source: trunk/Mars/hawc/fit_singles.C@ 19948

Last change on this file since 19948 was 19875, checked in by tbretz, 5 years ago
This was the wrong version of the function. This updates it to be identical with the paper.
File size: 29.5 KB
Line 
1#include <iomanip>
2#include <iostream>
3
4#include <TF1.h>
5#include <TH2.h>
6#include <TProfile2D.h>
7#include <TFile.h>
8#include <TFitResult.h>
9#include <TStyle.h>
10
11#include "MLog.h"
12#include "MLogManip.h"
13#include "MStatusArray.h"
14#include "MStatusDisplay.h"
15#include "MHCamera.h"
16#include "MGeomCamFAMOUS.h"
17#include "MParameters.h"
18#include "MArrayI.h"
19#include "MRawRunHeader.h"
20#include "PixelMap.h"
21
22using namespace std;
23
24// --------------------------------------------------------------------------
25// after fit_spectrum_bt2b.C
26
27// Fit function for a single pe spectrum
28Double_t fcn_g(Double_t *xx, Double_t *par)
29{
30 const Double_t ampl = par[0];
31 const Double_t gain = par[1];
32 const Double_t sigma = par[2]*gain;
33 const Double_t cross = par[3];
34 const Double_t shift = par[4];
35 const Double_t noise = par[5]<0 ? sigma : par[5];
36 const Double_t expo = par[6];
37
38 const Double_t P = cross*TMath::Exp(-cross);
39
40 Double_t y = 0;
41 for (int N=1; N<14; N++)
42 {
43 const Double_t muN = N*gain + shift;
44 const Double_t sigN = TMath::Sqrt(N*sigma*sigma + noise*noise);
45
46 const Double_t p = TMath::Power(N*P, N-1)/TMath::Power(TMath::Factorial(N-1), expo);
47
48 y += TMath::Gaus(xx[0], muN, sigN) * p / sigN;
49 }
50
51 const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise);
52 return ampl*sig1*y;
53}
54
55// Calculate the crosstalk from the function parameters
56Double_t xtalk(TF1 &f)
57{
58 Double_t cross = f.GetParameter(3);
59 Double_t expo = f.GetParameter(6);
60
61 const Double_t P = cross*TMath::Exp(-cross);
62
63 Double_t y = 0;
64 for (int N=2; N<14; N++)
65 y += TMath::Power(N*P, N-1)/TMath::Power(TMath::Factorial(N-1), expo);
66
67 return y / (y + 1);
68}
69
70// calculate the integral in units per millisecond
71double integral(TF1 &func, TH1 &hist)
72{
73 const Double_t sigma = func.GetParameter(2)*func.GetParameter(1);
74 const Double_t cross = func.GetParameter(3);
75 const Double_t noise = func.GetParameter(5)<0 ? sigma : func.GetParameter(5);
76 const Double_t expo = func.GetParameter(6);
77
78 const Double_t P = cross*TMath::Exp(-cross);
79
80 Double_t sum = 0;
81 for (int N=1; N<14; N++)
82 sum += TMath::Power(N*P, N-1)/TMath::Power(TMath::Factorial(N-1), expo);
83
84 const Double_t scale = hist.GetBinWidth(1);
85 const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise);
86 const Double_t integ = func.GetParameter(0)*sum*sig1*sqrt(TMath::TwoPi())/scale;
87
88 return integ/1e-9/1e6;
89}
90
91
92// --------------------------------------------------------------------------
93
94// Print function parameters
95void PrintFunc(TF1 &f, float integration_window=30)
96{
97 //cout << "--------------------" << endl;
98 cout << "Ampl: " << setw(8) << f.GetParameter(0) << " +/- " << f.GetParError(0) << endl;
99 cout << "Gain: " << setw(8) << f.GetParameter(1) << " +/- " << f.GetParError(1) << endl;
100 cout << "Rel.sigma: " << setw(8) << f.GetParameter(2) << " +/- " << f.GetParError(2) << endl;
101 cout << "Baseline: " << setw(8) << f.GetParameter(4)/integration_window << " +/- " << f.GetParError(4)/integration_window << endl;
102 cout << "Crosstalk: " << setw(8) << f.GetParameter(3) << " +/- " << f.GetParError(3) << endl;
103 cout << "Pcrosstalk: " << setw(8) << xtalk(f) << endl;
104 if (f.GetParameter(5)>=0)
105 cout << "Noise: " << setw(8) << f.GetParameter(5)/sqrt(integration_window) << " +/- " << f.GetParError(5)/sqrt(integration_window) << endl;
106 cout << "Expo: " << setw(8) << f.GetParameter(6) << " +/- " << f.GetParError(6) << endl;
107 //cout << "--------------------" << endl;
108
109}
110
111// --------------------------------------------------------------------------
112
113// The parameters for the function are the filenam from the gain extraction
114// and the output filename
115int fit_singles(const char *filename = "20191027_006_006.root",
116 const char *outfile = "20190227_006_006-fit.root",
117 bool fixednoise=false)
118{
119 // Read the mapping between bias channels and hardware channels
120 PixelMap pmap;
121 if (!pmap.Read("../hawc/FAMOUSmap171218.txt"))
122 {
123 cout << "FAMOUSmap171218.txt not found." << endl;
124 return 1;
125 }
126
127 // It is more correct to fit the integral, but this is super
128 // slow, especially for 1440 pixel. To get that, one would have
129 // to analytically integrate and fit this function.
130 // (Currently the integral is switched off for the 1440 individual
131 // spectra in all cases)
132 bool fast = false; // Switch off using integral
133
134 // Values which should be read from the file but not available atm
135 Int_t integration_window = 30;
136
137 // Map for which pixel shall be plotted and which not
138 TArrayC usePixel(64);
139 memset(usePixel.GetArray(), 1, 64);
140
141 cout << setprecision(3);
142
143 // ======================================================
144 // Read data and histograms from file
145
146 TFile file(filename);
147 if (file.IsZombie())
148 {
149 gLog << err << "Opening file '" << filename << "' failed." << endl;
150 return 1;
151 }
152
153 MStatusArray arr;
154 if (arr.Read()<=0)
155 {
156 gLog << err << "Reading of MStatusArray from '" << filename << "' failed." << endl;
157 return 2;
158 }
159
160 TH2 *hsignal = (TH2*)arr.FindObjectInCanvas("Signal", "TH2F", "MHSingles");
161 if (!hsignal)
162 {
163 gLog << err << "Histogram Signal not found in '" << filename << "'." << endl;
164 return 3;
165 }
166 TH2 *htime = (TH2*)arr.FindObjectInCanvas("Time", "TH2F", "MHSingles");
167 if (!htime)
168 {
169 gLog << err << "Histogram Time not found in '" << filename << "'." << endl;
170 return 4;
171 }
172 TProfile2D *hpulse = (TProfile2D*)arr.FindObjectInCanvas("Pulse", "TProfile2D", "MHSingles");
173 if (!hpulse)
174 {
175 gLog << err << "Histogram Pulse not found in '" << filename << "'." << endl;
176 return 5;
177 }
178 TH2F *hbase = (TH2F*)arr.FindObjectInCanvas("Baseline", "TH2F", "MHBaseline");
179 if (!hbase)
180 {
181 gLog << err << "Histogram Baseline not found in '" << filename << "'." << endl;
182 return 6;
183 }
184
185 MRawRunHeader header;
186 if (header.Read()<=0)
187 {
188 gLog << err << "MRawRunheader not found in '" << filename << "'." << endl;
189 return 7;
190 }
191
192 MParameterI par("NumEvents");
193 if (par.Read()<=0)
194 {
195 gLog << err << "NumEvents not found in '" << filename << "'." << endl;
196 return 8;
197 }
198
199 MArrayI ext;
200 if (ext.Read("ExtractionRange")<=0)
201 {
202 gLog << err << "ExtractionRange not found in '" << filename << "'." << endl;
203 return 9;
204
205 }
206
207 // ======================================================
208
209 MStatusDisplay *d = new MStatusDisplay;
210
211 // Camera geometry for displays
212 MGeomCamFAMOUS fact;
213
214 // ------------------ Spectrum Fit ---------------
215 // Instantiate the display histograms
216 MHCamera cRate(fact);
217 MHCamera cGain(fact);
218 MHCamera cRelSigma(fact);
219 MHCamera cCrosstalk(fact);
220 MHCamera cBaseline(fact);
221 MHCamera cNoise(fact);
222 MHCamera cChi2(fact);
223 MHCamera cNormGain(fact);
224 MHCamera cFitProb(fact);
225 MHCamera cCrosstalkP(fact);
226 MHCamera cCoeffR(fact);
227
228 // Set name and title for the histograms
229 cRate.SetNameTitle ("Rate", "Dark count rate");
230 cGain.SetNameTitle ("Gain", "Gain distribution");
231 cRelSigma.SetNameTitle ("RelSigma", "Rel. Sigma");
232 cCrosstalk.SetNameTitle ("Crosstalk", "Crosstalk probability");
233 cBaseline.SetNameTitle ("Baseline", "Baseline per sample");
234 cNoise.SetNameTitle ("Noise", "Noise per sample");
235 cChi2.SetNameTitle ("Chi2", "\\Chi^2");
236 cNormGain.SetNameTitle ("NormGain", "Normalized gain");
237 cFitProb.SetNameTitle ("FitProb", "Root's fit probability");
238 cCrosstalkP.SetNameTitle("Pxtalk", "Crosstalk coeff. P");
239 cCoeffR.SetNameTitle ("CoeffR", "Coefficient R");
240
241 // Instantiate 1D histograms for the distributions
242 // including TM channels
243 TH1F hRate1 ("Rate1", "Dark count rate", 150, 0, 15);
244 TH1F hGain1 ("Gain1", "Gain distribution", 100, 0, 400);
245 TH1F hRelSigma1 ("RelSigma1", "Rel. Sigma", 160, 0, 0.40);
246 TH1F hCrosstalk1 ("Crosstalk1", "Crosstalk probability", 100, 0, 0.50);
247 TH1F hBaseline1 ("Baseline1", "Baseline per sample", 75, -7.5, 7.5);
248 TH1F hNoise1 ("Noise1", "Noise per sample", 60, 0, 30);
249 TH1F hChiSq1 ("ChiSq1", "\\Chi^2", 200, 0, 4);
250 TH1F hNormGain1 ("NormGain1", "Normalized gain", 51, 0.5, 1.5);
251 TH1F hFitProb1 ("FitProb1", "FitProb distribution", 100, 0, 1);
252 TH1F hCrosstalkP1("Pxtalk1", "Crosstalk coeff.", 100, 0, 0.5);
253 TH1F hCoeffR1 ("CoeffR1", "Coefficient R", 90, -1, 2);
254
255 // excluding TM channels
256 TH1F hRate2 ("Rate2", "Dark count rate", 150, 0, 15);
257 TH1F hGain2 ("Gain2", "Gain distribution", 100, 0, 400);
258 TH1F hRelSigma2 ("RelSigma2", "Rel. Sigma", 160, 0, 0.40);
259 TH1F hCrosstalk2 ("Crosstalk2", "Crosstalk probability", 100, 0, 0.50);
260 TH1F hBaseline2 ("Baseline2", "Baseline per sample", 75, -7.5, 7.5);
261 TH1F hNoise2 ("Noise2", "Noise per sample", 60, 0, 30);
262 TH1F hChiSq2 ("ChiSq2", "\\Chi^2", 200, 0, 4);
263 TH1F hNormGain2 ("NormGain2", "Normalized gain", 51, 0.5, 1.5);
264 TH1F hFitProb2 ("FitProb2", "FitProb distribution", 100, 0, 1);
265 TH1F hCrosstalkP2("Pxtalk2", "Crosstalk coeff.", 100, 0, 0.5);
266 TH1F hCoeffR2 ("CoeffR2", "Coefficient R", 90, -1, 2);
267
268 // Histigram for the sum of all spectrums
269 TH1F hSum("Sum1", "Signal spectrum of all pixels",
270 hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
271 hSum.SetXTitle("pulse integral [mV sample]");
272 hSum.SetYTitle("Counts");
273 hSum.SetStats(false);
274 hSum.Sumw2();
275
276 // Histogram for the sum of all pixels excluding the ones with faulty fits
277 TH1F hSumClear1("SumC1", "Signal spectrum of all pixels (incl TM)",
278 hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
279 hSumClear1.SetXTitle("pulse integral [mV sample]");
280 hSumClear1.SetYTitle("Counts");
281 hSumClear1.SetStats(false);
282 hSumClear1.SetLineColor(kBlue);
283 hSumClear1.Sumw2();
284
285 TH1F hSumClear2("SumC2", "Signal spectrum of all pixels (excp TM)",
286 hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
287 hSumClear2.SetXTitle("pulse integral [mV sample]");
288 hSumClear2.SetYTitle("Counts");
289 hSumClear2.SetStats(false);
290 hSumClear2.SetLineColor(kBlue);
291 hSumClear2.Sumw2();
292
293 // Arrival time spectrum of the extracted pulses
294 TH1F hTime("Time", "Arrival time spectrum", htime->GetNbinsY(), htime->GetYaxis()->GetXmin(), htime->GetYaxis()->GetXmax());
295 hTime.SetXTitle("pulse arrival time [sample]");
296 hTime.SetYTitle("Counts");
297 hTime.SetStats(false);
298
299 // average pulse shape of the extracted pulses
300 TH1F hPulse("Puls", "Average pulse", hpulse->GetNbinsY(), hpulse->GetYaxis()->GetXmin(), hpulse->GetYaxis()->GetXmax());
301 hPulse.SetXTitle("pulse arrival time [sample]");
302 hPulse.SetYTitle("Counts");
303 hPulse.SetStats(false);
304
305 // Spektrum for the normalized individual spectra
306 TH1F hSumScale1("SumScale1", "Signal spectrum of all pixels (incl TM)", 120, 0.05, 12.05);
307 hSumScale1.SetXTitle("pulse integral [pe]");
308 hSumScale1.SetYTitle("Rate");
309 hSumScale1.SetStats(false);
310 hSumScale1.Sumw2();
311
312 TH1F hSumScale2("SumScale2", "Signal spectrum of all pixels (excl TM)", 120, 0.05, 12.05);
313 hSumScale2.SetXTitle("pulse integral [pe]");
314 hSumScale2.SetYTitle("Rate");
315 hSumScale2.SetStats(false);
316 hSumScale2.Sumw2();
317
318 // define fit function for Amplitudespectrum
319 TF1 func("spektrum", fcn_g, 0, hSum.GetXaxis()->GetXmax(), 7);
320 func.SetNpx(2000);
321 func.SetParNames("Maximum", "Gain", "Sigma", "XtalkProb", "Offset", "Noise", "Expo");
322 func.SetLineColor(kRed);
323
324 //--------------------- fill sum spectrum --------------------------------
325
326 d->SetStatusLine1("Calculating sum spectrum");
327
328 // Begin of Loop over Pixels
329 for (Int_t pixel = 0; pixel < hsignal->GetNbinsX(); pixel++)
330 {
331 //jump to next pixel if the current is marked as faulty
332 if (usePixel[pixel]==0)
333 continue;
334
335 TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
336 hSum.Add(hist);
337 delete hist;
338 }
339
340 //----------------- get starting values -------------------------------
341
342 hSum.GetXaxis()->SetRangeUser(150, hSum.GetXaxis()->GetXmax());
343
344 const Int_t maxbin = hSum.GetMaximumBin();
345 const Double_t maxpos = hSum.GetBinCenter(maxbin);
346 const Double_t binwidth = hSum.GetBinWidth(maxbin);
347 const Double_t ampl = hSum.GetBinContent(maxbin);
348
349 double fwhmSum = 0;
350
351 //Calculate full width half Maximum
352 for (int i=1; i<maxbin; i++)
353 if (hSum.GetBinContent(maxbin-i)+hSum.GetBinContent(maxbin+i)<ampl)
354 {
355 fwhmSum = 2*(i-0.5)*binwidth;
356 break;
357 }
358
359 if (fwhmSum==0)
360 {
361 gLog << warn << "Could not determine start value for sigma." << endl;
362 }
363
364 Double_t sigma_est = fwhmSum/2.3548; // FWHM = 2*sqrt(2*ln(2))*sigma
365
366 Double_t fitmin = maxpos-sigma_est; // was 3*sigma_est
367 Double_t fitmax = hSum.GetXaxis()->GetXmax();
368
369 // ------------------- fit --------------------------------
370
371 //Fit and draw spectrum
372 func.SetParLimits(0, 0, 2*ampl); // Amplitude
373 func.SetParLimits(1, 0, 2*maxpos); // Gain
374 func.SetParLimits(2, 0, 1); // Sigma
375 func.SetParLimits(3, 0, 1); // Crosstalk
376 if (!fixednoise)
377 func.SetParLimits(5, 0, 150); // Noise
378 func.SetParLimits(6, 0, 2); // Expo
379
380 func.SetParameter(0, ampl); // Amplitude
381 func.SetParameter(1, maxpos); // Gain
382 func.SetParameter(2, 0.10); // Sigma
383 func.SetParameter(3, 0.25); // Crosstalk
384 func.SetParameter(4, 0*integration_window); // Baseline
385 if (fixednoise)
386 func.FixParameter(5, -1); // Noise
387 else
388 func.SetParameter(5, 0.1*maxpos); // Noise
389
390 func.SetParameter(6, 0.95); // Expo
391
392 func.SetRange(fitmin, fitmax);
393 hSum.Fit(&func, fast?"N0QSR":"IN0QSR");
394
395 Double_t res_par[7];
396 func.GetParameters(res_par);
397
398 //func.FixParameter(6, func.GetParameter(6)); // Expo
399
400 // ------------------ display result -------------------------------
401
402 cout << "--------------------" << endl;
403 cout << "AmplEst: " << ampl << endl;
404 cout << "GainEst: " << maxpos << endl;
405 cout << "SigmaEst: " << sigma_est << endl;
406 PrintFunc(func, integration_window);
407 cout << "--------------------" << endl;
408
409 gROOT->SetSelectedPad(0);
410 TCanvas &c11 = d->AddTab("SumHist");
411 c11.cd();
412 gPad->SetLogy();
413 gPad->SetGridx();
414 gPad->SetGridy();
415 hSum.GetXaxis()->SetRange();
416 hSum.DrawCopy("hist");
417 func.DrawCopy("same");
418
419 // ===================================================================
420 // Gain Calculation for each Pixel
421 // ===================================================================
422
423 // counter for number of processed pixel
424 int count_ok = 0;
425
426 // Begin of Loop over Pixels
427 for (Int_t pixel=0; pixel<hsignal->GetNbinsX(); pixel++)
428 {
429 // User information
430 d->SetStatusLine1(Form("Fitting pixel #%d", pixel));
431 d->SetProgressBarPosition((pixel+1.)/hsignal->GetNbinsX(), 1);
432
433 // Skip pixels known to be faulty
434 if (usePixel[pixel]==0)
435 continue;
436
437 //Projectipon of a certain Pixel out of Ampl.Spectrum
438 TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
439 hist->SetDirectory(0);
440
441 if (hist->GetEntries()<100)
442 {
443 gLog << warn << pixel << " ...histogram empty." << endl;
444 usePixel[pixel] = 0;
445 delete hist;
446 continue;
447 }
448
449 //Rebin Projection
450 hist->Rebin(2);
451
452 // Fit range
453 hist->GetXaxis()->SetRangeUser(150, hist->GetXaxis()->GetXmax());
454
455 // Determine start values
456 const Int_t maxBin = hist->GetMaximumBin();
457 const Double_t maxPos = hist->GetBinCenter(maxBin);
458
459 const Double_t gain = res_par[1];
460 const Double_t GainRMS = res_par[2];
461
462 const double fit_min = maxPos-GainRMS*gain*2.5;
463 const double fit_max = fitmax;//maxPos+gain*(maxOrder-0.5);
464
465 TArrayD cpy_par(7, res_par);
466
467 cpy_par[0] = hist->GetBinContent(maxBin);
468 cpy_par[1] = maxPos-res_par[4]; // correct position for avg baseline
469
470 func.SetParameters(cpy_par.GetArray());
471 func.SetParLimits(0, 0, 2*cpy_par[0]);
472 func.SetParLimits(1, 0, 2*cpy_par[1]);
473
474 // For individual spectra, the average fit yields 1 anyway
475 //func.SetParameter(6, 0); // Expo
476
477 // ----------- Fit Pixels spectrum ---------------
478
479 const TFitResultPtr rc = hist->Fit(&func, /*fast?*/"LLN0QS"/*:"LLIN0QS"*/, "", fit_min, fit_max);
480
481 // ----------- Calculate quality parameter ---------------
482
483 Int_t b1 = hist->GetXaxis()->FindFixBin(fit_min);
484 Int_t b2 = hist->GetXaxis()->FindFixBin(fit_max);
485
486 Double_t chi2 = 0;
487 Int_t cnt = 0;
488 for (int i=b1; i<=b2; i++)
489 {
490 if (hist->GetBinContent(i)<1.5 || func.Eval(hist->GetBinCenter(i))<1.5)
491 continue;
492
493 const Double_t y = func.Integral(hist->GetBinLowEdge(i), hist->GetBinLowEdge(i+1));
494 const Double_t v = hist->GetBinContent(i)*hist->GetBinWidth(i);
495
496 const Double_t chi = (v-y)/v;
497
498 chi2 += chi*chi;
499 cnt ++;
500 }
501
502 chi2 = cnt==0 ? 0 : sqrt(chi2/cnt);
503
504 // ----------------- Fit result --------------------
505
506 const double fit_prob = rc->Prob();
507
508 const float fRate = integral(func, *hist)/(ext[pixel]*0.5);
509 const float fGain = func.GetParameter(1);
510 const float fGainRMS = func.GetParameter(2);
511 const float fCrosstalkP= func.GetParameter(3);
512 const float fCrosstlk = xtalk(func);
513 const float fOffset = func.GetParameter(4);
514 const float fNoise = func.GetParameter(5)<0 ? fGainRMS*fGain/sqrt(integration_window) : func.GetParameter(5)/sqrt(integration_window);
515 const float fCoeffR = func.GetParameter(6);
516
517 // Fill histograms with result values
518 cRate.SetBinContent( pixel+1, fRate);
519 cGain.SetBinContent( pixel+1, fGain);
520 cRelSigma.SetBinContent( pixel+1, fGainRMS);
521 cCrosstalk.SetBinContent( pixel+1, fCrosstlk);
522 cBaseline.SetBinContent( pixel+1, fOffset/integration_window);
523 cNoise.SetBinContent( pixel+1, fNoise);
524 cChi2.SetBinContent( pixel+1, chi2);
525 cNormGain.SetBinContent( pixel+1, fGain/gain);
526 cFitProb.SetBinContent( pixel+1, fit_prob);
527 cCrosstalkP.SetBinContent(pixel+1, fCrosstalkP);
528 cCoeffR.SetBinContent( pixel+1, fCoeffR);
529
530 // ======================================================
531
532 // Try to determine faulty fits
533
534 bool ok = int(rc)==0;
535
536 // mark pixels suspicious with failed fit
537 if (!ok)
538 gLog << warn << pixel << " ...fit failed!" << endl;
539
540 // mark pixels suspicious with negative GainRMS
541 if (fabs(fGain/gain-1)>0.3)
542 {
543 gLog << warn << pixel << " ...gain deviates more than 30% from sum-gain." << endl;
544 ok = 0;
545 }
546
547 if (fabs(fOffset/integration_window)>3)
548 {
549 gLog << warn << pixel << " ...baseline deviates." << endl;
550 ok = 0;
551 }
552
553 // cancel out pixel where the fit was not succsessfull
554 usePixel[pixel] = ok;
555
556 // Plot pixel 0 and 5 (TM) and all faulty fits
557 if (pixel==0 || pixel==5 || !ok)
558 {
559 TCanvas &c = d->AddTab(Form("Pix%d", pixel));
560 c.cd();
561 gPad->SetLogy();
562 gPad->SetGridx();
563 gPad->SetGridy();
564
565 hist->SetStats(false);
566 hist->SetXTitle("Extracted signal");
567 hist->SetYTitle("Counts");
568 hist->SetName(Form("Pix%d", pixel));
569 hist->GetXaxis()->SetRange();
570 hist->DrawCopy("hist")->SetDirectory(0);
571 func.DrawCopy("SAME")->SetRange(fit_min, fit_max);
572
573 cout << "--------------------" << endl;
574 cout << "Pixel: " << pixel << endl;
575 cout << "fit prob: " << fit_prob << endl;
576 cout << "AmplEst: " << cpy_par[0] << endl;
577 cout << "GainEst: " << cpy_par[1] << endl;
578 PrintFunc(func, integration_window);
579 cout << "--------------------" << endl;
580 }
581
582 if (!ok)
583 {
584 delete hist;
585 continue;
586 }
587
588 // Fill Parameters into histograms
589 hRate1.Fill( fRate);
590 hGain1.Fill( fGain);
591 hRelSigma1.Fill( fGainRMS);
592 hCrosstalk1.Fill( fCrosstlk);
593 hBaseline1.Fill( fOffset/integration_window);
594 hNoise1.Fill( fNoise);
595 hChiSq1.Fill( chi2);
596 hNormGain1.Fill( fGain/gain);
597 hFitProb1.Fill( fit_prob);
598 hCrosstalkP1.Fill(fCrosstalkP);
599 hCoeffR1.Fill( fCoeffR);
600
601 if (pmap.index(pixel).pixel()!=8)
602 {
603 hRate2.Fill( fRate);
604 hGain2.Fill( fGain);
605 hRelSigma2.Fill( fGainRMS);
606 hCrosstalk2.Fill( fCrosstlk);
607 hBaseline2.Fill( fOffset/integration_window);
608 hNoise2.Fill( fNoise);
609 hChiSq2.Fill( chi2);
610 hNormGain2.Fill( fGain/gain);
611 hFitProb2.Fill( fit_prob);
612 hCrosstalkP2.Fill(fCrosstalkP);
613 hCoeffR2.Fill( fCoeffR);
614 }
615
616 // Fill sum spectrum
617 for (int b=1; b<=hist->GetNbinsX(); b++)
618 hSumScale1.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b));
619
620 if (pmap.index(pixel).pixel()!=8)
621 for (int b=1; b<=hist->GetNbinsX(); b++)
622 hSumScale2.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b));
623
624 delete hist;
625
626 // Because of the rebinning...
627 hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
628 hSumClear1.Add(hist);
629 if (pmap.index(pixel).pixel()!=8)
630 hSumClear2.Add(hist);
631 delete hist;
632
633 hist = htime->ProjectionY("proj", pixel+1, pixel+1);
634 hTime.Add(hist);
635 delete hist;
636
637 hist = hpulse->ProjectionY("proj", pixel+1, pixel+1);
638 hPulse.Add(hist);
639 delete hist;
640
641 count_ok++;
642 }
643
644 //------------------fill histograms-----------------------
645 // Display only pixels used and with valid fits
646
647 cRate.SetUsed(usePixel);
648 cGain.SetUsed(usePixel);
649 cRelSigma.SetUsed(usePixel);
650 cCrosstalk.SetUsed(usePixel);
651 cBaseline.SetUsed(usePixel);
652 cNoise.SetUsed(usePixel);
653 cChi2.SetUsed(usePixel);
654 cNormGain.SetUsed(usePixel);
655 cFitProb.SetUsed(usePixel);
656 cCrosstalkP.SetUsed(usePixel);
657 cCoeffR.SetUsed(usePixel);
658
659 // --------------------------------------------------------
660 // Display data
661
662 TCanvas *canv = &d->AddTab("Cams1");
663 canv->Divide(3,2);
664
665 canv->cd(1);
666 cRate.DrawCopy();
667
668 canv->cd(2);
669 cGain.DrawCopy();
670
671 canv->cd(3);
672 cBaseline.DrawCopy();
673
674 canv->cd(4);
675 cRelSigma.DrawCopy();
676
677 canv->cd(5);
678 cCrosstalk.DrawCopy();
679
680 canv->cd(6);
681 cNoise.DrawCopy();
682
683
684 canv = &d->AddTab("Cams2");
685 canv->Divide(3,2);
686
687 canv->cd(1);
688 cFitProb.DrawCopy();
689
690 canv->cd(2);
691 cChi2.DrawCopy();
692
693 canv->cd(4);
694 cCoeffR.DrawCopy();
695
696 canv->cd(5);
697 cCrosstalkP.DrawCopy();
698
699 // --------------------------------------------------------
700
701 gStyle->SetOptFit(1);
702
703 canv = &d->AddTab("Hists1");
704 canv->Divide(3,2);
705
706 TH1 *hh = 0;
707
708 canv->cd(1);
709 hh = hRate1.DrawCopy();
710 hh = hRate2.DrawCopy("same");
711
712 canv->cd(2);
713 hh = hGain1.DrawCopy();
714 hh = hGain2.DrawCopy("same");
715 hh->Fit("gaus", "M");
716
717 canv->cd(3);
718 hh = hBaseline1.DrawCopy();
719 hh = hBaseline2.DrawCopy("same");
720 hh->Fit("gaus", "M");
721
722 canv->cd(4);
723 hh = hRelSigma1.DrawCopy();
724 hh = hRelSigma2.DrawCopy("same");
725 hh->Fit("gaus", "M");
726
727 canv->cd(5);
728 hh = hCrosstalk1.DrawCopy();
729 hh = hCrosstalk2.DrawCopy("same");
730 hh->Fit("gaus", "M");
731
732 canv->cd(6);
733 hh = hNoise1.DrawCopy();
734 hh = hNoise2.DrawCopy("same");
735 hh->Fit("gaus", "M");
736
737 // --------------------------------------------------------
738
739 canv = &d->AddTab("Hists2");
740 canv->Divide(3,2);
741
742 canv->cd(1);
743 gPad->SetLogy();
744 hh = hFitProb1.DrawCopy();
745 hh = hFitProb2.DrawCopy("same");
746 hh->Fit("gaus", "M");
747
748 canv->cd(2);
749 hChiSq1.DrawCopy();
750 hChiSq2.DrawCopy("same");
751
752 canv->cd(4);
753 hh = hCoeffR1.DrawCopy();
754 hh = hCoeffR2.DrawCopy("same");
755 hh->Fit("gaus", "M");
756
757 canv->cd(5);
758 hh = hCrosstalkP1.DrawCopy();
759 hh = hCrosstalkP2.DrawCopy("same");
760 hh->Fit("gaus", "M");
761
762 // --------------------------------------------------------
763
764 canv = &d->AddTab("NormGain");
765 canv->Divide(2,1);
766
767 canv->cd(1);
768 cNormGain.SetMinimum(0.8);
769 cNormGain.SetMaximum(1.2);
770 cNormGain.DrawCopy();
771
772 canv->cd(2);
773 gPad->SetLogy();
774 hh = hNormGain1.DrawCopy();
775 hh = hNormGain2.DrawCopy("same");
776 hh->Fit("gaus", "M");
777
778 //------------------ Draw gain corrected sum specetrum -------------------
779 gROOT->SetSelectedPad(0);
780 c11.cd();
781 hSumClear1.DrawCopy("hist same");
782
783 //-------------------- fit gain corrected sum spectrum -------------------
784
785 gROOT->SetSelectedPad(0);
786 TCanvas &c11b = d->AddTab("CleanHist1");
787 c11b.cd();
788 gPad->SetLogy();
789 gPad->SetGridx();
790 gPad->SetGridy();
791
792 const Int_t maxbin1 = hSumClear1.GetMaximumBin();
793 const Double_t ampl1 = hSumClear1.GetBinContent(maxbin1);
794
795 func.SetParameters(res_par);
796 func.SetParLimits(0, 0, 2*ampl1);
797 func.SetParameter(0, ampl1);
798 func.ReleaseParameter(6);
799
800 func.SetRange(155, 3000);
801
802 hSumClear1.Fit(&func, fast?"LN0QSR":"LIN0QSR");
803
804 hSumClear1.DrawCopy();
805 func.DrawCopy("same");
806
807 cout << "--------------------" << endl;
808 PrintFunc(func, integration_window);
809 cout << "--------------------" << endl;
810
811 //-------------------- fit gain corrected sum spectrum -------------------
812
813 gROOT->SetSelectedPad(0);
814 TCanvas &c11c = d->AddTab("CleanHist2");
815 c11c.cd();
816 gPad->SetLogy();
817 gPad->SetGridx();
818 gPad->SetGridy();
819
820 const Int_t maxbin1b = hSumClear2.GetMaximumBin();
821 const Double_t ampl1b = hSumClear2.GetBinContent(maxbin1b);
822
823 func.SetParameters(res_par);
824 func.SetParLimits(0, 0, 2*ampl1b);
825 func.SetParameter(0, ampl1b);
826 func.ReleaseParameter(6);
827
828 hSumClear2.Fit(&func, fast?"LN0QSR":"LIN0QSR");
829
830 hSumClear2.DrawCopy();
831 func.DrawCopy("same");
832
833 cout << "--------------------" << endl;
834 PrintFunc(func, integration_window);
835 cout << "--------------------" << endl;
836
837 //-------------------- fit gain corrected sum spectrum -------------------
838
839 gROOT->SetSelectedPad(0);
840 TCanvas &c12 = d->AddTab("GainHist1");
841 c12.cd();
842 gPad->SetLogy();
843 gPad->SetGridx();
844 gPad->SetGridy();
845
846 const Int_t maxbin2 = hSumScale1.GetMaximumBin();
847 const Double_t ampl2 = hSumScale1.GetBinContent(maxbin2);
848
849 //Set fit parameters
850 Double_t par2[7] =
851 {
852 ampl2, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6]
853 };
854
855 func.SetParameters(par2);
856 func.SetParLimits(0, 0, 2*ampl2);
857 func.FixParameter(1, 1);
858 func.FixParameter(4, 0);
859
860 func.SetRange(0.8, 12);
861 hSumScale1.Fit(&func, fast?"LN0QSR":"LIN0QSR");
862
863 hSumScale1.DrawCopy();
864 func.DrawCopy("same");
865
866 cout << "--------------------" << endl;
867 PrintFunc(func, integration_window);
868 cout << "--------------------" << endl;
869
870 //-------------------- fit gain corrected sum spectrum -------------------
871
872 gROOT->SetSelectedPad(0);
873 TCanvas &c12b = d->AddTab("GainHist2");
874 c12b.cd();
875 gPad->SetLogy();
876 gPad->SetGridx();
877 gPad->SetGridy();
878
879 const Int_t maxbin2b = hSumScale2.GetMaximumBin();
880 const Double_t ampl2b = hSumScale2.GetBinContent(maxbin2b);
881
882 //Set fit parameters
883 Double_t par2b[7] =
884 {
885 ampl2b, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6]
886 };
887
888 func.SetParameters(par2b);
889 func.SetParLimits(0, 0, 2*ampl2b);
890 func.FixParameter(1, 1);
891 func.FixParameter(4, 0);
892
893 func.SetRange(0.8, 12);
894 hSumScale2.Fit(&func, fast?"LN0QSR":"LIN0QSR");
895
896 hSumScale2.DrawCopy();
897 func.DrawCopy("same");
898
899 cout << "--------------------" << endl;
900 PrintFunc(func, integration_window);
901 cout << "--------------------" << endl;
902
903 //--------fit gausses to peaks of gain corrected sum specetrum -----------
904
905 d->AddTab("ArrTime");
906 gPad->SetGrid();
907 hTime.DrawCopy();
908
909 // -----------------------------------------------------------------
910
911 d->AddTab("Pulse");
912 gPad->SetGrid();
913 hPulse.DrawCopy();
914
915 // ================================================================
916
917 cout << "Saving results to '" << outfile << "'" << endl;
918 d->SaveAs(outfile);
919 cout << "..success!" << endl;
920
921 TFile f(outfile, "UPDATE");
922 par.Write();
923 ext.Write("ExtractionRange");
924 header.Write();
925
926 return 0;
927}
Note: See TracBrowser for help on using the repository browser.