
---|
483 | cCrosstalk.SetBinContent( pixel+1, fCrosstlk);
|
---|
484 | cBaseline.SetBinContent( pixel+1, fOffset/integration_window);
|
---|
485 | cNoise.SetBinContent( pixel+1, fNoise);
|
---|
486 | cChi2.SetBinContent( pixel+1, chi2);
|
---|
487 | cNormGain.SetBinContent( pixel+1, fGain/gain);
|
---|
488 | cFitProb.SetBinContent( pixel+1, fit_prob);
|
---|
489 | cCrosstalkP.SetBinContent(pixel+1, fCrosstalkP);
|
---|
490 | cCoeffR.SetBinContent( pixel+1, fCoeffR);
|
---|
491 |
|
---|
492 | // ======================================================
|
---|
493 |
|
---|
494 | // Try to determine faulty fits
|
---|
495 |
|
---|
496 | bool ok = int(rc)==0;
|
---|
497 |
|
---|
498 | // mark pixels suspicious with failed fit
|
---|
499 | if (!ok)
|
---|
500 | gLog << warn << pixel << " ...fit failed!" << endl;
|
---|
501 |
|
---|
502 | // mark pixels suspicious with negative GainRMS
|
---|
503 | if (fabs(fGain/gain-1)>0.3)
|
---|
504 | {
|
---|
505 | gLog << warn << pixel << " ...gain deviates more than 30% from sum-gain." << endl;
|
---|
506 | ok = 0;
|
---|
507 | }
|
---|
508 |
|
---|
509 | if (fabs(fOffset/integration_window)>3)
|
---|
510 | {
|
---|
511 | gLog << warn << pixel << " ...baseline deviates." << endl;
|
---|
512 | ok = 0;
|
---|
513 | }
|
---|
514 |
|
---|
515 | // cancel out pixel where the fit was not succsessfull
|
---|
516 | usePixel[pixel] = ok;
|
---|
517 |
|
---|
518 | // Plot pixel 0 and all faulty fits
|
---|
519 | if (pixel==0 || !ok)
|
---|
520 | {
|
---|
521 | TCanvas &c = d->AddTab(Form("Pix%d", pixel));
|
---|
522 | c.cd();
|
---|
523 | gPad->SetLogy();
|
---|
524 | gPad->SetGridx();
|
---|
525 | gPad->SetGridy();
|
---|
526 |
|
---|
527 | hist->SetStats(false);
|
---|
528 | hist->SetXTitle("Extracted signal");
|
---|
529 | hist->SetYTitle("Counts");
|
---|
530 | hist->SetName(Form("Pix%d", pixel));
|
---|
531 | hist->GetXaxis()->SetRange();
|
---|
532 | hist->DrawCopy("hist")->SetDirectory(0);
|
---|
533 | func.DrawCopy("SAME")->SetRange(fit_min, fit_max);
|
---|
534 |
|
---|
535 | cout << "--------------------" << endl;
|
---|
536 | cout << "Pixel: " << pixel << endl;
|
---|
537 | cout << "fit prob: " << fit_prob << endl;
|
---|
538 | cout << "AmplEst: " << cpy_par[0] << endl;
|
---|
539 | cout << "GainEst: " << cpy_par[1] << endl;
|
---|
540 | PrintFunc(func, integration_window);
|
---|
541 | cout << "--------------------" << endl;
|
---|
542 | }
|
---|
543 |
|
---|
544 | if (!ok)
|
---|
545 | {
|
---|
546 | delete hist;
|
---|
547 | continue;
|
---|
548 | }
|
---|
549 |
|
---|
550 | // Fill Parameters into histograms
|
---|
551 | hRate.Fill( fRate);
|
---|
552 | hGain.Fill( fGain);
|
---|
553 | hRelSigma.Fill( fGainRMS);
|
---|
554 | hCrosstalk.Fill( fCrosstlk);
|
---|
555 | hBaseline.Fill( fOffset/integration_window);
|
---|
556 | hNoise.Fill( fNoise);
|
---|
557 | hChi2.Fill( chi2);
|
---|
558 | hNormGain.Fill( fGain/gain);
|
---|
559 | hFitProb.Fill( fit_prob);
|
---|
560 | hCrosstalkP.Fill(fCrosstalkP);
|
---|
561 | hCoeffR.Fill( fCoeffR);
|
---|
562 |
|
---|
563 | // Fill sum spectrum
|
---|
564 | for (int b=1; b<=hist->GetNbinsX(); b++)
|
---|
565 | hSumScale.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b));
|
---|
566 | delete hist;
|
---|
567 |
|
---|
568 | // Because of the rebinning...
|
---|
569 | hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
|
---|
570 | hSumClear.Add(hist);
|
---|
571 | delete hist;
|
---|
572 |
|
---|
573 | hist = htime->ProjectionY("proj", pixel+1, pixel+1);
|
---|
574 | hTime.Add(hist);
|
---|
575 | delete hist;
|
---|
576 |
|
---|
577 | hist = hpulse->ProjectionY("proj", pixel+1, pixel+1);
|
---|
578 | hPulse.Add(hist);
|
---|
579 | delete hist;
|
---|
580 |
|
---|
581 | count_ok++;
|
---|
582 | }
|
---|
583 |
|
---|
584 | //------------------fill histograms-----------------------
|
---|
585 | // Display only pixels used and with valid fits
|
---|
586 |
|
---|
587 | cRate.SetUsed(usePixel);
|
---|
588 | cGain.SetUsed(usePixel);
|
---|
589 | cRelSigma.SetUsed(usePixel);
|
---|
590 | cCrosstalk.SetUsed(usePixel);
|
---|
591 | cBaseline.SetUsed(usePixel);
|
---|
592 | cNoise.SetUsed(usePixel);
|
---|
593 | cChi2.SetUsed(usePixel);
|
---|
594 | cNormGain.SetUsed(usePixel);
|
---|
595 | cFitProb.SetUsed(usePixel);
|
---|
596 | cCrosstalkP.SetUsed(usePixel);
|
---|
597 | cCoeffR.SetUsed(usePixel);
|
---|
598 |
|
---|
599 | // --------------------------------------------------------
|
---|
600 | // Display data
|
---|
601 |
|
---|
602 | TCanvas *canv = &d->AddTab("Cams1");
|
---|
603 | canv->Divide(3,2);
|
---|
604 |
|
---|
605 | canv->cd(1);
|
---|
606 | cRate.DrawCopy();
|
---|
607 |
|
---|
608 | canv->cd(2);
|
---|
609 | cGain.DrawCopy();
|
---|
610 |
|
---|
611 | canv->cd(3);
|
---|
612 | cBaseline.DrawCopy();
|
---|
613 |
|
---|
614 | canv->cd(4);
|
---|
615 | cRelSigma.DrawCopy();
|
---|
616 |
|
---|
617 | canv->cd(5);
|
---|
618 | cCrosstalk.DrawCopy();
|
---|
619 |
|
---|
620 | canv->cd(6);
|
---|
621 | cNoise.DrawCopy();
|
---|
622 |
|
---|
623 |
|
---|
624 | canv = &d->AddTab("Cams2");
|
---|
625 | canv->Divide(3,2);
|
---|
626 |
|
---|
627 | canv->cd(1);
|
---|
628 | cFitProb.DrawCopy();
|
---|
629 |
|
---|
630 | canv->cd(2);
|
---|
631 | cChi2.DrawCopy();
|
---|
632 |
|
---|
633 | canv->cd(4);
|
---|
634 | cCoeffR.DrawCopy();
|
---|
635 |
|
---|
636 | canv->cd(5);
|
---|
637 | cCrosstalkP.DrawCopy();
|
---|
638 |
|
---|
639 | // --------------------------------------------------------
|
---|
640 |
|
---|
641 | gStyle->SetOptFit(1);
|
---|
642 |
|
---|
643 | canv = &d->AddTab("Hists1");
|
---|
644 | canv->Divide(3,2);
|
---|
645 |
|
---|
646 | TH1 *hh = 0;
|
---|
647 |
|
---|
648 | canv->cd(1);
|
---|
649 | hh = hRate.DrawCopy();
|
---|
650 |
|
---|
651 | canv->cd(2);
|
---|
652 | hh = hGain.DrawCopy();
|
---|
653 | hh->Fit("gaus");
|
---|
654 |
|
---|
655 | canv->cd(3);
|
---|
656 | hh = hBaseline.DrawCopy();
|
---|
657 | hh->Fit("gaus");
|
---|
658 |
|
---|
659 | canv->cd(4);
|
---|
660 | hh = hRelSigma.DrawCopy();
|
---|
661 | hh->Fit("gaus");
|
---|
662 |
|
---|
663 | canv->cd(5);
|
---|
664 | hh = hCrosstalk.DrawCopy();
|
---|
665 | hh->Fit("gaus");
|
---|
666 |
|
---|
667 | canv->cd(6);
|
---|
668 | hh = hNoise.DrawCopy();
|
---|
669 | hh->Fit("gaus");
|
---|
670 |
|
---|
671 | // --------------------------------------------------------
|
---|
672 |
|
---|
673 | canv = &d->AddTab("Hists2");
|
---|
674 | canv->Divide(3,2);
|
---|
675 |
|
---|
676 | canv->cd(1);
|
---|
677 | gPad->SetLogy();
|
---|
678 | hh = hFitProb.DrawCopy();
|
---|
679 | hh->Fit("gaus");
|
---|
680 |
|
---|
681 | canv->cd(2);
|
---|
682 | hChi2.DrawCopy();
|
---|
683 |
|
---|
684 | canv->cd(4);
|
---|
685 | hh = hCoeffR.DrawCopy();
|
---|
686 | hh->Fit("gaus");
|
---|
687 |
|
---|
688 | canv->cd(5);
|
---|
689 | hh = hCrosstalkP.DrawCopy();
|
---|
690 | hh->Fit("gaus");
|
---|
691 |
|
---|
692 | // --------------------------------------------------------
|
---|
693 |
|
---|
694 | canv = &d->AddTab("NormGain");
|
---|
695 | canv->Divide(2,1);
|
---|
696 |
|
---|
697 | canv->cd(1);
|
---|
698 | cNormGain.SetMinimum(0.8);
|
---|
699 | cNormGain.SetMaximum(1.2);
|
---|
700 | cNormGain.DrawCopy();
|
---|
701 |
|
---|
702 | canv->cd(2);
|
---|
703 | gPad->SetLogy();
|
---|
704 | hh = hNormGain.DrawCopy();
|
---|
705 | hh->Fit("gaus");
|
---|
706 |
|
---|
707 | //------------------ Draw gain corrected sum specetrum -------------------
|
---|
708 | gROOT->SetSelectedPad(0);
|
---|
709 | c11.cd();
|
---|
710 | hSumClear.DrawCopy("hist same");
|
---|
711 |
|
---|
712 | //-------------------- fit gain corrected sum spectrum -------------------
|
---|
713 |
|
---|
714 | gROOT->SetSelectedPad(0);
|
---|
715 | TCanvas &c11b = d->AddTab("CleanHist");
|
---|
716 | c11b.cd();
|
---|
717 | gPad->SetLogy();
|
---|
718 | gPad->SetGridx();
|
---|
719 | gPad->SetGridy();
|
---|
720 |
|
---|
721 | const Int_t maxbin1 = hSumClear.GetMaximumBin();
|
---|
722 | const Double_t ampl1 = hSumClear.GetBinContent(maxbin1);
|
---|
723 |
|
---|
724 | func.SetParameters(res_par);
|
---|
725 | func.SetParLimits(0, 0, 2*ampl1);
|
---|
726 | func.SetParameter(0, ampl1);
|
---|
727 | func.ReleaseParameter(6);
|
---|
728 |
|
---|
729 | hSumClear.Fit(&func, fast?"LN0QSR":"LIN0QSR");
|
---|
730 |
|
---|
731 | hSumClear.DrawCopy();
|
---|
732 | func.DrawCopy("same");
|
---|
733 |
|
---|
734 | cout << "--------------------" << endl;
|
---|
735 | PrintFunc(func, integration_window);
|
---|
736 | cout << "--------------------" << endl;
|
---|
737 |
|
---|
738 | //-------------------- fit gain corrected sum spectrum -------------------
|
---|
739 |
|
---|
740 | gROOT->SetSelectedPad(0);
|
---|
741 | TCanvas &c12 = d->AddTab("GainHist");
|
---|
742 | c12.cd();
|
---|
743 | gPad->SetLogy();
|
---|
744 | gPad->SetGridx();
|
---|
745 | gPad->SetGridy();
|
---|
746 |
|
---|
747 | const Int_t maxbin2 = hSumScale.GetMaximumBin();
|
---|
748 | const Double_t ampl2 = hSumScale.GetBinContent(maxbin2);
|
---|
749 |
|
---|
750 | //Set fit parameters
|
---|
751 | Double_t par2[7] =
|
---|
752 | {
|
---|
753 | ampl2, 1, 0.1, res_par[3], 0, res_par[5]/res_par[1], res_par[6]
|
---|
754 | };
|
---|
755 |
|
---|
756 | func.SetParameters(par2);
|
---|
757 | func.SetParLimits(0, 0, 2*ampl2);
|
---|
758 | func.FixParameter(1, 1);
|
---|
759 | func.FixParameter(4, 0);
|
---|
760 |
|
---|
761 | func.SetRange(0.62, 9);
|
---|
762 | hSumScale.Fit(&func, fast?"LN0QSR":"LIN0QSR");
|
---|
763 |
|
---|
764 | hSumScale.DrawCopy();
|
---|
765 | func.DrawCopy("same");
|
---|
766 |
|
---|
767 | cout << "--------------------" << endl;
|
---|
768 | PrintFunc(func, integration_window);
|
---|
769 | cout << "--------------------" << endl;
|
---|
770 |
|
---|
771 | //--------fit gausses to peaks of gain corrected sum specetrum -----------
|
---|
772 |
|
---|
773 | d->AddTab("ArrTime");
|
---|
774 | gPad->SetGrid();
|
---|
775 | hTime.DrawCopy();
|
---|
776 |
|
---|
777 | // -----------------------------------------------------------------
|
---|
778 |
|
---|
779 | d->AddTab("Pulse");
|
---|
780 | gPad->SetGrid();
|
---|
781 | hPulse.DrawCopy();
|
---|
782 |
|
---|
783 | // ================================================================
|
---|
784 |
|
---|
785 | cout << "Saving results to '" << outfile << "'" << endl;
|
---|
786 | d->SaveAs(outfile);
|
---|
787 | cout << "..success!" << endl;
|
---|
788 |
|
---|
789 | TFile f(outfile, "UPDATE");
|
---|
790 | par.Write();
|
---|
791 | ext.Write("ExtractionRange");
|
---|
792 | header.Write();
|
---|
793 |
|
---|
794 | return 0;
|
---|
795 | }
|
---|
796 |
|
---|