| 1 | #include <iomanip>
|
|---|
| 2 | #include <iostream>
|
|---|
| 3 |
|
|---|
| 4 | #include <TF1.h>
|
|---|
| 5 | #include <TH2.h>
|
|---|
| 6 | #include <TProfile2D.h>
|
|---|
| 7 | #include <TFile.h>
|
|---|
| 8 | #include <TFitResult.h>
|
|---|
| 9 | #include <TStyle.h>
|
|---|
| 10 |
|
|---|
| 11 | #include "MLog.h"
|
|---|
| 12 | #include "MLogManip.h"
|
|---|
| 13 | #include "MStatusArray.h"
|
|---|
| 14 | #include "MStatusDisplay.h"
|
|---|
| 15 | #include "MHCamera.h"
|
|---|
| 16 | #include "MGeomCamFACT.h"
|
|---|
| 17 | #include "MParameters.h"
|
|---|
| 18 | #include "MArrayI.h"
|
|---|
| 19 | #include "MRawRunHeader.h"
|
|---|
| 20 | #include "PixelMap.h"
|
|---|
| 21 |
|
|---|
| 22 | using namespace std;
|
|---|
| 23 |
|
|---|
| 24 | // --------------------------------------------------------------------------
|
|---|
| 25 |
|
|---|
| 26 | // Fit function for a single pe spectrum
|
|---|
| 27 | Double_t fcn_g(Double_t *xx, Double_t *par)
|
|---|
| 28 | {
|
|---|
| 29 | const Double_t ampl = par[0];
|
|---|
| 30 | const Double_t gain = par[1];
|
|---|
| 31 | const Double_t sigma = par[2]*gain;
|
|---|
| 32 | const Double_t cross = par[3];
|
|---|
| 33 | const Double_t shift = par[4];
|
|---|
| 34 | const Double_t noise = par[5]<0 ? sigma : par[5];
|
|---|
| 35 | const Double_t expo = par[6];
|
|---|
| 36 |
|
|---|
| 37 | Double_t y = 0;
|
|---|
| 38 | for (int N=1; N<14; N++)
|
|---|
| 39 | {
|
|---|
| 40 | const Double_t muN = N*gain + shift;
|
|---|
| 41 | const Double_t sigN = TMath::Sqrt(N*sigma*sigma + noise*noise);
|
|---|
| 42 |
|
|---|
| 43 | const Double_t p = TMath::Power(cross, N-1) * TMath::Power(N, -expo);
|
|---|
| 44 |
|
|---|
| 45 | y += TMath::Gaus(xx[0], muN, sigN) * p / sigN;
|
|---|
| 46 | }
|
|---|
| 47 |
|
|---|
| 48 | const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise);
|
|---|
| 49 | return ampl*sig1*y;
|
|---|
| 50 | }
|
|---|
| 51 |
|
|---|
| 52 | // Calculate the crosstalk from the function parameters
|
|---|
| 53 | Double_t xtalk(TF1 &f)
|
|---|
| 54 | {
|
|---|
| 55 | Double_t cross = f.GetParameter(3);
|
|---|
| 56 | Double_t expo = f.GetParameter(6);
|
|---|
| 57 |
|
|---|
| 58 | Double_t y = 0;
|
|---|
| 59 | for (int N=2; N<14; N++)
|
|---|
| 60 | y += TMath::Power(cross, N-1) * TMath::Power(N, -expo);
|
|---|
| 61 |
|
|---|
| 62 | return y / (y + 1);
|
|---|
| 63 | }
|
|---|
| 64 |
|
|---|
| 65 | // calculate the integral in units per millisecond
|
|---|
| 66 | double integral(TF1 &func, TH1 &hist)
|
|---|
| 67 | {
|
|---|
| 68 | const Double_t sigma = func.GetParameter(2)*func.GetParameter(1);
|
|---|
| 69 | const Double_t cross = func.GetParameter(3);
|
|---|
| 70 | const Double_t noise = func.GetParameter(5)<0 ? sigma : func.GetParameter(5);
|
|---|
| 71 | const Double_t expo = func.GetParameter(6);
|
|---|
| 72 |
|
|---|
| 73 | Double_t sum = 0;
|
|---|
| 74 | for (int N=1; N<14; N++)
|
|---|
| 75 | sum += TMath::Power(cross, N-1) * TMath::Power(N, -expo);
|
|---|
| 76 |
|
|---|
| 77 | const Double_t scale = hist.GetBinWidth(1);
|
|---|
| 78 | const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise);
|
|---|
| 79 | const Double_t integ = func.GetParameter(0)*sum*sig1*sqrt(TMath::TwoPi())/scale;
|
|---|
| 80 |
|
|---|
| 81 | return integ/1e-9/1e6;
|
|---|
| 82 | }
|
|---|
| 83 |
|
|---|
| 84 |
|
|---|
| 85 | // --------------------------------------------------------------------------
|
|---|
| 86 |
|
|---|
| 87 | // Print function parameters
|
|---|
| 88 | void PrintFunc(TF1 &f, float integration_window=30)
|
|---|
| 89 | {
|
|---|
| 90 | //cout << "--------------------" << endl;
|
|---|
| 91 | cout << "Ampl: " << setw(8) << f.GetParameter(0) << " +/- " << f.GetParError(0) << endl;
|
|---|
| 92 | cout << "Gain: " << setw(8) << f.GetParameter(1) << " +/- " << f.GetParError(1) << endl;
|
|---|
| 93 | cout << "Rel.sigma: " << setw(8) << f.GetParameter(2) << " +/- " << f.GetParError(2) << endl;
|
|---|
| 94 | cout << "Baseline: " << setw(8) << f.GetParameter(4)/integration_window << " +/- " << f.GetParError(4)/integration_window << endl;
|
|---|
| 95 | cout << "Crosstalk: " << setw(8) << f.GetParameter(3) << " +/- " << f.GetParError(3) << endl;
|
|---|
| 96 | cout << "Pcrosstalk: " << setw(8) << xtalk(f) << endl;
|
|---|
| 97 | if (f.GetParameter(5)>=0)
|
|---|
| 98 | cout << "Noise: " << setw(8) << f.GetParameter(5)/sqrt(integration_window) << " +/- " << f.GetParError(5)/sqrt(integration_window) << endl;
|
|---|
| 99 | cout << "Expo: " << setw(8) << f.GetParameter(6) << " +/- " << f.GetParError(6) << endl;
|
|---|
| 100 | //cout << "--------------------" << endl;
|
|---|
| 101 |
|
|---|
| 102 | }
|
|---|
| 103 |
|
|---|
| 104 | // --------------------------------------------------------------------------
|
|---|
| 105 |
|
|---|
| 106 | // The parameters for the function are the filenam from the gain extraction
|
|---|
| 107 | // and the output filename
|
|---|
| 108 | int fit_spectra(const char *filename = "20130222_018_018.root",
|
|---|
| 109 | const char *outfile = "20130222_018_018-fit.root",
|
|---|
| 110 | bool fixednoise=true)
|
|---|
| 111 | {
|
|---|
| 112 | // Read the mapping between bias channels and hardware channels
|
|---|
| 113 | PixelMap pmap;
|
|---|
| 114 | if (!pmap.Read("FACTmap111030.txt"))
|
|---|
| 115 | {
|
|---|
| 116 | cout << "FACTmap111030.txt not found." << endl;
|
|---|
| 117 | return 1;
|
|---|
| 118 | }
|
|---|
| 119 |
|
|---|
| 120 | // It is more correct to fit the integral, but this is super
|
|---|
| 121 | // slow, especially for 1440 pixel. To get that, one would have
|
|---|
| 122 | // to analytically integrate and fit this function.
|
|---|
| 123 | // (Currently the integral is switched off for the 1440 individual
|
|---|
| 124 | // spectra in all cases)
|
|---|
| 125 | bool fast = false; // Switch off using integral
|
|---|
| 126 |
|
|---|
| 127 | // Values which should be read from the file but not available atm
|
|---|
| 128 | Int_t integration_window = 30;
|
|---|
| 129 |
|
|---|
| 130 | // Map for which pixel shall be plotted and which not
|
|---|
| 131 | TArrayC usePixel(1440);
|
|---|
| 132 | memset(usePixel.GetArray(), 1, 1440);
|
|---|
| 133 |
|
|---|
| 134 | // List of Pixel that should be ignored in camera view
|
|---|
| 135 | usePixel[424] = 0;
|
|---|
| 136 | usePixel[923] = 0;
|
|---|
| 137 | usePixel[1208] = 0;
|
|---|
| 138 | usePixel[583] = 0;
|
|---|
| 139 | usePixel[830] = 0;
|
|---|
| 140 | usePixel[1399] = 0;
|
|---|
| 141 | usePixel[113] = 0;
|
|---|
| 142 | usePixel[115] = 0;
|
|---|
| 143 | usePixel[354] = 0;
|
|---|
| 144 | usePixel[423] = 0;
|
|---|
| 145 | usePixel[1195] = 0;
|
|---|
| 146 | usePixel[1393] = 0;
|
|---|
| 147 |
|
|---|
| 148 | cout << setprecision(3);
|
|---|
| 149 |
|
|---|
| 150 | // ======================================================
|
|---|
| 151 | // Read data and histograms from file
|
|---|
| 152 |
|
|---|
| 153 | TFile file(filename);
|
|---|
| 154 | if (file.IsZombie())
|
|---|
| 155 | {
|
|---|
| 156 | gLog << err << "Opening file '" << filename << "' failed." << endl;
|
|---|
| 157 | return 1;
|
|---|
| 158 | }
|
|---|
| 159 |
|
|---|
| 160 | MStatusArray arr;
|
|---|
| 161 | if (arr.Read()<=0)
|
|---|
| 162 | {
|
|---|
| 163 | gLog << err << "Reading of MStatusArray from '" << filename << "' failed." << endl;
|
|---|
| 164 | return 2;
|
|---|
| 165 | }
|
|---|
| 166 |
|
|---|
| 167 | TH2 *hsignal = (TH2*)arr.FindObjectInCanvas("Signal", "TH2F", "MHSingles");
|
|---|
| 168 | if (!hsignal)
|
|---|
| 169 | {
|
|---|
| 170 | gLog << err << "Histogram Signal not found in '" << filename << "'." << endl;
|
|---|
| 171 | return 3;
|
|---|
| 172 | }
|
|---|
| 173 | TH2 *htime = (TH2*)arr.FindObjectInCanvas("Time", "TH2F", "MHSingles");
|
|---|
| 174 | if (!htime)
|
|---|
| 175 | {
|
|---|
| 176 | gLog << err << "Histogram Time not found in '" << filename << "'." << endl;
|
|---|
| 177 | return 4;
|
|---|
| 178 | }
|
|---|
| 179 | TProfile2D *hpulse = (TProfile2D*)arr.FindObjectInCanvas("Pulse", "TProfile2D", "MHSingles");
|
|---|
| 180 | if (!hpulse)
|
|---|
| 181 | {
|
|---|
| 182 | gLog << err << "Histogram Pulse not found in '" << filename << "'." << endl;
|
|---|
| 183 | return 5;
|
|---|
| 184 | }
|
|---|
| 185 | TH2F *hbase = (TH2F*)arr.FindObjectInCanvas("Baseline", "TH2F", "MHBaseline");
|
|---|
| 186 | if (!hbase)
|
|---|
| 187 | {
|
|---|
| 188 | gLog << err << "Histogram Baseline not found in '" << filename << "'." << endl;
|
|---|
| 189 | return 6;
|
|---|
| 190 | }
|
|---|
| 191 |
|
|---|
| 192 | MRawRunHeader header;
|
|---|
| 193 | if (header.Read()<=0)
|
|---|
| 194 | {
|
|---|
| 195 | gLog << err << "MRawRunheader not found in '" << filename << "'." << endl;
|
|---|
| 196 | return 7;
|
|---|
| 197 | }
|
|---|
| 198 |
|
|---|
| 199 | MParameterI par("NumEvents");
|
|---|
| 200 | if (par.Read()<=0)
|
|---|
| 201 | {
|
|---|
| 202 | gLog << err << "NumEvents not found in '" << filename << "'." << endl;
|
|---|
| 203 | return 8;
|
|---|
| 204 | }
|
|---|
| 205 |
|
|---|
| 206 | MArrayI ext;
|
|---|
| 207 | if (ext.Read("ExtractionRange")<=0)
|
|---|
| 208 | {
|
|---|
| 209 | gLog << err << "ExtractionRange not found in '" << filename << "'." << endl;
|
|---|
| 210 | return 9;
|
|---|
| 211 |
|
|---|
| 212 | }
|
|---|
| 213 |
|
|---|
| 214 | // ======================================================
|
|---|
| 215 |
|
|---|
| 216 | MStatusDisplay *d = new MStatusDisplay;
|
|---|
| 217 |
|
|---|
| 218 | // Camera geometry for displays
|
|---|
| 219 | MGeomCamFACT fact;
|
|---|
| 220 |
|
|---|
| 221 | // ------------------ Spectrum Fit ---------------
|
|---|
| 222 | // Instantiate the display histograms
|
|---|
| 223 | MHCamera cRate(fact);
|
|---|
| 224 | MHCamera cGain(fact);
|
|---|
| 225 | MHCamera cRelSigma(fact);
|
|---|
| 226 | MHCamera cCrosstalk(fact);
|
|---|
| 227 | MHCamera cBaseline(fact);
|
|---|
| 228 | MHCamera cNoise(fact);
|
|---|
| 229 | MHCamera cChi2(fact);
|
|---|
| 230 | MHCamera cNormGain(fact);
|
|---|
| 231 | MHCamera cFitProb(fact);
|
|---|
| 232 | MHCamera cCrosstalkP(fact);
|
|---|
| 233 | MHCamera cCoeffR(fact);
|
|---|
| 234 |
|
|---|
| 235 | // Set name and title for the histograms
|
|---|
| 236 | cRate.SetNameTitle ("Rate", "Dark count rate");
|
|---|
| 237 | cGain.SetNameTitle ("Gain", "Gain distribution");
|
|---|
| 238 | cRelSigma.SetNameTitle ("RelSigma", "Rel. Sigma");
|
|---|
| 239 | cCrosstalk.SetNameTitle ("Crosstalk", "Crosstalk probability");
|
|---|
| 240 | cBaseline.SetNameTitle ("Baseline", "Baseline per sample");
|
|---|
| 241 | cNoise.SetNameTitle ("Noise", "Noise per sample");
|
|---|
| 242 | cChi2.SetNameTitle ("Chi2", "\\Chi^2");
|
|---|
| 243 | cNormGain.SetNameTitle ("NormGain", "Normalized gain");
|
|---|
| 244 | cFitProb.SetNameTitle ("FitProb", "Root's fit probability");
|
|---|
| 245 | cCrosstalkP.SetNameTitle("Pxtalk", "Crosstalk coeff. P");
|
|---|
| 246 | cCoeffR.SetNameTitle ("CoeffR", "Coefficient R");
|
|---|
| 247 |
|
|---|
| 248 | // Instantiate 1D histograms for the distributions
|
|---|
| 249 | // including TM channels
|
|---|
| 250 | TH1F hRate1 ("Rate1", "Dark count rate", 150, 0, 15);
|
|---|
| 251 | TH1F hGain1 ("Gain1", "Gain distribution", 100, 0, 400);
|
|---|
| 252 | TH1F hRelSigma1 ("RelSigma1", "Rel. Sigma", 160, 0, 0.40);
|
|---|
| 253 | TH1F hCrosstalk1 ("Crosstalk1", "Crosstalk probability", 90, 0, 0.30);
|
|---|
| 254 | TH1F hBaseline1 ("Baseline1", "Baseline per sample", 75, -7.5, 7.5);
|
|---|
| 255 | TH1F hNoise1 ("Noise1", "Noise per sample", 60, 0, 30);
|
|---|
| 256 | TH1F hChiSq1 ("ChiSq1", "\\Chi^2", 200, 0, 4);
|
|---|
| 257 | TH1F hNormGain1 ("NormGain1", "Normalized gain", 51, 0.5, 1.5);
|
|---|
| 258 | TH1F hFitProb1 ("FitProb1", "FitProb distribution", 100, 0, 1);
|
|---|
| 259 | TH1F hCrosstalkP1("Pxtalk1", "Crosstalk coeff.", 90, 0, 0.3);
|
|---|
| 260 | TH1F hCoeffR1 ("CoeffR1", "Coefficient R", 90, -1, 2);
|
|---|
| 261 |
|
|---|
| 262 | // excluding TM channels
|
|---|
| 263 | TH1F hRate2 ("Rate2", "Dark count rate", 150, 0, 15);
|
|---|
| 264 | TH1F hGain2 ("Gain2", "Gain distribution", 100, 0, 400);
|
|---|
| 265 | TH1F hRelSigma2 ("RelSigma2", "Rel. Sigma", 160, 0, 0.40);
|
|---|
| 266 | TH1F hCrosstalk2 ("Crosstalk2", "Crosstalk probability", 90, 0, 0.30);
|
|---|
| 267 | TH1F hBaseline2 ("Baseline2", "Baseline per sample", 75, -7.5, 7.5);
|
|---|
| 268 | TH1F hNoise2 ("Noise2", "Noise per sample", 60, 0, 30);
|
|---|
| 269 | TH1F hChiSq2 ("ChiSq2", "\\Chi^2", 200, 0, 4);
|
|---|
| 270 | TH1F hNormGain2 ("NormGain2", "Normalized gain", 51, 0.5, 1.5);
|
|---|
| 271 | TH1F hFitProb2 ("FitProb2", "FitProb distribution", 100, 0, 1);
|
|---|
| 272 | TH1F hCrosstalkP2("Pxtalk2", "Crosstalk coeff.", 90, 0, 0.3);
|
|---|
| 273 | TH1F hCoeffR2 ("CoeffR2", "Coefficient R", 90, -1, 2);
|
|---|
| 274 |
|
|---|
| 275 | // Histigram for the sum of all spectrums
|
|---|
| 276 | TH1F hSum("Sum1", "Signal spectrum of all pixels",
|
|---|
| 277 | hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
|
|---|
| 278 | hSum.SetXTitle("pulse integral [mV sample]");
|
|---|
| 279 | hSum.SetYTitle("Counts");
|
|---|
| 280 | hSum.SetStats(false);
|
|---|
| 281 | hSum.Sumw2();
|
|---|
| 282 |
|
|---|
| 283 | // Histogram for the sum of all pixels excluding the ones with faulty fits
|
|---|
| 284 | TH1F hSumClear1("SumC1", "Signal spectrum of all pixels (incl TM)",
|
|---|
| 285 | hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
|
|---|
| 286 | hSumClear1.SetXTitle("pulse integral [mV sample]");
|
|---|
| 287 | hSumClear1.SetYTitle("Counts");
|
|---|
| 288 | hSumClear1.SetStats(false);
|
|---|
| 289 | hSumClear1.SetLineColor(kBlue);
|
|---|
| 290 | hSumClear1.Sumw2();
|
|---|
| 291 |
|
|---|
| 292 | TH1F hSumClear2("SumC2", "Signal spectrum of all pixels (excp TM)",
|
|---|
| 293 | hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
|
|---|
| 294 | hSumClear2.SetXTitle("pulse integral [mV sample]");
|
|---|
| 295 | hSumClear2.SetYTitle("Counts");
|
|---|
| 296 | hSumClear2.SetStats(false);
|
|---|
| 297 | hSumClear2.SetLineColor(kBlue);
|
|---|
| 298 | hSumClear2.Sumw2();
|
|---|
| 299 |
|
|---|
| 300 | // Arrival time spectrum of the extracted pulses
|
|---|
| 301 | TH1F hTime("Time", "Arrival time spectrum", htime->GetNbinsY(), htime->GetYaxis()->GetXmin(), htime->GetYaxis()->GetXmax());
|
|---|
| 302 | hTime.SetXTitle("pulse arrival time [sample]");
|
|---|
| 303 | hTime.SetYTitle("Counts");
|
|---|
| 304 | hTime.SetStats(false);
|
|---|
| 305 |
|
|---|
| 306 | // average pulse shape of the extracted pulses
|
|---|
| 307 | TH1F hPulse("Puls", "Average pulse", hpulse->GetNbinsY(), hpulse->GetYaxis()->GetXmin(), hpulse->GetYaxis()->GetXmax());
|
|---|
| 308 | hPulse.SetXTitle("pulse arrival time [sample]");
|
|---|
| 309 | hPulse.SetYTitle("Counts");
|
|---|
| 310 | hPulse.SetStats(false);
|
|---|
| 311 |
|
|---|
| 312 | // Spektrum for the normalized individual spectra
|
|---|
| 313 | TH1F hSumScale1("SumScale1", "Signal spectrum of all pixels (incl TM)", 120, 0.05, 12.05);
|
|---|
| 314 | hSumScale1.SetXTitle("pulse integral [pe]");
|
|---|
| 315 | hSumScale1.SetYTitle("Rate");
|
|---|
| 316 | hSumScale1.SetStats(false);
|
|---|
| 317 | hSumScale1.Sumw2();
|
|---|
| 318 |
|
|---|
| 319 | TH1F hSumScale2("SumScale2", "Signal spectrum of all pixels (excl TM)", 120, 0.05, 12.05);
|
|---|
| 320 | hSumScale2.SetXTitle("pulse integral [pe]");
|
|---|
| 321 | hSumScale2.SetYTitle("Rate");
|
|---|
| 322 | hSumScale2.SetStats(false);
|
|---|
| 323 | hSumScale2.Sumw2();
|
|---|
| 324 |
|
|---|
| 325 | // define fit function for Amplitudespectrum
|
|---|
| 326 | TF1 func("spektrum", fcn_g, 0, hSum.GetXaxis()->GetXmax(), 7);
|
|---|
| 327 | func.SetNpx(2000);
|
|---|
| 328 | func.SetParNames("Maximum", "Gain", "Sigma", "XtalkProb", "Offset", "Noise", "Expo");
|
|---|
| 329 | func.SetLineColor(kRed);
|
|---|
| 330 |
|
|---|
| 331 | //--------------------- fill sum spectrum --------------------------------
|
|---|
| 332 |
|
|---|
| 333 | d->SetStatusLine("Calculating sum spectrum", 0);
|
|---|
| 334 |
|
|---|
| 335 | // Begin of Loop over Pixels
|
|---|
| 336 | for (Int_t pixel = 0; pixel < hsignal->GetNbinsX(); pixel++)
|
|---|
| 337 | {
|
|---|
| 338 | //jump to next pixel if the current is marked as faulty
|
|---|
| 339 | if (usePixel[pixel]==0)
|
|---|
| 340 | continue;
|
|---|
| 341 |
|
|---|
| 342 | TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
|
|---|
| 343 | hSum.Add(hist);
|
|---|
| 344 | delete hist;
|
|---|
| 345 | }
|
|---|
| 346 |
|
|---|
| 347 | //----------------- get starting values -------------------------------
|
|---|
| 348 |
|
|---|
| 349 | hSum.GetXaxis()->SetRangeUser(150, hSum.GetXaxis()->GetXmax());
|
|---|
| 350 |
|
|---|
| 351 | const Int_t maxbin = hSum.GetMaximumBin();
|
|---|
| 352 | const Double_t maxpos = hSum.GetBinCenter(maxbin);
|
|---|
| 353 | const Double_t binwidth = hSum.GetBinWidth(maxbin);
|
|---|
| 354 | const Double_t ampl = hSum.GetBinContent(maxbin);
|
|---|
| 355 |
|
|---|
| 356 | double fwhmSum = 0;
|
|---|
| 357 |
|
|---|
| 358 | //Calculate full width half Maximum
|
|---|
| 359 | for (int i=1; i<maxbin; i++)
|
|---|
| 360 | if (hSum.GetBinContent(maxbin-i)+hSum.GetBinContent(maxbin+i)<ampl)
|
|---|
| 361 | {
|
|---|
| 362 | fwhmSum = 2*(i-0.5)*binwidth;
|
|---|
| 363 | break;
|
|---|
| 364 | }
|
|---|
| 365 |
|
|---|
| 366 | if (fwhmSum==0)
|
|---|
| 367 | {
|
|---|
| 368 | gLog << warn << "Could not determine start value for sigma." << endl;
|
|---|
| 369 | }
|
|---|
| 370 |
|
|---|
| 371 | Double_t sigma_est = fwhmSum/2.3548; // FWHM = 2*sqrt(2*ln(2))*sigma
|
|---|
| 372 |
|
|---|
| 373 | Double_t fitmin = maxpos-3*sigma_est; // was 3
|
|---|
| 374 | Double_t fitmax = hSum.GetXaxis()->GetXmax();
|
|---|
| 375 |
|
|---|
| 376 | // ------------------- fit --------------------------------
|
|---|
| 377 |
|
|---|
| 378 | //Fit and draw spectrum
|
|---|
| 379 | func.SetParLimits(0, 0, 2*ampl); // Amplitude
|
|---|
| 380 | func.SetParLimits(1, 0, 2*maxpos); // Gain
|
|---|
| 381 | func.SetParLimits(2, 0, 1); // Sigma
|
|---|
| 382 | func.SetParLimits(3, 0, 1); // Crosstalk
|
|---|
| 383 | if (!fixednoise)
|
|---|
| 384 | func.SetParLimits(5, 0, 150); // Noise
|
|---|
| 385 |
|
|---|
| 386 | func.SetParameter(0, ampl); // Amplitude
|
|---|
| 387 | func.SetParameter(1, maxpos); // Gain
|
|---|
| 388 | func.SetParameter(2, 0.1); // Sigma
|
|---|
| 389 | func.SetParameter(3, 0.16); // Crosstalk
|
|---|
| 390 | func.SetParameter(4, 0*integration_window); // Baseline
|
|---|
| 391 | if (fixednoise)
|
|---|
| 392 | func.FixParameter(5, -1); // Noise
|
|---|
| 393 | else
|
|---|
| 394 | func.SetParameter(5, 0.1*maxpos); // Noise
|
|---|
| 395 |
|
|---|
| 396 | func.SetParameter(6, 0.4); // Expo
|
|---|
| 397 |
|
|---|
| 398 | func.SetRange(fitmin, fitmax);
|
|---|
| 399 | hSum.Fit(&func, fast?"N0QSR":"IN0QSR");
|
|---|
| 400 |
|
|---|
| 401 | Double_t res_par[7];
|
|---|
| 402 | func.GetParameters(res_par);
|
|---|
| 403 |
|
|---|
| 404 | //func.FixParameter(6, func.GetParameter(6)); // Expo
|
|---|
| 405 |
|
|---|
| 406 | // ------------------ display result -------------------------------
|
|---|
| 407 |
|
|---|
| 408 | cout << "--------------------" << endl;
|
|---|
| 409 | cout << "AmplEst: " << ampl << endl;
|
|---|
| 410 | cout << "GainEst: " << maxpos << endl;
|
|---|
| 411 | cout << "SigmaEst: " << sigma_est << endl;
|
|---|
| 412 | PrintFunc(func, integration_window);
|
|---|
| 413 | cout << "--------------------" << endl;
|
|---|
| 414 |
|
|---|
| 415 | gROOT->SetSelectedPad(0);
|
|---|
| 416 | TCanvas &c11 = d->AddTab("SumHist");
|
|---|
| 417 | c11.cd();
|
|---|
| 418 | gPad->SetLogy();
|
|---|
| 419 | gPad->SetGridx();
|
|---|
| 420 | gPad->SetGridy();
|
|---|
| 421 | hSum.GetXaxis()->SetRange();
|
|---|
| 422 | hSum.DrawCopy("hist");
|
|---|
| 423 | func.DrawCopy("same");
|
|---|
| 424 |
|
|---|
| 425 | // ===================================================================
|
|---|
| 426 | // Gain Calculation for each Pixel
|
|---|
| 427 | // ===================================================================
|
|---|
| 428 |
|
|---|
| 429 | // counter for number of processed pixel
|
|---|
| 430 | int count_ok = 0;
|
|---|
| 431 |
|
|---|
| 432 | // Begin of Loop over Pixels
|
|---|
| 433 | for (Int_t pixel=0; pixel<hsignal->GetNbinsX(); pixel++)
|
|---|
| 434 | {
|
|---|
| 435 | // User information
|
|---|
| 436 | d->SetStatusLine(Form("Fitting pixel #%d", pixel), 0);
|
|---|
| 437 | d->SetProgressBarPosition((pixel+1.)/hsignal->GetNbinsX(), 1);
|
|---|
| 438 |
|
|---|
| 439 | // Skip pixels known to be faulty
|
|---|
| 440 | if (usePixel[pixel]==0)
|
|---|
| 441 | continue;
|
|---|
| 442 |
|
|---|
| 443 | //Projectipon of a certain Pixel out of Ampl.Spectrum
|
|---|
| 444 | TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
|
|---|
| 445 | hist->SetDirectory(0);
|
|---|
| 446 |
|
|---|
| 447 | if (hist->GetEntries()<100)
|
|---|
| 448 | {
|
|---|
| 449 | gLog << warn << pixel << " ...histogram empty." << endl;
|
|---|
| 450 | usePixel[pixel] = 0;
|
|---|
| 451 | delete hist;
|
|---|
| 452 | continue;
|
|---|
| 453 | }
|
|---|
| 454 |
|
|---|
| 455 | //Rebin Projection
|
|---|
| 456 | hist->Rebin(2);
|
|---|
| 457 |
|
|---|
| 458 | // Fit range
|
|---|
| 459 | hist->GetXaxis()->SetRangeUser(150, hist->GetXaxis()->GetXmax());
|
|---|
| 460 |
|
|---|
| 461 | // Determine start values
|
|---|
| 462 | const Int_t maxBin = hist->GetMaximumBin();
|
|---|
| 463 | const Double_t maxPos = hist->GetBinCenter(maxBin);
|
|---|
| 464 |
|
|---|
| 465 | const Double_t gain = res_par[1];
|
|---|
| 466 | const Double_t GainRMS = res_par[2];
|
|---|
| 467 |
|
|---|
| 468 | const double fit_min = maxPos-GainRMS*gain*2.5;
|
|---|
| 469 | const double fit_max = fitmax;//maxPos+gain*(maxOrder-0.5);
|
|---|
| 470 |
|
|---|
| 471 | TArrayD cpy_par(7, res_par);
|
|---|
| 472 |
|
|---|
| 473 | cpy_par[0] = hist->GetBinContent(maxBin);
|
|---|
| 474 | cpy_par[1] = maxPos-res_par[4]; // correct position for avg baseline
|
|---|
| 475 |
|
|---|
| 476 | func.SetParameters(cpy_par.GetArray());
|
|---|
| 477 | func.SetParLimits(0, 0, 2*cpy_par[0]);
|
|---|
| 478 | func.SetParLimits(1, 0, 2*cpy_par[1]);
|
|---|
| 479 |
|
|---|
| 480 | // For individual spectra, the average fit yields 1 anyway
|
|---|
| 481 | //func.SetParameter(6, 0); // Expo
|
|---|
| 482 |
|
|---|
| 483 | // ----------- Fit Pixels spectrum ---------------
|
|---|
| 484 |
|
|---|
| 485 | const TFitResultPtr rc = hist->Fit(&func, /*fast?*/"LLN0QS"/*:"LLIN0QS"*/, "", fit_min, fit_max);
|
|---|
| 486 |
|
|---|
| 487 | // ----------- Calculate quality parameter ---------------
|
|---|
| 488 |
|
|---|
| 489 | Int_t b1 = hist->GetXaxis()->FindFixBin(fit_min);
|
|---|
| 490 | Int_t b2 = hist->GetXaxis()->FindFixBin(fit_max);
|
|---|
| 491 |
|
|---|
| 492 | Double_t chi2 = 0;
|
|---|
| 493 | Int_t cnt = 0;
|
|---|
| 494 | for (int i=b1; i<=b2; i++)
|
|---|
| 495 | {
|
|---|
| 496 | if (hist->GetBinContent(i)<1.5 || func.Eval(hist->GetBinCenter(i))<1.5)
|
|---|
| 497 | continue;
|
|---|
| 498 |
|
|---|
| 499 | const Double_t y = func.Integral(hist->GetBinLowEdge(i), hist->GetBinLowEdge(i+1));
|
|---|
| 500 | const Double_t v = hist->GetBinContent(i)*hist->GetBinWidth(i);
|
|---|
| 501 |
|
|---|
| 502 | const Double_t chi = (v-y)/v;
|
|---|
| 503 |
|
|---|
| 504 | chi2 += chi*chi;
|
|---|
| 505 | cnt ++;
|
|---|
| 506 | }
|
|---|
| 507 |
|
|---|
| 508 | chi2 = cnt==0 ? 0 : sqrt(chi2/cnt);
|
|---|
| 509 |
|
|---|
| 510 | // ----------------- Fit result --------------------
|
|---|
| 511 |
|
|---|
| 512 | const double fit_prob = rc->Prob();
|
|---|
| 513 |
|
|---|
| 514 | const float fRate = integral(func, *hist)/(ext[pixel]*0.5);
|
|---|
| 515 | const float fGain = func.GetParameter(1);
|
|---|
| 516 | const float fGainRMS = func.GetParameter(2);
|
|---|
| 517 | const float fCrosstalkP= func.GetParameter(3);
|
|---|
| 518 | const float fCrosstlk = xtalk(func);
|
|---|
| 519 | const float fOffset = func.GetParameter(4);
|
|---|
| 520 | const float fNoise = func.GetParameter(5)<0 ? fGainRMS*fGain/sqrt(integration_window) : func.GetParameter(5)/sqrt(integration_window);
|
|---|
| 521 | const float fCoeffR = func.GetParameter(6);
|
|---|
| 522 |
|
|---|
| 523 | // Fill histograms with result values
|
|---|
| 524 | cRate.SetBinContent( pixel+1, fRate);
|
|---|
| 525 | cGain.SetBinContent( pixel+1, fGain);
|
|---|
| 526 | cRelSigma.SetBinContent( pixel+1, fGainRMS);
|
|---|
| 527 | cCrosstalk.SetBinContent( pixel+1, fCrosstlk);
|
|---|
| 528 | cBaseline.SetBinContent( pixel+1, fOffset/integration_window);
|
|---|
| 529 | cNoise.SetBinContent( pixel+1, fNoise);
|
|---|
| 530 | cChi2.SetBinContent( pixel+1, chi2);
|
|---|
| 531 | cNormGain.SetBinContent( pixel+1, fGain/gain);
|
|---|
| 532 | cFitProb.SetBinContent( pixel+1, fit_prob);
|
|---|
| 533 | cCrosstalkP.SetBinContent(pixel+1, fCrosstalkP);
|
|---|
| 534 | cCoeffR.SetBinContent( pixel+1, fCoeffR);
|
|---|
| 535 |
|
|---|
| 536 | // ======================================================
|
|---|
| 537 |
|
|---|
| 538 | // Try to determine faulty fits
|
|---|
| 539 |
|
|---|
| 540 | bool ok = int(rc)==0;
|
|---|
| 541 |
|
|---|
| 542 | // mark pixels suspicious with failed fit
|
|---|
| 543 | if (!ok)
|
|---|
| 544 | gLog << warn << pixel << " ...fit failed!" << endl;
|
|---|
| 545 |
|
|---|
| 546 | // mark pixels suspicious with negative GainRMS
|
|---|
| 547 | if (fabs(fGain/gain-1)>0.3)
|
|---|
| 548 | {
|
|---|
| 549 | gLog << warn << pixel << " ...gain deviates more than 30% from sum-gain." << endl;
|
|---|
| 550 | ok = 0;
|
|---|
| 551 | }
|
|---|
| 552 |
|
|---|
| 553 | if (fabs(fOffset/integration_window)>3)
|
|---|
| 554 | {
|
|---|
| 555 | gLog << warn << pixel << " ...baseline deviates." << endl;
|
|---|
| 556 | ok = 0;
|
|---|
| 557 | }
|
|---|
| 558 |
|
|---|
| 559 | // cancel out pixel where the fit was not succsessfull
|
|---|
| 560 | usePixel[pixel] = ok;
|
|---|
| 561 |
|
|---|
| 562 | // Plot pixel 0 and 5 (TM) and all faulty fits
|
|---|
| 563 | if (pixel==0 || pixel==5 || !ok)
|
|---|
| 564 | {
|
|---|
| 565 | TCanvas &c = d->AddTab(Form("Pix%d", pixel));
|
|---|
| 566 | c.cd();
|
|---|
| 567 | gPad->SetLogy();
|
|---|
| 568 | gPad->SetGridx();
|
|---|
| 569 | gPad->SetGridy();
|
|---|
| 570 |
|
|---|
| 571 | hist->SetStats(false);
|
|---|
| 572 | hist->SetXTitle("Extracted signal");
|
|---|
| 573 | hist->SetYTitle("Counts");
|
|---|
| 574 | hist->SetName(Form("Pix%d", pixel));
|
|---|
| 575 | hist->GetXaxis()->SetRange();
|
|---|
| 576 | hist->DrawCopy("hist")->SetDirectory(0);
|
|---|
| 577 | func.DrawCopy("SAME")->SetRange(fit_min, fit_max);
|
|---|
| 578 |
|
|---|
| 579 | cout << "--------------------" << endl;
|
|---|
| 580 | cout << "Pixel: " << pixel << endl;
|
|---|
| 581 | cout << "fit prob: " << fit_prob << endl;
|
|---|
| 582 | cout << "AmplEst: " << cpy_par[0] << endl;
|
|---|
| 583 | cout << "GainEst: " << cpy_par[1] << endl;
|
|---|
| 584 | PrintFunc(func, integration_window);
|
|---|
| 585 | cout << "--------------------" << endl;
|
|---|
| 586 | }
|
|---|
| 587 |
|
|---|
| 588 | if (!ok)
|
|---|
| 589 | {
|
|---|
| 590 | delete hist;
|
|---|
| 591 | continue;
|
|---|
| 592 | }
|
|---|
| 593 |
|
|---|
| 594 | // Fill Parameters into histograms
|
|---|
| 595 | hRate1.Fill( fRate);
|
|---|
| 596 | hGain1.Fill( fGain);
|
|---|
| 597 | hRelSigma1.Fill( fGainRMS);
|
|---|
| 598 | hCrosstalk1.Fill( fCrosstlk);
|
|---|
| 599 | hBaseline1.Fill( fOffset/integration_window);
|
|---|
| 600 | hNoise1.Fill( fNoise);
|
|---|
| 601 | hChiSq1.Fill( chi2);
|
|---|
| 602 | hNormGain1.Fill( fGain/gain);
|
|---|
| 603 | hFitProb1.Fill( fit_prob);
|
|---|
| 604 | hCrosstalkP1.Fill(fCrosstalkP);
|
|---|
| 605 | hCoeffR1.Fill( fCoeffR);
|
|---|
| 606 |
|
|---|
| 607 | if (!pmap.index(pixel).isTM())
|
|---|
| 608 | {
|
|---|
| 609 | hRate2.Fill( fRate);
|
|---|
| 610 | hGain2.Fill( fGain);
|
|---|
| 611 | hRelSigma2.Fill( fGainRMS);
|
|---|
| 612 | hCrosstalk2.Fill( fCrosstlk);
|
|---|
| 613 | hBaseline2.Fill( fOffset/integration_window);
|
|---|
| 614 | hNoise2.Fill( fNoise);
|
|---|
| 615 | hChiSq2.Fill( chi2);
|
|---|
| 616 | hNormGain2.Fill( fGain/gain);
|
|---|
| 617 | hFitProb2.Fill( fit_prob);
|
|---|
| 618 | hCrosstalkP2.Fill(fCrosstalkP);
|
|---|
| 619 | hCoeffR2.Fill( fCoeffR);
|
|---|
| 620 | }
|
|---|
| 621 |
|
|---|
| 622 | // Fill sum spectrum
|
|---|
| 623 | for (int b=1; b<=hist->GetNbinsX(); b++)
|
|---|
| 624 | hSumScale1.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b));
|
|---|
| 625 |
|
|---|
| 626 | if (!pmap.index(pixel).isTM())
|
|---|
| 627 | for (int b=1; b<=hist->GetNbinsX(); b++)
|
|---|
| 628 | hSumScale2.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b));
|
|---|
| 629 |
|
|---|
| 630 | delete hist;
|
|---|
| 631 |
|
|---|
| 632 | // Because of the rebinning...
|
|---|
| 633 | hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
|
|---|
| 634 | hSumClear1.Add(hist);
|
|---|
| 635 | if (!pmap.index(pixel).isTM())
|
|---|
| 636 | hSumClear2.Add(hist);
|
|---|
| 637 | delete hist;
|
|---|
| 638 |
|
|---|
| 639 | hist = htime->ProjectionY("proj", pixel+1, pixel+1);
|
|---|
| 640 | hTime.Add(hist);
|
|---|
| 641 | delete hist;
|
|---|
| 642 |
|
|---|
| 643 | hist = hpulse->ProjectionY("proj", pixel+1, pixel+1);
|
|---|
| 644 | hPulse.Add(hist);
|
|---|
| 645 | delete hist;
|
|---|
| 646 |
|
|---|
| 647 | count_ok++;
|
|---|
| 648 | }
|
|---|
| 649 |
|
|---|
| 650 | //------------------fill histograms-----------------------
|
|---|
| 651 | // Display only pixels used and with valid fits
|
|---|
| 652 |
|
|---|
| 653 | cRate.SetUsed(usePixel);
|
|---|
| 654 | cGain.SetUsed(usePixel);
|
|---|
| 655 | cRelSigma.SetUsed(usePixel);
|
|---|
| 656 | cCrosstalk.SetUsed(usePixel);
|
|---|
| 657 | cBaseline.SetUsed(usePixel);
|
|---|
| 658 | cNoise.SetUsed(usePixel);
|
|---|
| 659 | cChi2.SetUsed(usePixel);
|
|---|
| 660 | cNormGain.SetUsed(usePixel);
|
|---|
| 661 | cFitProb.SetUsed(usePixel);
|
|---|
| 662 | cCrosstalkP.SetUsed(usePixel);
|
|---|
| 663 | cCoeffR.SetUsed(usePixel);
|
|---|
| 664 |
|
|---|
| 665 | // --------------------------------------------------------
|
|---|
| 666 | // Display data
|
|---|
| 667 |
|
|---|
| 668 | TCanvas *canv = &d->AddTab("Cams1");
|
|---|
| 669 | canv->Divide(3,2);
|
|---|
| 670 |
|
|---|
| 671 | canv->cd(1);
|
|---|
| 672 | cRate.DrawCopy();
|
|---|
| 673 |
|
|---|
| 674 | canv->cd(2);
|
|---|
| 675 | cGain.DrawCopy();
|
|---|
| 676 |
|
|---|
| 677 | canv->cd(3);
|
|---|
| 678 | cBaseline.DrawCopy();
|
|---|
| 679 |
|
|---|
| 680 | canv->cd(4);
|
|---|
| 681 | cRelSigma.DrawCopy();
|
|---|
| 682 |
|
|---|
| 683 | canv->cd(5);
|
|---|
| 684 | cCrosstalk.DrawCopy();
|
|---|
| 685 |
|
|---|
| 686 | canv->cd(6);
|
|---|
| 687 | cNoise.DrawCopy();
|
|---|
| 688 |
|
|---|
| 689 |
|
|---|
| 690 | canv = &d->AddTab("Cams2");
|
|---|
| 691 | canv->Divide(3,2);
|
|---|
| 692 |
|
|---|
| 693 | canv->cd(1);
|
|---|
| 694 | cFitProb.DrawCopy();
|
|---|
| 695 |
|
|---|
| 696 | canv->cd(2);
|
|---|
| 697 | cChi2.DrawCopy();
|
|---|
| 698 |
|
|---|
| 699 | canv->cd(4);
|
|---|
| 700 | cCoeffR.DrawCopy();
|
|---|
| 701 |
|
|---|
| 702 | canv->cd(5);
|
|---|
| 703 | cCrosstalkP.DrawCopy();
|
|---|
| 704 |
|
|---|
| 705 | // --------------------------------------------------------
|
|---|
| 706 |
|
|---|
| 707 | gStyle->SetOptFit(1);
|
|---|
| 708 |
|
|---|
| 709 | canv = &d->AddTab("Hists1");
|
|---|
| 710 | canv->Divide(3,2);
|
|---|
| 711 |
|
|---|
| 712 | TH1 *hh = 0;
|
|---|
| 713 |
|
|---|
| 714 | canv->cd(1);
|
|---|
| 715 | hh = hRate1.DrawCopy();
|
|---|
| 716 | hh = hRate2.DrawCopy("same");
|
|---|
| 717 |
|
|---|
| 718 | canv->cd(2);
|
|---|
| 719 | hh = hGain1.DrawCopy();
|
|---|
| 720 | hh = hGain2.DrawCopy("same");
|
|---|
| 721 | hh->Fit("gaus");
|
|---|
| 722 |
|
|---|
| 723 | canv->cd(3);
|
|---|
| 724 | hh = hBaseline1.DrawCopy();
|
|---|
| 725 | hh = hBaseline2.DrawCopy("same");
|
|---|
| 726 | hh->Fit("gaus");
|
|---|
| 727 |
|
|---|
| 728 | canv->cd(4);
|
|---|
| 729 | hh = hRelSigma1.DrawCopy();
|
|---|
| 730 | hh = hRelSigma2.DrawCopy("same");
|
|---|
| 731 | hh->Fit("gaus");
|
|---|
| 732 |
|
|---|
| 733 | canv->cd(5);
|
|---|
| 734 | hh = hCrosstalk1.DrawCopy();
|
|---|
| 735 | hh = hCrosstalk2.DrawCopy("same");
|
|---|
| 736 | hh->Fit("gaus");
|
|---|
| 737 |
|
|---|
| 738 | canv->cd(6);
|
|---|
| 739 | hh = hNoise1.DrawCopy();
|
|---|
| 740 | hh = hNoise2.DrawCopy("same");
|
|---|
| 741 | hh->Fit("gaus");
|
|---|
| 742 |
|
|---|
| 743 | // --------------------------------------------------------
|
|---|
| 744 |
|
|---|
| 745 | canv = &d->AddTab("Hists2");
|
|---|
| 746 | canv->Divide(3,2);
|
|---|
| 747 |
|
|---|
| 748 | canv->cd(1);
|
|---|
| 749 | gPad->SetLogy();
|
|---|
| 750 | hh = hFitProb1.DrawCopy();
|
|---|
| 751 | hh = hFitProb2.DrawCopy("same");
|
|---|
| 752 | hh->Fit("gaus");
|
|---|
| 753 |
|
|---|
| 754 | canv->cd(2);
|
|---|
| 755 | hChiSq1.DrawCopy();
|
|---|
| 756 | hChiSq2.DrawCopy("same");
|
|---|
| 757 |
|
|---|
| 758 | canv->cd(4);
|
|---|
| 759 | hh = hCoeffR1.DrawCopy();
|
|---|
| 760 | hh = hCoeffR2.DrawCopy("same");
|
|---|
| 761 | hh->Fit("gaus");
|
|---|
| 762 |
|
|---|
| 763 | canv->cd(5);
|
|---|
| 764 | hh = hCrosstalkP1.DrawCopy();
|
|---|
| 765 | hh = hCrosstalkP2.DrawCopy("same");
|
|---|
| 766 | hh->Fit("gaus");
|
|---|
| 767 |
|
|---|
| 768 | // --------------------------------------------------------
|
|---|
| 769 |
|
|---|
| 770 | canv = &d->AddTab("NormGain");
|
|---|
| 771 | canv->Divide(2,1);
|
|---|
| 772 |
|
|---|
| 773 | canv->cd(1);
|
|---|
| 774 | cNormGain.SetMinimum(0.8);
|
|---|
| 775 | cNormGain.SetMaximum(1.2);
|
|---|
| 776 | cNormGain.DrawCopy();
|
|---|
| 777 |
|
|---|
| 778 | canv->cd(2);
|
|---|
| 779 | gPad->SetLogy();
|
|---|
| 780 | hh = hNormGain1.DrawCopy();
|
|---|
| 781 | hh = hNormGain2.DrawCopy("same");
|
|---|
| 782 | hh->Fit("gaus");
|
|---|
| 783 |
|
|---|
| 784 | //------------------ Draw gain corrected sum specetrum -------------------
|
|---|
| 785 | gROOT->SetSelectedPad(0);
|
|---|
| 786 | c11.cd();
|
|---|
| 787 | hSumClear1.DrawCopy("hist same");
|
|---|
| 788 |
|
|---|
| 789 | //-------------------- fit gain corrected sum spectrum -------------------
|
|---|
| 790 |
|
|---|
| 791 | gROOT->SetSelectedPad(0);
|
|---|
| 792 | TCanvas &c11b = d->AddTab("CleanHist1");
|
|---|
| 793 | c11b.cd();
|
|---|
| 794 | gPad->SetLogy();
|
|---|
| 795 | gPad->SetGridx();
|
|---|
| 796 | gPad->SetGridy();
|
|---|
| 797 |
|
|---|
| 798 | const Int_t maxbin1 = hSumClear1.GetMaximumBin();
|
|---|
| 799 | const Double_t ampl1 = hSumClear1.GetBinContent(maxbin1);
|
|---|
| 800 |
|
|---|
| 801 | func.SetParameters(res_par);
|
|---|
| 802 | func.SetParLimits(0, 0, 2*ampl1);
|
|---|
| 803 | func.SetParameter(0, ampl1);
|
|---|
| 804 | func.ReleaseParameter(6);
|
|---|
| 805 |
|
|---|
| 806 | hSumClear1.Fit(&func, fast?"LN0QSR":"LIN0QSR");
|
|---|
| 807 |
|
|---|
| 808 | hSumClear1.DrawCopy();
|
|---|
| 809 | func.DrawCopy("same");
|
|---|
| 810 |
|
|---|
| 811 | cout << "--------------------" << endl;
|
|---|
| 812 | PrintFunc(func, integration_window);
|
|---|
| 813 | cout << "--------------------" << endl;
|
|---|
| 814 |
|
|---|
| 815 | //-------------------- fit gain corrected sum spectrum -------------------
|
|---|
| 816 |
|
|---|
| 817 | gROOT->SetSelectedPad(0);
|
|---|
| 818 | TCanvas &c11c = d->AddTab("CleanHist2");
|
|---|
| 819 | c11c.cd();
|
|---|
| 820 | gPad->SetLogy();
|
|---|
| 821 | gPad->SetGridx();
|
|---|
| 822 | gPad->SetGridy();
|
|---|
| 823 |
|
|---|
| 824 | const Int_t maxbin1b = hSumClear2.GetMaximumBin();
|
|---|
| 825 | const Double_t ampl1b = hSumClear2.GetBinContent(maxbin1b);
|
|---|
| 826 |
|
|---|
| 827 | func.SetParameters(res_par);
|
|---|
| 828 | func.SetParLimits(0, 0, 2*ampl1b);
|
|---|
| 829 | func.SetParameter(0, ampl1b);
|
|---|
| 830 | func.ReleaseParameter(6);
|
|---|
| 831 |
|
|---|
| 832 | hSumClear2.Fit(&func, fast?"LN0QSR":"LIN0QSR");
|
|---|
| 833 |
|
|---|
| 834 | hSumClear2.DrawCopy();
|
|---|
| 835 | func.DrawCopy("same");
|
|---|
| 836 |
|
|---|
| 837 | cout << "--------------------" << endl;
|
|---|
| 838 | PrintFunc(func, integration_window);
|
|---|
| 839 | cout << "--------------------" << endl;
|
|---|
| 840 |
|
|---|
| 841 | //-------------------- fit gain corrected sum spectrum -------------------
|
|---|
| 842 |
|
|---|
| 843 | gROOT->SetSelectedPad(0);
|
|---|
| 844 | TCanvas &c12 = d->AddTab("GainHist1");
|
|---|
| 845 | c12.cd();
|
|---|
| 846 | gPad->SetLogy();
|
|---|
| 847 | gPad->SetGridx();
|
|---|
| 848 | gPad->SetGridy();
|
|---|
| 849 |
|
|---|
| 850 | const Int_t maxbin2 = hSumScale1.GetMaximumBin();
|
|---|
| 851 | const Double_t ampl2 = hSumScale1.GetBinContent(maxbin2);
|
|---|
| 852 |
|
|---|
| 853 | //Set fit parameters
|
|---|
| 854 | Double_t par2[7] =
|
|---|
| 855 | {
|
|---|
| 856 | ampl2, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6]
|
|---|
| 857 | };
|
|---|
| 858 |
|
|---|
| 859 | func.SetParameters(par2);
|
|---|
| 860 | func.SetParLimits(0, 0, 2*ampl2);
|
|---|
| 861 | func.FixParameter(1, 1);
|
|---|
| 862 | func.FixParameter(4, 0);
|
|---|
| 863 |
|
|---|
| 864 | func.SetRange(0.62, 9);
|
|---|
| 865 | hSumScale1.Fit(&func, fast?"LN0QSR":"LIN0QSR");
|
|---|
| 866 |
|
|---|
| 867 | hSumScale1.DrawCopy();
|
|---|
| 868 | func.DrawCopy("same");
|
|---|
| 869 |
|
|---|
| 870 | cout << "--------------------" << endl;
|
|---|
| 871 | PrintFunc(func, integration_window);
|
|---|
| 872 | cout << "--------------------" << endl;
|
|---|
| 873 |
|
|---|
| 874 | //-------------------- fit gain corrected sum spectrum -------------------
|
|---|
| 875 |
|
|---|
| 876 | gROOT->SetSelectedPad(0);
|
|---|
| 877 | TCanvas &c12b = d->AddTab("GainHist2");
|
|---|
| 878 | c12b.cd();
|
|---|
| 879 | gPad->SetLogy();
|
|---|
| 880 | gPad->SetGridx();
|
|---|
| 881 | gPad->SetGridy();
|
|---|
| 882 |
|
|---|
| 883 | const Int_t maxbin2b = hSumScale2.GetMaximumBin();
|
|---|
| 884 | const Double_t ampl2b = hSumScale2.GetBinContent(maxbin2b);
|
|---|
| 885 |
|
|---|
| 886 | //Set fit parameters
|
|---|
| 887 | Double_t par2b[7] =
|
|---|
| 888 | {
|
|---|
| 889 | ampl2b, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6]
|
|---|
| 890 | };
|
|---|
| 891 |
|
|---|
| 892 | func.SetParameters(par2b);
|
|---|
| 893 | func.SetParLimits(0, 0, 2*ampl2b);
|
|---|
| 894 | func.FixParameter(1, 1);
|
|---|
| 895 | func.FixParameter(4, 0);
|
|---|
| 896 |
|
|---|
| 897 | func.SetRange(0.62, 9);
|
|---|
| 898 | hSumScale2.Fit(&func, fast?"LN0QSR":"LIN0QSR");
|
|---|
| 899 |
|
|---|
| 900 | hSumScale2.DrawCopy();
|
|---|
| 901 | func.DrawCopy("same");
|
|---|
| 902 |
|
|---|
| 903 | cout << "--------------------" << endl;
|
|---|
| 904 | PrintFunc(func, integration_window);
|
|---|
| 905 | cout << "--------------------" << endl;
|
|---|
| 906 |
|
|---|
| 907 | //--------fit gausses to peaks of gain corrected sum specetrum -----------
|
|---|
| 908 |
|
|---|
| 909 | d->AddTab("ArrTime");
|
|---|
| 910 | gPad->SetGrid();
|
|---|
| 911 | hTime.DrawCopy();
|
|---|
| 912 |
|
|---|
| 913 | // -----------------------------------------------------------------
|
|---|
| 914 |
|
|---|
| 915 | d->AddTab("Pulse");
|
|---|
| 916 | gPad->SetGrid();
|
|---|
| 917 | hPulse.DrawCopy();
|
|---|
| 918 |
|
|---|
| 919 | // ================================================================
|
|---|
| 920 |
|
|---|
| 921 | cout << "Saving results to '" << outfile << "'" << endl;
|
|---|
| 922 | d->SaveAs(outfile);
|
|---|
| 923 | cout << "..success!" << endl;
|
|---|
| 924 |
|
|---|
| 925 | TFile f(outfile, "UPDATE");
|
|---|
| 926 | par.Write();
|
|---|
| 927 | ext.Write("ExtractionRange");
|
|---|
| 928 | header.Write();
|
|---|
| 929 |
|
|---|
| 930 | return 0;
|
|---|
| 931 | }
|
|---|