source: trunk/Mars/fact/analysis/gain/fit_spectra.C@ 20097

Last change on this file since 20097 was 19874, checked in by tbretz, 5 years ago
Just found out that this was the wrong version of the macro. The correct one (which also contains the correct function from the paper) is this one.
File size: 29.7 KB
Line 
1#include <iomanip>
2#include <iostream>
3
4#include <TF1.h>
5#include <TH2.h>
6#include <TProfile2D.h>
7#include <TFile.h>
8#include <TFitResult.h>
9#include <TStyle.h>
10
11#include "MLog.h"
12#include "MLogManip.h"
13#include "MStatusArray.h"
14#include "MStatusDisplay.h"
15#include "MHCamera.h"
16#include "MGeomCamFACT.h"
17#include "MParameters.h"
18#include "MArrayI.h"
19#include "MRawRunHeader.h"
20#include "PixelMap.h"
21
22using namespace std;
23
24// --------------------------------------------------------------------------
25// After fit_spectra_bt2b.C
26
27// Fit function for a single pe spectrum
28Double_t fcn_g(Double_t *xx, Double_t *par)
29{
30 const Double_t ampl = par[0];
31 const Double_t gain = par[1];
32 const Double_t sigma = par[2]*gain;
33 const Double_t cross = par[3];
34 const Double_t shift = par[4];
35 const Double_t noise = par[5]<0 ? sigma : par[5];
36 const Double_t expo = par[6];
37
38 const Double_t P = cross*TMath::Exp(-cross);
39
40 Double_t y = 0;
41 for (int N=1; N<14; N++)
42 {
43 const Double_t muN = N*gain + shift;
44 const Double_t sigN = TMath::Sqrt(N*sigma*sigma + noise*noise);
45
46 const Double_t p =
47 TMath::Power(N*P, N-1)/TMath::Power(TMath::Factorial(N-1), expo);
48
49 y += TMath::Gaus(xx[0], muN, sigN) * p / sigN;
50 }
51
52 const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise);
53 return ampl*sig1*y;
54}
55
56// Calculate the crosstalk from the function parameters
57Double_t xtalk(TF1 &f)
58{
59 Double_t cross = f.GetParameter(3);
60 Double_t expo = f.GetParameter(6);
61
62 const Double_t P = cross*TMath::Exp(-cross);
63
64 Double_t y = 0;
65 for (int N=2; N<14; N++)
66 y +=
67 TMath::Power(N*P, N-1)/TMath::Power(TMath::Factorial(N-1), expo);
68
69 return y / (y + 1);
70}
71
72// calculate the integral in units per millisecond
73double integral(TF1 &func, TH1 &hist)
74{
75 const Double_t sigma = func.GetParameter(2)*func.GetParameter(1);
76 const Double_t cross = func.GetParameter(3);
77 const Double_t noise = func.GetParameter(5)<0 ? sigma : func.GetParameter(5);
78 const Double_t expo = func.GetParameter(6);
79
80 const Double_t P = cross*TMath::Exp(-cross);
81
82 Double_t sum = 0;
83 for (int N=1; N<14; N++)
84 sum +=
85 TMath::Power(N*P, N-1)/TMath::Power(TMath::Factorial(N-1), expo);
86
87 const Double_t scale = hist.GetBinWidth(1);
88 const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise);
89 const Double_t integ = func.GetParameter(0)*sum*sig1*sqrt(TMath::TwoPi())/scale;
90
91 return integ/1e-9/1e6;
92}
93
94
95// --------------------------------------------------------------------------
96
97// Print function parameters
98void PrintFunc(TF1 &f, float integration_window=30)
99{
100 //cout << "--------------------" << endl;
101 cout << "Ampl: " << setw(8) << f.GetParameter(0) << " +/- " << f.GetParError(0) << endl;
102 cout << "Gain: " << setw(8) << f.GetParameter(1) << " +/- " << f.GetParError(1) << endl;
103 cout << "Rel.sigma: " << setw(8) << f.GetParameter(2) << " +/- " << f.GetParError(2) << endl;
104 cout << "Baseline: " << setw(8) << f.GetParameter(4)/integration_window << " +/- " << f.GetParError(4)/integration_window << endl;
105 cout << "Crosstalk: " << setw(8) << f.GetParameter(3) << " +/- " << f.GetParError(3) << endl;
106 cout << "Pcrosstalk: " << setw(8) << xtalk(f) << endl;
107 if (f.GetParameter(5)>=0)
108 cout << "Noise: " << setw(8) << f.GetParameter(5)/sqrt(integration_window) << " +/- " << f.GetParError(5)/sqrt(integration_window) << endl;
109 cout << "Expo: " << setw(8) << f.GetParameter(6) << " +/- " << f.GetParError(6) << endl;
110 //cout << "--------------------" << endl;
111
112}
113
114// --------------------------------------------------------------------------
115
116// The parameters for the function are the filenam from the gain extraction
117// and the output filename
118int fit_spectra(const char *filename = "20130222_018_018.root",
119 const char *outfile = "20130222_018_018-fit.root",
120 bool fixednoise=true)
121{
122 // Read the mapping between bias channels and hardware channels
123 PixelMap pmap;
124 if (!pmap.Read("FACTmap111030.txt"))
125 {
126 cout << "FACTmap111030.txt not found." << endl;
127 return 1;
128 }
129
130 // It is more correct to fit the integral, but this is super
131 // slow, especially for 1440 pixel. To get that, one would have
132 // to analytically integrate and fit this function.
133 // (Currently the integral is switched off for the 1440 individual
134 // spectra in all cases)
135 bool fast = false; // Switch off using integral
136
137 // Values which should be read from the file but not available atm
138 Int_t integration_window = 30;
139
140 // Map for which pixel shall be plotted and which not
141 TArrayC usePixel(1440);
142 memset(usePixel.GetArray(), 1, 1440);
143
144 // List of Pixel that should be ignored in camera view
145 usePixel[424] = 0;
146 usePixel[923] = 0;
147 usePixel[1208] = 0;
148 usePixel[583] = 0;
149 usePixel[830] = 0;
150 usePixel[1399] = 0;
151 usePixel[113] = 0;
152 usePixel[115] = 0;
153 usePixel[354] = 0;
154 usePixel[423] = 0;
155 usePixel[1195] = 0;
156 usePixel[1393] = 0;
157
158 cout << setprecision(3);
159
160 // ======================================================
161 // Read data and histograms from file
162
163 TFile file(filename);
164 if (file.IsZombie())
165 {
166 gLog << err << "Opening file '" << filename << "' failed." << endl;
167 return 1;
168 }
169
170 MStatusArray arr;
171 if (arr.Read()<=0)
172 {
173 gLog << err << "Reading of MStatusArray from '" << filename << "' failed." << endl;
174 return 2;
175 }
176
177 TH2 *hsignal = (TH2*)arr.FindObjectInCanvas("Signal", "TH2F", "MHSingles");
178 if (!hsignal)
179 {
180 gLog << err << "Histogram Signal not found in '" << filename << "'." << endl;
181 return 3;
182 }
183 TH2 *htime = (TH2*)arr.FindObjectInCanvas("Time", "TH2F", "MHSingles");
184 if (!htime)
185 {
186 gLog << err << "Histogram Time not found in '" << filename << "'." << endl;
187 return 4;
188 }
189 TProfile2D *hpulse = (TProfile2D*)arr.FindObjectInCanvas("Pulse", "TProfile2D", "MHSingles");
190 if (!hpulse)
191 {
192 gLog << err << "Histogram Pulse not found in '" << filename << "'." << endl;
193 return 5;
194 }
195 TH2F *hbase = (TH2F*)arr.FindObjectInCanvas("Baseline", "TH2F", "MHBaseline");
196 if (!hbase)
197 {
198 gLog << err << "Histogram Baseline not found in '" << filename << "'." << endl;
199 return 6;
200 }
201
202 MRawRunHeader header;
203 if (header.Read()<=0)
204 {
205 gLog << err << "MRawRunheader not found in '" << filename << "'." << endl;
206 return 7;
207 }
208
209 MParameterI par("NumEvents");
210 if (par.Read()<=0)
211 {
212 gLog << err << "NumEvents not found in '" << filename << "'." << endl;
213 return 8;
214 }
215
216 MArrayI ext;
217 if (ext.Read("ExtractionRange")<=0)
218 {
219 gLog << err << "ExtractionRange not found in '" << filename << "'." << endl;
220 return 9;
221
222 }
223
224 // ======================================================
225
226 MStatusDisplay *d = new MStatusDisplay;
227
228 // Camera geometry for displays
229 MGeomCamFACT fact;
230
231 // ------------------ Spectrum Fit ---------------
232 // Instantiate the display histograms
233 MHCamera cRate(fact);
234 MHCamera cGain(fact);
235 MHCamera cRelSigma(fact);
236 MHCamera cCrosstalk(fact);
237 MHCamera cBaseline(fact);
238 MHCamera cNoise(fact);
239 MHCamera cChi2(fact);
240 MHCamera cNormGain(fact);
241 MHCamera cFitProb(fact);
242 MHCamera cCrosstalkP(fact);
243 MHCamera cCoeffR(fact);
244
245 // Set name and title for the histograms
246 cRate.SetNameTitle ("Rate", "Dark count rate");
247 cGain.SetNameTitle ("Gain", "Gain distribution");
248 cRelSigma.SetNameTitle ("RelSigma", "Rel. Sigma");
249 cCrosstalk.SetNameTitle ("Crosstalk", "Crosstalk probability");
250 cBaseline.SetNameTitle ("Baseline", "Baseline per sample");
251 cNoise.SetNameTitle ("Noise", "Noise per sample");
252 cChi2.SetNameTitle ("Chi2", "\\Chi^2");
253 cNormGain.SetNameTitle ("NormGain", "Normalized gain");
254 cFitProb.SetNameTitle ("FitProb", "Root's fit probability");
255 cCrosstalkP.SetNameTitle("Pxtalk", "Crosstalk coeff. P");
256 cCoeffR.SetNameTitle ("CoeffR", "Coefficient R");
257
258 // Instantiate 1D histograms for the distributions
259 // including TM channels
260 TH1F hRate1 ("Rate1", "Dark count rate", 150, 0, 15);
261 TH1F hGain1 ("Gain1", "Gain distribution", 100, 0, 400);
262 TH1F hRelSigma1 ("RelSigma1", "Rel. Sigma", 160, 0, 0.40);
263 TH1F hCrosstalk1 ("Crosstalk1", "Crosstalk probability", 90, 0, 0.30);
264 TH1F hBaseline1 ("Baseline1", "Baseline per sample", 75, -7.5, 7.5);
265 TH1F hNoise1 ("Noise1", "Noise per sample", 60, 0, 30);
266 TH1F hChiSq1 ("ChiSq1", "\\Chi^2", 200, 0, 4);
267 TH1F hNormGain1 ("NormGain1", "Normalized gain", 51, 0.5, 1.5);
268 TH1F hFitProb1 ("FitProb1", "FitProb distribution", 100, 0, 1);
269 TH1F hCrosstalkP1("Pxtalk1", "Crosstalk coeff.", 90, 0, 0.3);
270 TH1F hCoeffR1 ("CoeffR1", "Coefficient R", 90, -1, 2);
271
272 // excluding TM channels
273 TH1F hRate2 ("Rate2", "Dark count rate", 150, 0, 15);
274 TH1F hGain2 ("Gain2", "Gain distribution", 100, 0, 400);
275 TH1F hRelSigma2 ("RelSigma2", "Rel. Sigma", 160, 0, 0.40);
276 TH1F hCrosstalk2 ("Crosstalk2", "Crosstalk probability", 90, 0, 0.30);
277 TH1F hBaseline2 ("Baseline2", "Baseline per sample", 75, -7.5, 7.5);
278 TH1F hNoise2 ("Noise2", "Noise per sample", 60, 0, 30);
279 TH1F hChiSq2 ("ChiSq2", "\\Chi^2", 200, 0, 4);
280 TH1F hNormGain2 ("NormGain2", "Normalized gain", 51, 0.5, 1.5);
281 TH1F hFitProb2 ("FitProb2", "FitProb distribution", 100, 0, 1);
282 TH1F hCrosstalkP2("Pxtalk2", "Crosstalk coeff.", 90, 0, 0.3);
283 TH1F hCoeffR2 ("CoeffR2", "Coefficient R", 90, -1, 2);
284
285 // Histigram for the sum of all spectrums
286 TH1F hSum("Sum1", "Signal spectrum of all pixels",
287 hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
288 hSum.SetXTitle("pulse integral [mV sample]");
289 hSum.SetYTitle("Counts");
290 hSum.SetStats(false);
291 hSum.Sumw2();
292
293 // Histogram for the sum of all pixels excluding the ones with faulty fits
294 TH1F hSumClear1("SumC1", "Signal spectrum of all pixels (incl TM)",
295 hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
296 hSumClear1.SetXTitle("pulse integral [mV sample]");
297 hSumClear1.SetYTitle("Counts");
298 hSumClear1.SetStats(false);
299 hSumClear1.SetLineColor(kBlue);
300 hSumClear1.Sumw2();
301
302 TH1F hSumClear2("SumC2", "Signal spectrum of all pixels (excp TM)",
303 hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
304 hSumClear2.SetXTitle("pulse integral [mV sample]");
305 hSumClear2.SetYTitle("Counts");
306 hSumClear2.SetStats(false);
307 hSumClear2.SetLineColor(kBlue);
308 hSumClear2.Sumw2();
309
310 // Arrival time spectrum of the extracted pulses
311 TH1F hTime("Time", "Arrival time spectrum", htime->GetNbinsY(), htime->GetYaxis()->GetXmin(), htime->GetYaxis()->GetXmax());
312 hTime.SetXTitle("pulse arrival time [sample]");
313 hTime.SetYTitle("Counts");
314 hTime.SetStats(false);
315
316 // average pulse shape of the extracted pulses
317 TH1F hPulse("Puls", "Average pulse", hpulse->GetNbinsY(), hpulse->GetYaxis()->GetXmin(), hpulse->GetYaxis()->GetXmax());
318 hPulse.SetXTitle("pulse arrival time [sample]");
319 hPulse.SetYTitle("Counts");
320 hPulse.SetStats(false);
321
322 // Spektrum for the normalized individual spectra
323 TH1F hSumScale1("SumScale1", "Signal spectrum of all pixels (incl TM)", 120, 0.05, 12.05);
324 hSumScale1.SetXTitle("pulse integral [pe]");
325 hSumScale1.SetYTitle("Rate");
326 hSumScale1.SetStats(false);
327 hSumScale1.Sumw2();
328
329 TH1F hSumScale2("SumScale2", "Signal spectrum of all pixels (excl TM)", 120, 0.05, 12.05);
330 hSumScale2.SetXTitle("pulse integral [pe]");
331 hSumScale2.SetYTitle("Rate");
332 hSumScale2.SetStats(false);
333 hSumScale2.Sumw2();
334
335 // define fit function for Amplitudespectrum
336 TF1 func("spektrum", fcn_g, 0, hSum.GetXaxis()->GetXmax(), 7);
337 func.SetNpx(2000);
338 func.SetParNames("Maximum", "Gain", "Sigma", "XtalkProb", "Offset", "Noise", "Expo");
339 func.SetLineColor(kRed);
340
341 //--------------------- fill sum spectrum --------------------------------
342
343 d->SetStatusLine1("Calculating sum spectrum");
344
345 // Begin of Loop over Pixels
346 for (Int_t pixel = 0; pixel < hsignal->GetNbinsX(); pixel++)
347 {
348 //jump to next pixel if the current is marked as faulty
349 if (usePixel[pixel]==0)
350 continue;
351
352 TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
353 hSum.Add(hist);
354 delete hist;
355 }
356
357 //----------------- get starting values -------------------------------
358
359 hSum.GetXaxis()->SetRangeUser(150, hSum.GetXaxis()->GetXmax());
360
361 const Int_t maxbin = hSum.GetMaximumBin();
362 const Double_t maxpos = hSum.GetBinCenter(maxbin);
363 const Double_t binwidth = hSum.GetBinWidth(maxbin);
364 const Double_t ampl = hSum.GetBinContent(maxbin);
365
366 double fwhmSum = 0;
367
368 //Calculate full width half Maximum
369 for (int i=1; i<maxbin; i++)
370 if (hSum.GetBinContent(maxbin-i)+hSum.GetBinContent(maxbin+i)<ampl)
371 {
372 fwhmSum = 2*(i-0.5)*binwidth;
373 break;
374 }
375
376 if (fwhmSum==0)
377 {
378 gLog << warn << "Could not determine start value for sigma." << endl;
379 }
380
381 Double_t sigma_est = fwhmSum/2.3548; // FWHM = 2*sqrt(2*ln(2))*sigma
382
383 Double_t fitmin = maxpos-3*sigma_est; // was 3
384 Double_t fitmax = hSum.GetXaxis()->GetXmax();
385
386 // ------------------- fit --------------------------------
387
388 //Fit and draw spectrum
389 func.SetParLimits(0, 0, 2*ampl); // Amplitude
390 func.SetParLimits(1, 0, 2*maxpos); // Gain
391 func.SetParLimits(2, 0, 1); // Sigma
392 func.SetParLimits(3, 0, 1); // Crosstalk
393 if (!fixednoise)
394 func.SetParLimits(5, 0, 150); // Noise
395 func.SetParLimits(6, 0, 2); // Expo
396
397 func.SetParameter(0, ampl); // Amplitude
398 func.SetParameter(1, maxpos); // Gain
399 func.SetParameter(2, 0.1); // Sigma
400 func.SetParameter(3, 0.16); // Crosstalk
401 func.SetParameter(4, 0*integration_window); // Baseline
402 if (fixednoise)
403 func.FixParameter(5, -1); // Noise
404 else
405 func.SetParameter(5, 0.1*maxpos); // Noise
406
407 func.SetParameter(6, 0.95); // Expo
408
409 func.SetRange(fitmin, fitmax);
410 hSum.Fit(&func, fast?"N0QSR":"IN0QSR");
411
412 Double_t res_par[7];
413 func.GetParameters(res_par);
414
415 //func.FixParameter(6, func.GetParameter(6)); // Expo
416
417 // ------------------ display result -------------------------------
418
419 cout << "--------------------" << endl;
420 cout << "AmplEst: " << ampl << endl;
421 cout << "GainEst: " << maxpos << endl;
422 cout << "SigmaEst: " << sigma_est << endl;
423 PrintFunc(func, integration_window);
424 cout << "--------------------" << endl;
425
426 gROOT->SetSelectedPad(0);
427 TCanvas &c11 = d->AddTab("SumHist");
428 c11.cd();
429 gPad->SetLogy();
430 gPad->SetGridx();
431 gPad->SetGridy();
432 hSum.GetXaxis()->SetRange();
433 hSum.DrawCopy("hist");
434 func.DrawCopy("same");
435
436 // ===================================================================
437 // Gain Calculation for each Pixel
438 // ===================================================================
439
440 // counter for number of processed pixel
441 int count_ok = 0;
442
443 // Begin of Loop over Pixels
444 for (Int_t pixel=0; pixel<hsignal->GetNbinsX(); pixel++)
445 {
446 // User information
447 d->SetStatusLine1(Form("Fitting pixel #%d", pixel));
448 d->SetProgressBarPosition((pixel+1.)/hsignal->GetNbinsX(), 1);
449
450 // Skip pixels known to be faulty
451 if (usePixel[pixel]==0)
452 continue;
453
454 //Projectipon of a certain Pixel out of Ampl.Spectrum
455 TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
456 hist->SetDirectory(0);
457
458 if (hist->GetEntries()<100)
459 {
460 gLog << warn << pixel << " ...histogram empty." << endl;
461 usePixel[pixel] = 0;
462 delete hist;
463 continue;
464 }
465
466 //Rebin Projection
467 hist->Rebin(2);
468
469 // Fit range
470 hist->GetXaxis()->SetRangeUser(150, hist->GetXaxis()->GetXmax());
471
472 // Determine start values
473 const Int_t maxBin = hist->GetMaximumBin();
474 const Double_t maxPos = hist->GetBinCenter(maxBin);
475
476 const Double_t gain = res_par[1];
477 const Double_t GainRMS = res_par[2];
478
479 const double fit_min = maxPos-GainRMS*gain*2.5;
480 const double fit_max = fitmax;//maxPos+gain*(maxOrder-0.5);
481
482 TArrayD cpy_par(7, res_par);
483
484 cpy_par[0] = hist->GetBinContent(maxBin);
485 cpy_par[1] = maxPos-res_par[4]; // correct position for avg baseline
486
487 func.SetParameters(cpy_par.GetArray());
488 func.SetParLimits(0, 0, 2*cpy_par[0]);
489 func.SetParLimits(1, 0, 2*cpy_par[1]);
490
491 // For individual spectra, the average fit yields 1 anyway
492 //func.SetParameter(6, 0); // Expo
493
494 // ----------- Fit Pixels spectrum ---------------
495
496 const TFitResultPtr rc = hist->Fit(&func, /*fast?*/"LLN0QS"/*:"LLIN0QS"*/, "", fit_min, fit_max);
497
498 // ----------- Calculate quality parameter ---------------
499
500 Int_t b1 = hist->GetXaxis()->FindFixBin(fit_min);
501 Int_t b2 = hist->GetXaxis()->FindFixBin(fit_max);
502
503 Double_t chi2 = 0;
504 Int_t cnt = 0;
505 for (int i=b1; i<=b2; i++)
506 {
507 if (hist->GetBinContent(i)<1.5 || func.Eval(hist->GetBinCenter(i))<1.5)
508 continue;
509
510 const Double_t y = func.Integral(hist->GetBinLowEdge(i), hist->GetBinLowEdge(i+1));
511 const Double_t v = hist->GetBinContent(i)*hist->GetBinWidth(i);
512
513 const Double_t chi = (v-y)/v;
514
515 chi2 += chi*chi;
516 cnt ++;
517 }
518
519 chi2 = cnt==0 ? 0 : sqrt(chi2/cnt);
520
521 // ----------------- Fit result --------------------
522
523 const double fit_prob = rc->Prob();
524
525 const float fRate = integral(func, *hist)/(ext[pixel]*0.5);
526 const float fGain = func.GetParameter(1);
527 const float fGainRMS = func.GetParameter(2);
528 const float fCrosstalkP= func.GetParameter(3);
529 const float fCrosstlk = xtalk(func);
530 const float fOffset = func.GetParameter(4);
531 const float fNoise = func.GetParameter(5)<0 ? fGainRMS*fGain/sqrt(integration_window) : func.GetParameter(5)/sqrt(integration_window);
532 const float fCoeffR = func.GetParameter(6);
533
534 // Fill histograms with result values
535 cRate.SetBinContent( pixel+1, fRate);
536 cGain.SetBinContent( pixel+1, fGain);
537 cRelSigma.SetBinContent( pixel+1, fGainRMS);
538 cCrosstalk.SetBinContent( pixel+1, fCrosstlk);
539 cBaseline.SetBinContent( pixel+1, fOffset/integration_window);
540 cNoise.SetBinContent( pixel+1, fNoise);
541 cChi2.SetBinContent( pixel+1, chi2);
542 cNormGain.SetBinContent( pixel+1, fGain/gain);
543 cFitProb.SetBinContent( pixel+1, fit_prob);
544 cCrosstalkP.SetBinContent(pixel+1, fCrosstalkP);
545 cCoeffR.SetBinContent( pixel+1, fCoeffR);
546
547 // ======================================================
548
549 // Try to determine faulty fits
550
551 bool ok = int(rc)==0;
552
553 // mark pixels suspicious with failed fit
554 if (!ok)
555 gLog << warn << pixel << " ...fit failed!" << endl;
556
557 // mark pixels suspicious with negative GainRMS
558 if (fabs(fGain/gain-1)>0.3)
559 {
560 gLog << warn << pixel << " ...gain deviates more than 30% from sum-gain." << endl;
561 ok = 0;
562 }
563
564 if (fabs(fOffset/integration_window)>3)
565 {
566 gLog << warn << pixel << " ...baseline deviates." << endl;
567 ok = 0;
568 }
569
570 // cancel out pixel where the fit was not succsessfull
571 usePixel[pixel] = ok;
572
573 // Plot pixel 0 and 5 (TM) and all faulty fits
574 if (pixel==0 || pixel==5 || !ok)
575 {
576 TCanvas &c = d->AddTab(Form("Pix%d", pixel));
577 c.cd();
578 gPad->SetLogy();
579 gPad->SetGridx();
580 gPad->SetGridy();
581
582 hist->SetStats(false);
583 hist->SetXTitle("Extracted signal");
584 hist->SetYTitle("Counts");
585 hist->SetName(Form("Pix%d", pixel));
586 hist->GetXaxis()->SetRange();
587 hist->DrawCopy("hist")->SetDirectory(0);
588 func.DrawCopy("SAME")->SetRange(fit_min, fit_max);
589
590 cout << "--------------------" << endl;
591 cout << "Pixel: " << pixel << endl;
592 cout << "fit prob: " << fit_prob << endl;
593 cout << "AmplEst: " << cpy_par[0] << endl;
594 cout << "GainEst: " << cpy_par[1] << endl;
595 PrintFunc(func, integration_window);
596 cout << "--------------------" << endl;
597 }
598
599 if (!ok)
600 {
601 delete hist;
602 continue;
603 }
604
605 // Fill Parameters into histograms
606 hRate1.Fill( fRate);
607 hGain1.Fill( fGain);
608 hRelSigma1.Fill( fGainRMS);
609 hCrosstalk1.Fill( fCrosstlk);
610 hBaseline1.Fill( fOffset/integration_window);
611 hNoise1.Fill( fNoise);
612 hChiSq1.Fill( chi2);
613 hNormGain1.Fill( fGain/gain);
614 hFitProb1.Fill( fit_prob);
615 hCrosstalkP1.Fill(fCrosstalkP);
616 hCoeffR1.Fill( fCoeffR);
617
618 if (pmap.index(pixel).pixel()!=8)
619 {
620 hRate2.Fill( fRate);
621 hGain2.Fill( fGain);
622 hRelSigma2.Fill( fGainRMS);
623 hCrosstalk2.Fill( fCrosstlk);
624 hBaseline2.Fill( fOffset/integration_window);
625 hNoise2.Fill( fNoise);
626 hChiSq2.Fill( chi2);
627 hNormGain2.Fill( fGain/gain);
628 hFitProb2.Fill( fit_prob);
629 hCrosstalkP2.Fill(fCrosstalkP);
630 hCoeffR2.Fill( fCoeffR);
631 }
632
633 // Fill sum spectrum
634 for (int b=1; b<=hist->GetNbinsX(); b++)
635 hSumScale1.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b));
636
637 if (pmap.index(pixel).pixel()!=8)
638 for (int b=1; b<=hist->GetNbinsX(); b++)
639 hSumScale2.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b));
640
641 delete hist;
642
643 // Because of the rebinning...
644 hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
645 hSumClear1.Add(hist);
646 if (pmap.index(pixel).pixel()!=8)
647 hSumClear2.Add(hist);
648 delete hist;
649
650 hist = htime->ProjectionY("proj", pixel+1, pixel+1);
651 hTime.Add(hist);
652 delete hist;
653
654 hist = hpulse->ProjectionY("proj", pixel+1, pixel+1);
655 hPulse.Add(hist);
656 delete hist;
657
658 count_ok++;
659 }
660
661 //------------------fill histograms-----------------------
662 // Display only pixels used and with valid fits
663
664 cRate.SetUsed(usePixel);
665 cGain.SetUsed(usePixel);
666 cRelSigma.SetUsed(usePixel);
667 cCrosstalk.SetUsed(usePixel);
668 cBaseline.SetUsed(usePixel);
669 cNoise.SetUsed(usePixel);
670 cChi2.SetUsed(usePixel);
671 cNormGain.SetUsed(usePixel);
672 cFitProb.SetUsed(usePixel);
673 cCrosstalkP.SetUsed(usePixel);
674 cCoeffR.SetUsed(usePixel);
675
676 // --------------------------------------------------------
677 // Display data
678
679 TCanvas *canv = &d->AddTab("Cams1");
680 canv->Divide(3,2);
681
682 canv->cd(1);
683 cRate.DrawCopy();
684
685 canv->cd(2);
686 cGain.DrawCopy();
687
688 canv->cd(3);
689 cBaseline.DrawCopy();
690
691 canv->cd(4);
692 cRelSigma.DrawCopy();
693
694 canv->cd(5);
695 cCrosstalk.DrawCopy();
696
697 canv->cd(6);
698 cNoise.DrawCopy();
699
700
701 canv = &d->AddTab("Cams2");
702 canv->Divide(3,2);
703
704 canv->cd(1);
705 cFitProb.DrawCopy();
706
707 canv->cd(2);
708 cChi2.DrawCopy();
709
710 canv->cd(4);
711 cCoeffR.DrawCopy();
712
713 canv->cd(5);
714 cCrosstalkP.DrawCopy();
715
716 // --------------------------------------------------------
717
718 gStyle->SetOptFit(1);
719
720 canv = &d->AddTab("Hists1");
721 canv->Divide(3,2);
722
723 TH1 *hh = 0;
724
725 canv->cd(1);
726 hh = hRate1.DrawCopy();
727 hh = hRate2.DrawCopy("same");
728
729 canv->cd(2);
730 hh = hGain1.DrawCopy();
731 hh = hGain2.DrawCopy("same");
732 hh->Fit("gaus");
733
734 canv->cd(3);
735 hh = hBaseline1.DrawCopy();
736 hh = hBaseline2.DrawCopy("same");
737 hh->Fit("gaus");
738
739 canv->cd(4);
740 hh = hRelSigma1.DrawCopy();
741 hh = hRelSigma2.DrawCopy("same");
742 hh->Fit("gaus");
743
744 canv->cd(5);
745 hh = hCrosstalk1.DrawCopy();
746 hh = hCrosstalk2.DrawCopy("same");
747 hh->Fit("gaus");
748
749 canv->cd(6);
750 hh = hNoise1.DrawCopy();
751 hh = hNoise2.DrawCopy("same");
752 hh->Fit("gaus");
753
754 // --------------------------------------------------------
755
756 canv = &d->AddTab("Hists2");
757 canv->Divide(3,2);
758
759 canv->cd(1);
760 gPad->SetLogy();
761 hh = hFitProb1.DrawCopy();
762 hh = hFitProb2.DrawCopy("same");
763 hh->Fit("gaus");
764
765 canv->cd(2);
766 hChiSq1.DrawCopy();
767 hChiSq2.DrawCopy("same");
768
769 canv->cd(4);
770 hh = hCoeffR1.DrawCopy();
771 hh = hCoeffR2.DrawCopy("same");
772 hh->Fit("gaus");
773
774 canv->cd(5);
775 hh = hCrosstalkP1.DrawCopy();
776 hh = hCrosstalkP2.DrawCopy("same");
777 hh->Fit("gaus");
778
779 // --------------------------------------------------------
780
781 canv = &d->AddTab("NormGain");
782 canv->Divide(2,1);
783
784 canv->cd(1);
785 cNormGain.SetMinimum(0.8);
786 cNormGain.SetMaximum(1.2);
787 cNormGain.DrawCopy();
788
789 canv->cd(2);
790 gPad->SetLogy();
791 hh = hNormGain1.DrawCopy();
792 hh = hNormGain2.DrawCopy("same");
793 hh->Fit("gaus");
794
795 //------------------ Draw gain corrected sum specetrum -------------------
796 gROOT->SetSelectedPad(0);
797 c11.cd();
798 hSumClear1.DrawCopy("hist same");
799
800 //-------------------- fit gain corrected sum spectrum -------------------
801
802 gROOT->SetSelectedPad(0);
803 TCanvas &c11b = d->AddTab("CleanHist1");
804 c11b.cd();
805 gPad->SetLogy();
806 gPad->SetGridx();
807 gPad->SetGridy();
808
809 const Int_t maxbin1 = hSumClear1.GetMaximumBin();
810 const Double_t ampl1 = hSumClear1.GetBinContent(maxbin1);
811
812 func.SetParameters(res_par);
813 func.SetParLimits(0, 0, 2*ampl1);
814 func.SetParameter(0, ampl1);
815 func.ReleaseParameter(6);
816
817 hSumClear1.Fit(&func, fast?"LN0QSR":"LIN0QSR");
818
819 hSumClear1.DrawCopy();
820 func.DrawCopy("same");
821
822 cout << "--------------------" << endl;
823 PrintFunc(func, integration_window);
824 cout << "--------------------" << endl;
825
826 //-------------------- fit gain corrected sum spectrum -------------------
827
828 gROOT->SetSelectedPad(0);
829 TCanvas &c11c = d->AddTab("CleanHist2");
830 c11c.cd();
831 gPad->SetLogy();
832 gPad->SetGridx();
833 gPad->SetGridy();
834
835 const Int_t maxbin1b = hSumClear2.GetMaximumBin();
836 const Double_t ampl1b = hSumClear2.GetBinContent(maxbin1b);
837
838 func.SetParameters(res_par);
839 func.SetParLimits(0, 0, 2*ampl1b);
840 func.SetParameter(0, ampl1b);
841 func.ReleaseParameter(6);
842
843 hSumClear2.Fit(&func, fast?"LN0QSR":"LIN0QSR");
844
845 hSumClear2.DrawCopy();
846 func.DrawCopy("same");
847
848 cout << "--------------------" << endl;
849 PrintFunc(func, integration_window);
850 cout << "--------------------" << endl;
851
852 //-------------------- fit gain corrected sum spectrum -------------------
853
854 gROOT->SetSelectedPad(0);
855 TCanvas &c12 = d->AddTab("GainHist1");
856 c12.cd();
857 gPad->SetLogy();
858 gPad->SetGridx();
859 gPad->SetGridy();
860
861 const Int_t maxbin2 = hSumScale1.GetMaximumBin();
862 const Double_t ampl2 = hSumScale1.GetBinContent(maxbin2);
863
864 //Set fit parameters
865 Double_t par2[7] =
866 {
867 ampl2, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6]
868 };
869
870 func.SetParameters(par2);
871 func.SetParLimits(0, 0, 2*ampl2);
872 func.FixParameter(1, 1);
873 func.FixParameter(4, 0);
874
875 func.SetRange(0.62, 9);
876 hSumScale1.Fit(&func, fast?"LN0QSR":"LIN0QSR");
877
878 hSumScale1.DrawCopy();
879 func.DrawCopy("same");
880
881 cout << "--------------------" << endl;
882 PrintFunc(func, integration_window);
883 cout << "--------------------" << endl;
884
885 //-------------------- fit gain corrected sum spectrum -------------------
886
887 gROOT->SetSelectedPad(0);
888 TCanvas &c12b = d->AddTab("GainHist2");
889 c12b.cd();
890 gPad->SetLogy();
891 gPad->SetGridx();
892 gPad->SetGridy();
893
894 const Int_t maxbin2b = hSumScale2.GetMaximumBin();
895 const Double_t ampl2b = hSumScale2.GetBinContent(maxbin2b);
896
897 //Set fit parameters
898 Double_t par2b[7] =
899 {
900 ampl2b, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6]
901 };
902
903 func.SetParameters(par2b);
904 func.SetParLimits(0, 0, 2*ampl2b);
905 func.FixParameter(1, 1);
906 func.FixParameter(4, 0);
907
908 func.SetRange(0.62, 9);
909 hSumScale2.Fit(&func, fast?"LN0QSR":"LIN0QSR");
910
911 hSumScale2.DrawCopy();
912 func.DrawCopy("same");
913
914 cout << "--------------------" << endl;
915 PrintFunc(func, integration_window);
916 cout << "--------------------" << endl;
917
918 //--------fit gausses to peaks of gain corrected sum specetrum -----------
919
920 d->AddTab("ArrTime");
921 gPad->SetGrid();
922 hTime.DrawCopy();
923
924 // -----------------------------------------------------------------
925
926 d->AddTab("Pulse");
927 gPad->SetGrid();
928 hPulse.DrawCopy();
929
930 // ================================================================
931
932 cout << "Saving results to '" << outfile << "'" << endl;
933 d->SaveAs(outfile);
934 cout << "..success!" << endl;
935
936 TFile f(outfile, "UPDATE");
937 par.Write();
938 ext.Write("ExtractionRange");
939 header.Write();
940
941 return 0;
942}
Note: See TracBrowser for help on using the repository browser.