#include #include #include #include #include #include #include #include #include "MLog.h" #include "MLogManip.h" #include "MStatusArray.h" #include "MStatusDisplay.h" #include "MHCamera.h" #include "MGeomCamFAMOUS.h" #include "MParameters.h" #include "MArrayI.h" #include "MRawRunHeader.h" #include "PixelMap.h" using namespace std; // -------------------------------------------------------------------------- // after fit_spectrum_bt2b.C // Fit function for a single pe spectrum Double_t fcn_g(Double_t *xx, Double_t *par) { const Double_t ampl = par[0]; const Double_t gain = par[1]; const Double_t sigma = par[2]*gain; const Double_t cross = par[3]; const Double_t shift = par[4]; const Double_t noise = par[5]<0 ? sigma : par[5]; const Double_t expo = par[6]; const Double_t P = cross*TMath::Exp(-cross); Double_t y = 0; for (int N=1; N<14; N++) { const Double_t muN = N*gain + shift; const Double_t sigN = TMath::Sqrt(N*sigma*sigma + noise*noise); const Double_t p = TMath::Power(N*P, N-1)/TMath::Power(TMath::Factorial(N-1), expo); y += TMath::Gaus(xx[0], muN, sigN) * p / sigN; } const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise); return ampl*sig1*y; } // Calculate the crosstalk from the function parameters Double_t xtalk(TF1 &f) { Double_t cross = f.GetParameter(3); Double_t expo = f.GetParameter(6); const Double_t P = cross*TMath::Exp(-cross); Double_t y = 0; for (int N=2; N<14; N++) y += TMath::Power(N*P, N-1)/TMath::Power(TMath::Factorial(N-1), expo); return y / (y + 1); } // calculate the integral in units per millisecond double integral(TF1 &func, TH1 &hist) { const Double_t sigma = func.GetParameter(2)*func.GetParameter(1); const Double_t cross = func.GetParameter(3); const Double_t noise = func.GetParameter(5)<0 ? sigma : func.GetParameter(5); const Double_t expo = func.GetParameter(6); const Double_t P = cross*TMath::Exp(-cross); Double_t sum = 0; for (int N=1; N<14; N++) sum += TMath::Power(N*P, N-1)/TMath::Power(TMath::Factorial(N-1), expo); const Double_t scale = hist.GetBinWidth(1); const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise); const Double_t integ = func.GetParameter(0)*sum*sig1*sqrt(TMath::TwoPi())/scale; return integ/1e-9/1e6; } // -------------------------------------------------------------------------- // Print function parameters void PrintFunc(TF1 &f, float integration_window=40) { //cout << "--------------------" << endl; cout << "Ampl: " << setw(8) << f.GetParameter(0) << " +/- " << f.GetParError(0) << endl; cout << "Gain: " << setw(8) << f.GetParameter(1) << " +/- " << f.GetParError(1) << endl; cout << "Rel.sigma: " << setw(8) << f.GetParameter(2) << " +/- " << f.GetParError(2) << endl; cout << "Baseline: " << setw(8) << f.GetParameter(4)/integration_window << " +/- " << f.GetParError(4)/integration_window << endl; cout << "Crosstalk: " << setw(8) << f.GetParameter(3) << " +/- " << f.GetParError(3) << endl; cout << "Pcrosstalk: " << setw(8) << xtalk(f) << endl; if (f.GetParameter(5)>=0) cout << "Noise: " << setw(8) << f.GetParameter(5)/sqrt(integration_window) << " +/- " << f.GetParError(5)/sqrt(integration_window) << endl; cout << "Expo: " << setw(8) << f.GetParameter(6) << " +/- " << f.GetParError(6) << endl; //cout << "--------------------" << endl; } // -------------------------------------------------------------------------- // The parameters for the function are the filenam from the gain extraction // and the output filename int fit_singles(const char *filename = "/home/giangdo/Documents/Master/MA/pulse/data_single_pe/extracted/20191027_006_006.root", const char *outfile = "/home/giangdo/Documents/Master/MA/pulse/data_single_pe/extracted/20191027_006_006_fit.root", bool fixednoise=false) { // Read the mapping between bias channels and hardware channels PixelMap pmap; if (!pmap.Read("/home/giangdo/Documents/Master/MA/Software/Mars/hawc/HAWCsEyemap181214.txt")) { cout << "HAWCsEyemap181214.txt not found." << endl; return 1; } // It is more correct to fit the integral, but this is super // slow. To get that, one would have // to analytically integrate and fit this function. bool fast = false; // Switch off using integral // Values which should be read from the file but not available atm Int_t integration_window = 40; // Map for which pixel shall be plotted and which not TArrayC usePixel(64); memset(usePixel.GetArray(), 1, 64); cout << setprecision(3); // ====================================================== // Read data and histograms from file TFile file(filename); if (file.IsZombie()) { gLog << err << "Opening file '" << filename << "' failed." << endl; return 1; } MStatusArray arr; if (arr.Read()<=0) { gLog << err << "Reading of MStatusArray from '" << filename << "' failed." << endl; return 2; } TH2 *hsignal = (TH2*)arr.FindObjectInCanvas("Signal", "TH2F", "MHSingles"); if (!hsignal) { gLog << err << "Histogram Signal not found in '" << filename << "'." << endl; return 3; } TH2 *htime = (TH2*)arr.FindObjectInCanvas("Time", "TH2F", "MHSingles"); if (!htime) { gLog << err << "Histogram Time not found in '" << filename << "'." << endl; return 4; } TProfile2D *hpulse = (TProfile2D*)arr.FindObjectInCanvas("Pulse", "TProfile2D", "MHSingles"); if (!hpulse) { gLog << err << "Histogram Pulse not found in '" << filename << "'." << endl; return 5; } TH2F *hbase = (TH2F*)arr.FindObjectInCanvas("Baseline", "TH2F", "MHBaseline"); if (!hbase) { gLog << err << "Histogram Baseline not found in '" << filename << "'." << endl; return 6; } MRawRunHeader header; if (header.Read()<=0) { gLog << err << "MRawRunheader not found in '" << filename << "'." << endl; return 7; } MParameterI par("NumEvents"); if (par.Read()<=0) { gLog << err << "NumEvents not found in '" << filename << "'." << endl; return 8; } MArrayI ext; if (ext.Read("ExtractionRange")<=0) { gLog << err << "ExtractionRange not found in '" << filename << "'." << endl; return 9; } // ====================================================== MStatusDisplay *d = new MStatusDisplay; // Camera geometry for displays MGeomCamFAMOUS fact; // ------------------ Spectrum Fit --------------- // Instantiate the display histograms MHCamera cRate(fact); MHCamera cGain(fact); MHCamera cRelSigma(fact); MHCamera cCrosstalk(fact); MHCamera cBaseline(fact); MHCamera cNoise(fact); MHCamera cChi2(fact); MHCamera cNormGain(fact); MHCamera cFitProb(fact); MHCamera cCrosstalkP(fact); MHCamera cCoeffR(fact); // Set name and title for the histograms cRate.SetNameTitle ("Rate", "Dark count rate"); cGain.SetNameTitle ("Gain", "Gain distribution"); cRelSigma.SetNameTitle ("RelSigma", "Rel. Sigma"); cCrosstalk.SetNameTitle ("Crosstalk", "Crosstalk probability"); cBaseline.SetNameTitle ("Baseline", "Baseline per sample"); cNoise.SetNameTitle ("Noise", "Noise per sample"); cChi2.SetNameTitle ("Chi2", "\\Chi^2"); cNormGain.SetNameTitle ("NormGain", "Normalized gain"); cFitProb.SetNameTitle ("FitProb", "Root's fit probability"); cCrosstalkP.SetNameTitle("Pxtalk", "Crosstalk coeff. P"); cCoeffR.SetNameTitle ("CoeffR", "Coefficient R"); // Instantiate 1D histograms for the distributions // including TM channels TH1F hRate1 ("Rate1", "Dark count rate", 150, 0, 15); TH1F hGain1 ("Gain1", "Gain distribution", 100, 0, 400); TH1F hRelSigma1 ("RelSigma1", "Rel. Sigma", 160, 0, 0.40); TH1F hCrosstalk1 ("Crosstalk1", "Crosstalk probability", 100, 0, 0.50); TH1F hBaseline1 ("Baseline1", "Baseline per sample", 75, -7.5, 7.5); TH1F hNoise1 ("Noise1", "Noise per sample", 60, 0, 30); TH1F hChiSq1 ("ChiSq1", "\\Chi^2", 200, 0, 4); TH1F hNormGain1 ("NormGain1", "Normalized gain", 51, 0.5, 1.5); TH1F hFitProb1 ("FitProb1", "FitProb distribution", 100, 0, 1); TH1F hCrosstalkP1("Pxtalk1", "Crosstalk coeff.", 100, 0, 0.5); TH1F hCoeffR1 ("CoeffR1", "Coefficient R", 90, -1, 2); // excluding TM channels TH1F hRate2 ("Rate2", "Dark count rate", 150, 0, 15); TH1F hGain2 ("Gain2", "Gain distribution", 100, 0, 400); TH1F hRelSigma2 ("RelSigma2", "Rel. Sigma", 160, 0, 0.40); TH1F hCrosstalk2 ("Crosstalk2", "Crosstalk probability", 100, 0, 0.50); TH1F hBaseline2 ("Baseline2", "Baseline per sample", 75, -7.5, 7.5); TH1F hNoise2 ("Noise2", "Noise per sample", 60, 0, 30); TH1F hChiSq2 ("ChiSq2", "\\Chi^2", 200, 0, 4); TH1F hNormGain2 ("NormGain2", "Normalized gain", 51, 0.5, 1.5); TH1F hFitProb2 ("FitProb2", "FitProb distribution", 100, 0, 1); TH1F hCrosstalkP2("Pxtalk2", "Crosstalk coeff.", 100, 0, 0.5); TH1F hCoeffR2 ("CoeffR2", "Coefficient R", 90, -1, 2); // Histogram for the sum of all spectrums TH1F hSum("Sum1", "Signal spectrum of all pixels (excl. blind pixels)", hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax()); hSum.SetXTitle("pulse integral [mV sample]"); hSum.SetYTitle("Counts"); hSum.SetStats(false); hSum.Sumw2(); // Histogram for the sum of all pixels excluding the ones with faulty fits TH1F hSumClear1("SumC1", "Signal spectrum of all pixels (excl. faulty and blind pixels)", hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax()); hSumClear1.SetXTitle("pulse integral [mV sample]"); hSumClear1.SetYTitle("Counts"); hSumClear1.SetStats(false); hSumClear1.SetLineColor(kBlue); hSumClear1.Sumw2(); TH1F hSumClear2("SumC2", "Signal spectrum of all pixels (excp TM)", hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax()); hSumClear2.SetXTitle("pulse integral [mV sample]"); hSumClear2.SetYTitle("Counts"); hSumClear2.SetStats(false); hSumClear2.SetLineColor(kBlue); hSumClear2.Sumw2(); // Arrival time spectrum of the extracted pulses TH1F hTime("Time", "Arrival time spectrum", htime->GetNbinsY(), htime->GetYaxis()->GetXmin(), htime->GetYaxis()->GetXmax()); hTime.SetXTitle("pulse arrival time [sample]"); hTime.SetYTitle("Counts"); hTime.SetStats(false); // average pulse shape of the extracted pulses TH1F hPulse("Puls", "Average pulse", hpulse->GetNbinsY(), hpulse->GetYaxis()->GetXmin(), hpulse->GetYaxis()->GetXmax()); hPulse.SetXTitle("pulse arrival time [sample]"); hPulse.SetYTitle("Counts"); hPulse.SetStats(false); // Spectrum for the normalized individual spectra TH1F hSumScale1("SumScale1", "Signal spectrum of all pixels (excl. blind pixels)", 120, 0.05, 12.05); hSumScale1.SetXTitle("pulse integral [pe]"); hSumScale1.SetYTitle("Rate"); hSumScale1.SetStats(false); hSumScale1.Sumw2(); TH1F hSumScale2("SumScale2", "Signal spectrum of all pixels (excl TM)", 120, 0.05, 12.05); hSumScale2.SetXTitle("pulse integral [pe]"); hSumScale2.SetYTitle("Rate"); hSumScale2.SetStats(false); hSumScale2.Sumw2(); // define fit function for Amplitudespectrum TF1 func("spektrum", fcn_g, 0, hSum.GetXaxis()->GetXmax(), 7); func.SetNpx(2000); func.SetParNames("Maximum", "Gain", "Sigma", "XtalkProb", "Offset", "Noise", "Expo"); func.SetLineColor(kRed); //--------------------- fill sum spectrum -------------------------------- d->SetStatusLine1("Calculating sum spectrum"); // Begin of Loop over Pixels for (Int_t pixel = 0; pixel < hsignal->GetNbinsX(); pixel++) { //jump to next pixel if the current is marked as faulty if (usePixel[pixel]==0) continue; //exclude the pixels without cones if (pixel == 61) continue; if (pixel == 62) continue; if (pixel == 63) continue; TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1); hSum.Add(hist); delete hist; } //----------------- get starting values ------------------------------- hSum.GetXaxis()->SetRangeUser(150, hSum.GetXaxis()->GetXmax()); const Int_t maxbin = hSum.GetMaximumBin(); const Double_t maxpos = hSum.GetBinCenter(maxbin); const Double_t binwidth = hSum.GetBinWidth(maxbin); const Double_t ampl = hSum.GetBinContent(maxbin); double fwhmSum = 0; //Calculate full width half Maximum for (int i=1; iGetXmax(); // ------------------- fit -------------------------------- //Fit and draw spectrum func.SetParLimits(0, 0, 2*ampl); // Amplitude func.SetParLimits(1, 0, 2*maxpos); // Gain func.SetParLimits(2, 0, 1); // Sigma func.SetParLimits(3, 0, 1); // Crosstalk if (!fixednoise) func.SetParLimits(5, 0, 150); // Noise func.SetParLimits(6, 0, 2); // Expo func.SetParameter(0, ampl); // Amplitude func.SetParameter(1, maxpos); // Gain func.SetParameter(2, 0.10); // Sigma func.SetParameter(3, 0.25); // Crosstalk func.SetParameter(4, 0*integration_window); // Baseline if (fixednoise) func.FixParameter(5, -1); // Noise else func.SetParameter(5, 0.1*maxpos); // Noise func.SetParameter(6, 0.95); // Expo func.SetRange(fitmin, fitmax); hSum.Fit(&func, fast?"N0QSR":"IN0QSR"); Double_t res_par[7]; func.GetParameters(res_par); //func.FixParameter(6, func.GetParameter(6)); // Expo // ------------------ display result ------------------------------- cout << "--------------------" << endl; cout << "AmplEst: " << ampl << endl; cout << "GainEst: " << maxpos << endl; cout << "SigmaEst: " << sigma_est << endl; PrintFunc(func, integration_window); cout << "--------------------" << endl; gROOT->SetSelectedPad(0); TCanvas &c11 = d->AddTab("SumHist"); c11.cd(); gPad->SetLogy(); gPad->SetGridx(); gPad->SetGridy(); hSum.GetXaxis()->SetRange(); hSum.DrawCopy("hist"); func.DrawCopy("same"); // =================================================================== // Gain Calculation for each Pixel // =================================================================== // counter for number of processed pixel int count_ok = 0; // Begin of Loop over Pixels for (Int_t pixel=0; pixelGetNbinsX(); pixel++) { // User information d->SetStatusLine1(Form("Fitting pixel #%d", pixel)); d->SetProgressBarPosition((pixel+1.)/hsignal->GetNbinsX(), 1); // Skip pixels known to be faulty if (usePixel[pixel]==0) continue; // Exclude pixels without cones if (pixel == 61) continue; if (pixel == 62) continue; if (pixel == 63) continue; //Projectipon of a certain Pixel out of Ampl.Spectrum TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1); hist->SetDirectory(0); if (hist->GetEntries()<100) { gLog << warn << pixel << " ...histogram empty." << endl; usePixel[pixel] = 0; delete hist; continue; } //Rebin Projection hist->Rebin(2); // Fit range hist->GetXaxis()->SetRangeUser(150, hist->GetXaxis()->GetXmax()); // Determine start values const Int_t maxBin = hist->GetMaximumBin(); const Double_t maxPos = hist->GetBinCenter(maxBin); const Double_t gain = res_par[1]; const Double_t GainRMS = res_par[2]; const double fit_min = maxPos-GainRMS*gain*2.5; const double fit_max = fitmax;//maxPos+gain*(maxOrder-0.5); TArrayD cpy_par(7, res_par); cpy_par[0] = hist->GetBinContent(maxBin); cpy_par[1] = maxPos-res_par[4]; // correct position for avg baseline func.SetParameters(cpy_par.GetArray()); func.SetParLimits(0, 0, 2*cpy_par[0]); func.SetParLimits(1, 0, 2*cpy_par[1]); // For individual spectra, the average fit yields 1 anyway //func.SetParameter(6, 0); // Expo // ----------- Fit Pixels spectrum --------------- const TFitResultPtr rc = hist->Fit(&func, /*fast?*/"LLN0QS"/*:"LLIN0QS"*/, "", fit_min, fit_max); // ----------- Calculate quality parameter --------------- Int_t b1 = hist->GetXaxis()->FindFixBin(fit_min); Int_t b2 = hist->GetXaxis()->FindFixBin(fit_max); Double_t chi2 = 0; Int_t cnt = 0; for (int i=b1; i<=b2; i++) { if (hist->GetBinContent(i)<1.5 || func.Eval(hist->GetBinCenter(i))<1.5) continue; const Double_t y = func.Integral(hist->GetBinLowEdge(i), hist->GetBinLowEdge(i+1)); const Double_t v = hist->GetBinContent(i)*hist->GetBinWidth(i); const Double_t chi = (v-y)/v; chi2 += chi*chi; cnt ++; } chi2 = cnt==0 ? 0 : sqrt(chi2/cnt); // ----------------- Fit result -------------------- const double fit_prob = rc->Prob(); const float fRate = integral(func, *hist)/(ext[pixel]*0.5); const float fGain = func.GetParameter(1); const float fGainRMS = func.GetParameter(2); const float fCrosstalkP= func.GetParameter(3); const float fCrosstlk = xtalk(func); const float fOffset = func.GetParameter(4); const float fNoise = func.GetParameter(5)<0 ? fGainRMS*fGain/sqrt(integration_window) : func.GetParameter(5)/sqrt(integration_window); const float fCoeffR = func.GetParameter(6); // Fill histograms with result values cRate.SetBinContent( pixel+1, fRate); cGain.SetBinContent( pixel+1, fGain); cRelSigma.SetBinContent( pixel+1, fGainRMS); cCrosstalk.SetBinContent( pixel+1, fCrosstlk); cBaseline.SetBinContent( pixel+1, fOffset/integration_window); cNoise.SetBinContent( pixel+1, fNoise); cChi2.SetBinContent( pixel+1, chi2); cNormGain.SetBinContent( pixel+1, fGain/gain); cFitProb.SetBinContent( pixel+1, fit_prob); cCrosstalkP.SetBinContent(pixel+1, fCrosstalkP); cCoeffR.SetBinContent( pixel+1, fCoeffR); // ====================================================== // Try to determine faulty fits bool ok = int(rc)==0; // mark pixels suspicious with failed fit if (!ok) gLog << warn << pixel << " ...fit failed!" << endl; // mark pixels suspicious with negative GainRMS if (fabs(fGain/gain-1)>0.3) { gLog << warn << pixel << " ...gain deviates more than 30% from sum-gain." << endl; ok = 0; } if (fabs(fOffset/integration_window)>3) { gLog << warn << pixel << " ...baseline deviates." << endl; ok = 0; } // cancel out pixel where the fit was not succsessfull usePixel[pixel] = ok; // Plot pixel 0 and 5 (TM) and all faulty fits if (pixel==0 || pixel==5 || !ok) { TCanvas &c = d->AddTab(Form("Pix%d", pixel)); c.cd(); gPad->SetLogy(); gPad->SetGridx(); gPad->SetGridy(); hist->SetStats(false); hist->SetXTitle("Extracted signal"); hist->SetYTitle("Counts"); hist->SetName(Form("Pix%d", pixel)); hist->GetXaxis()->SetRange(); hist->DrawCopy("hist")->SetDirectory(0); func.DrawCopy("SAME")->SetRange(fit_min, fit_max); cout << "--------------------" << endl; cout << "Pixel: " << pixel << endl; cout << "fit prob: " << fit_prob << endl; cout << "AmplEst: " << cpy_par[0] << endl; cout << "GainEst: " << cpy_par[1] << endl; PrintFunc(func, integration_window); cout << "--------------------" << endl; } if (!ok) { delete hist; continue; } // Fill Parameters into histograms hRate1.Fill( fRate); hGain1.Fill( fGain); hRelSigma1.Fill( fGainRMS); hCrosstalk1.Fill( fCrosstlk); hBaseline1.Fill( fOffset/integration_window); hNoise1.Fill( fNoise); hChiSq1.Fill( chi2); hNormGain1.Fill( fGain/gain); hFitProb1.Fill( fit_prob); hCrosstalkP1.Fill(fCrosstalkP); hCoeffR1.Fill( fCoeffR); if (pmap.index(pixel).pixel()!=8) { hRate2.Fill( fRate); hGain2.Fill( fGain); hRelSigma2.Fill( fGainRMS); hCrosstalk2.Fill( fCrosstlk); hBaseline2.Fill( fOffset/integration_window); hNoise2.Fill( fNoise); hChiSq2.Fill( chi2); hNormGain2.Fill( fGain/gain); hFitProb2.Fill( fit_prob); hCrosstalkP2.Fill(fCrosstalkP); hCoeffR2.Fill( fCoeffR); } // Fill sum spectrum for (int b=1; b<=hist->GetNbinsX(); b++) hSumScale1.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b)); if (pmap.index(pixel).pixel()!=8) for (int b=1; b<=hist->GetNbinsX(); b++) hSumScale2.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b)); delete hist; // Because of the rebinning... hist = hsignal->ProjectionY("proj", pixel+1, pixel+1); hSumClear1.Add(hist); if (pmap.index(pixel).pixel()!=8) hSumClear2.Add(hist); delete hist; hist = htime->ProjectionY("proj", pixel+1, pixel+1); hTime.Add(hist); delete hist; hist = hpulse->ProjectionY("proj", pixel+1, pixel+1); hPulse.Add(hist); delete hist; count_ok++; } //------------------fill histograms----------------------- // Display only pixels used and with valid fits cRate.SetUsed(usePixel); cGain.SetUsed(usePixel); cRelSigma.SetUsed(usePixel); cCrosstalk.SetUsed(usePixel); cBaseline.SetUsed(usePixel); cNoise.SetUsed(usePixel); cChi2.SetUsed(usePixel); cNormGain.SetUsed(usePixel); cFitProb.SetUsed(usePixel); cCrosstalkP.SetUsed(usePixel); cCoeffR.SetUsed(usePixel); // -------------------------------------------------------- // Display data TCanvas *canv = &d->AddTab("Cams1"); canv->Divide(3,2); canv->cd(1); cRate.DrawCopy(); canv->cd(2); cGain.DrawCopy(); canv->cd(3); cBaseline.DrawCopy(); canv->cd(4); cRelSigma.DrawCopy(); canv->cd(5); cCrosstalk.DrawCopy(); canv->cd(6); cNoise.DrawCopy(); canv = &d->AddTab("Cams2"); canv->Divide(3,2); canv->cd(1); cFitProb.DrawCopy(); canv->cd(2); cChi2.DrawCopy(); canv->cd(4); cCoeffR.DrawCopy(); canv->cd(5); cCrosstalkP.DrawCopy(); // -------------------------------------------------------- gStyle->SetOptFit(1); canv = &d->AddTab("Hists1"); canv->Divide(3,2); TH1 *hh = 0; canv->cd(1); hh = hRate1.DrawCopy(); hh = hRate2.DrawCopy("same"); canv->cd(2); hh = hGain1.DrawCopy(); hh = hGain2.DrawCopy("same"); hh->Fit("gaus", "M"); canv->cd(3); hh = hBaseline1.DrawCopy(); hh = hBaseline2.DrawCopy("same"); hh->Fit("gaus", "M"); canv->cd(4); hh = hRelSigma1.DrawCopy(); hh = hRelSigma2.DrawCopy("same"); hh->Fit("gaus", "M"); canv->cd(5); hh = hCrosstalk1.DrawCopy(); hh = hCrosstalk2.DrawCopy("same"); hh->Fit("gaus", "M"); canv->cd(6); hh = hNoise1.DrawCopy(); hh = hNoise2.DrawCopy("same"); hh->Fit("gaus", "M"); // -------------------------------------------------------- canv = &d->AddTab("Hists2"); canv->Divide(3,2); canv->cd(1); gPad->SetLogy(); hh = hFitProb1.DrawCopy(); hh = hFitProb2.DrawCopy("same"); hh->Fit("gaus", "M"); canv->cd(2); hChiSq1.DrawCopy(); hChiSq2.DrawCopy("same"); canv->cd(4); hh = hCoeffR1.DrawCopy(); hh = hCoeffR2.DrawCopy("same"); hh->Fit("gaus", "M"); canv->cd(5); hh = hCrosstalkP1.DrawCopy(); hh = hCrosstalkP2.DrawCopy("same"); hh->Fit("gaus", "M"); // -------------------------------------------------------- canv = &d->AddTab("NormGain"); canv->Divide(2,1); canv->cd(1); cNormGain.SetMinimum(0.8); cNormGain.SetMaximum(1.2); cNormGain.DrawCopy(); canv->cd(2); gPad->SetLogy(); hh = hNormGain1.DrawCopy(); hh = hNormGain2.DrawCopy("same"); hh->Fit("gaus", "M"); //------------------ Draw gain corrected sum specetrum ------------------- gROOT->SetSelectedPad(0); c11.cd(); hSumClear1.DrawCopy("hist same"); //-------------------- fit gain corrected sum spectrum ------------------- gROOT->SetSelectedPad(0); TCanvas &c11b = d->AddTab("CleanHist1"); c11b.cd(); gPad->SetLogy(); gPad->SetGridx(); gPad->SetGridy(); const Int_t maxbin1 = hSumClear1.GetMaximumBin(); const Double_t ampl1 = hSumClear1.GetBinContent(maxbin1); func.SetParameters(res_par); func.SetParLimits(0, 0, 2*ampl1); func.SetParameter(0, ampl1); func.ReleaseParameter(6); func.SetRange(155, 3000); hSumClear1.Fit(&func, fast?"LN0QSR":"LIN0QSR"); hSumClear1.DrawCopy(); func.DrawCopy("same"); cout << "--------------------" << endl; PrintFunc(func, integration_window); cout << "--------------------" << endl; //-------------------- fit gain corrected sum spectrum ------------------- gROOT->SetSelectedPad(0); TCanvas &c11c = d->AddTab("CleanHist2"); c11c.cd(); gPad->SetLogy(); gPad->SetGridx(); gPad->SetGridy(); const Int_t maxbin1b = hSumClear2.GetMaximumBin(); const Double_t ampl1b = hSumClear2.GetBinContent(maxbin1b); func.SetParameters(res_par); func.SetParLimits(0, 0, 2*ampl1b); func.SetParameter(0, ampl1b); func.ReleaseParameter(6); hSumClear2.Fit(&func, fast?"LN0QSR":"LIN0QSR"); hSumClear2.DrawCopy(); func.DrawCopy("same"); cout << "--------------------" << endl; PrintFunc(func, integration_window); cout << "--------------------" << endl; //-------------------- fit gain corrected sum spectrum ------------------- gROOT->SetSelectedPad(0); TCanvas &c12 = d->AddTab("GainHist1"); c12.cd(); gPad->SetLogy(); gPad->SetGridx(); gPad->SetGridy(); const Int_t maxbin2 = hSumScale1.GetMaximumBin(); const Double_t ampl2 = hSumScale1.GetBinContent(maxbin2); //Set fit parameters Double_t par2[7] = { ampl2, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6] }; func.SetParameters(par2); func.SetParLimits(0, 0, 2*ampl2); func.FixParameter(1, 1); func.FixParameter(4, 0); func.SetRange(0.8, 12); hSumScale1.Fit(&func, fast?"LN0QSR":"LIN0QSR"); hSumScale1.DrawCopy(); func.DrawCopy("same"); cout << "--------------------" << endl; PrintFunc(func, integration_window); cout << "--------------------" << endl; //-------------------- fit gain corrected sum spectrum ------------------- gROOT->SetSelectedPad(0); TCanvas &c12b = d->AddTab("GainHist2"); c12b.cd(); gPad->SetLogy(); gPad->SetGridx(); gPad->SetGridy(); const Int_t maxbin2b = hSumScale2.GetMaximumBin(); const Double_t ampl2b = hSumScale2.GetBinContent(maxbin2b); //Set fit parameters Double_t par2b[7] = { ampl2b, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6] }; func.SetParameters(par2b); func.SetParLimits(0, 0, 2*ampl2b); func.FixParameter(1, 1); func.FixParameter(4, 0); func.SetRange(0.8, 12); hSumScale2.Fit(&func, fast?"LN0QSR":"LIN0QSR"); hSumScale2.DrawCopy(); func.DrawCopy("same"); cout << "--------------------" << endl; PrintFunc(func, integration_window); cout << "--------------------" << endl; //--------fit gausses to peaks of gain corrected sum specetrum ----------- d->AddTab("ArrTime"); gPad->SetGrid(); hTime.DrawCopy(); // ----------------------------------------------------------------- d->AddTab("Pulse"); gPad->SetGrid(); hPulse.DrawCopy(); // ================================================================ cout << "Saving results to '" << outfile << "'" << endl; d->SaveAs(outfile); cout << "..success!" << endl; TFile f(outfile, "UPDATE"); par.Write(); ext.Write("ExtractionRange"); header.Write(); return 0; }