1 | #include <iomanip>
|
---|
2 | #include <iostream>
|
---|
3 |
|
---|
4 | #include <TF1.h>
|
---|
5 | #include <TH2.h>
|
---|
6 | #include <TProfile2D.h>
|
---|
7 | #include <TFile.h>
|
---|
8 | #include <TFitResult.h>
|
---|
9 | #include <TStyle.h>
|
---|
10 |
|
---|
11 | #include "MLog.h"
|
---|
12 | #include "MLogManip.h"
|
---|
13 | #include "MStatusArray.h"
|
---|
14 | #include "MStatusDisplay.h"
|
---|
15 | #include "MHCamera.h"
|
---|
16 | #include "MGeomCamFAMOUS.h"
|
---|
17 | #include "MParameters.h"
|
---|
18 | #include "MArrayI.h"
|
---|
19 | #include "MRawRunHeader.h"
|
---|
20 | #include "PixelMap.h"
|
---|
21 |
|
---|
22 | using namespace std;
|
---|
23 |
|
---|
24 | // --------------------------------------------------------------------------
|
---|
25 | // after fit_spectrum_bt2b.C
|
---|
26 |
|
---|
27 | // Fit function for a single pe spectrum
|
---|
28 | Double_t fcn_g(Double_t *xx, Double_t *par)
|
---|
29 | {
|
---|
30 | const Double_t ampl = par[0];
|
---|
31 | const Double_t gain = par[1];
|
---|
32 | const Double_t sigma = par[2]*gain;
|
---|
33 | const Double_t cross = par[3];
|
---|
34 | const Double_t shift = par[4];
|
---|
35 | const Double_t noise = par[5]<0 ? sigma : par[5];
|
---|
36 | const Double_t expo = par[6];
|
---|
37 |
|
---|
38 | const Double_t P = cross*TMath::Exp(-cross);
|
---|
39 |
|
---|
40 | Double_t y = 0;
|
---|
41 | for (int N=1; N<14; N++)
|
---|
42 | {
|
---|
43 | const Double_t muN = N*gain + shift;
|
---|
44 | const Double_t sigN = TMath::Sqrt(N*sigma*sigma + noise*noise);
|
---|
45 |
|
---|
46 | const Double_t p = TMath::Power(N*P, N-1)/TMath::Power(TMath::Factorial(N-1), expo);
|
---|
47 |
|
---|
48 | y += TMath::Gaus(xx[0], muN, sigN) * p / sigN;
|
---|
49 | }
|
---|
50 |
|
---|
51 | const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise);
|
---|
52 | return ampl*sig1*y;
|
---|
53 | }
|
---|
54 |
|
---|
55 | // Calculate the crosstalk from the function parameters
|
---|
56 | Double_t xtalk(TF1 &f)
|
---|
57 | {
|
---|
58 | Double_t cross = f.GetParameter(3);
|
---|
59 | Double_t expo = f.GetParameter(6);
|
---|
60 |
|
---|
61 | const Double_t P = cross*TMath::Exp(-cross);
|
---|
62 |
|
---|
63 | Double_t y = 0;
|
---|
64 | for (int N=2; N<14; N++)
|
---|
65 | y += TMath::Power(N*P, N-1)/TMath::Power(TMath::Factorial(N-1), expo);
|
---|
66 |
|
---|
67 | return y / (y + 1);
|
---|
68 | }
|
---|
69 |
|
---|
70 | // calculate the integral in units per millisecond
|
---|
71 | double integral(TF1 &func, TH1 &hist)
|
---|
72 | {
|
---|
73 | const Double_t sigma = func.GetParameter(2)*func.GetParameter(1);
|
---|
74 | const Double_t cross = func.GetParameter(3);
|
---|
75 | const Double_t noise = func.GetParameter(5)<0 ? sigma : func.GetParameter(5);
|
---|
76 | const Double_t expo = func.GetParameter(6);
|
---|
77 |
|
---|
78 | const Double_t P = cross*TMath::Exp(-cross);
|
---|
79 |
|
---|
80 | Double_t sum = 0;
|
---|
81 | for (int N=1; N<14; N++)
|
---|
82 | sum += TMath::Power(N*P, N-1)/TMath::Power(TMath::Factorial(N-1), expo);
|
---|
83 |
|
---|
84 | const Double_t scale = hist.GetBinWidth(1);
|
---|
85 | const Double_t sig1 = TMath::Sqrt(sigma*sigma + noise*noise);
|
---|
86 | const Double_t integ = func.GetParameter(0)*sum*sig1*sqrt(TMath::TwoPi())/scale;
|
---|
87 |
|
---|
88 | return integ/1e-9/1e6;
|
---|
89 | }
|
---|
90 |
|
---|
91 |
|
---|
92 | // --------------------------------------------------------------------------
|
---|
93 |
|
---|
94 | // Print function parameters
|
---|
95 | void PrintFunc(TF1 &f, float integration_window=40)
|
---|
96 | {
|
---|
97 | //cout << "--------------------" << endl;
|
---|
98 | cout << "Ampl: " << setw(8) << f.GetParameter(0) << " +/- " << f.GetParError(0) << endl;
|
---|
99 | cout << "Gain: " << setw(8) << f.GetParameter(1) << " +/- " << f.GetParError(1) << endl;
|
---|
100 | cout << "Rel.sigma: " << setw(8) << f.GetParameter(2) << " +/- " << f.GetParError(2) << endl;
|
---|
101 | cout << "Baseline: " << setw(8) << f.GetParameter(4)/integration_window << " +/- " << f.GetParError(4)/integration_window << endl;
|
---|
102 | cout << "Crosstalk: " << setw(8) << f.GetParameter(3) << " +/- " << f.GetParError(3) << endl;
|
---|
103 | cout << "Pcrosstalk: " << setw(8) << xtalk(f) << endl;
|
---|
104 | if (f.GetParameter(5)>=0)
|
---|
105 | cout << "Noise: " << setw(8) << f.GetParameter(5)/sqrt(integration_window) << " +/- " << f.GetParError(5)/sqrt(integration_window) << endl;
|
---|
106 | cout << "Expo: " << setw(8) << f.GetParameter(6) << " +/- " << f.GetParError(6) << endl;
|
---|
107 | //cout << "--------------------" << endl;
|
---|
108 |
|
---|
109 | }
|
---|
110 |
|
---|
111 | // --------------------------------------------------------------------------
|
---|
112 |
|
---|
113 | // The parameters for the function are the filenam from the gain extraction
|
---|
114 | // and the output filename
|
---|
115 | int fit_singles(const char *filename = "/home/giangdo/Documents/Master/MA/pulse/data_single_pe/extracted/20191027_006_006.root",
|
---|
116 | const char *outfile = "/home/giangdo/Documents/Master/MA/pulse/data_single_pe/extracted/20191027_006_006_fit.root",
|
---|
117 | bool fixednoise=false)
|
---|
118 | {
|
---|
119 | // Read the mapping between bias channels and hardware channels
|
---|
120 | PixelMap pmap;
|
---|
121 | if (!pmap.Read("/home/giangdo/Documents/Master/MA/Software/Mars/hawc/HAWCsEyemap181214.txt"))
|
---|
122 | {
|
---|
123 | cout << "HAWCsEyemap181214.txt not found." << endl;
|
---|
124 | return 1;
|
---|
125 | }
|
---|
126 |
|
---|
127 | // It is more correct to fit the integral, but this is super
|
---|
128 | // slow. To get that, one would have
|
---|
129 | // to analytically integrate and fit this function.
|
---|
130 | bool fast = false; // Switch off using integral
|
---|
131 |
|
---|
132 | // Values which should be read from the file but not available atm
|
---|
133 | Int_t integration_window = 40;
|
---|
134 |
|
---|
135 | // Map for which pixel shall be plotted and which not
|
---|
136 | TArrayC usePixel(64);
|
---|
137 | memset(usePixel.GetArray(), 1, 64);
|
---|
138 |
|
---|
139 | cout << setprecision(3);
|
---|
140 |
|
---|
141 | // ======================================================
|
---|
142 | // Read data and histograms from file
|
---|
143 |
|
---|
144 | TFile file(filename);
|
---|
145 | if (file.IsZombie())
|
---|
146 | {
|
---|
147 | gLog << err << "Opening file '" << filename << "' failed." << endl;
|
---|
148 | return 1;
|
---|
149 | }
|
---|
150 |
|
---|
151 | MStatusArray arr;
|
---|
152 | if (arr.Read()<=0)
|
---|
153 | {
|
---|
154 | gLog << err << "Reading of MStatusArray from '" << filename << "' failed." << endl;
|
---|
155 | return 2;
|
---|
156 | }
|
---|
157 |
|
---|
158 | TH2 *hsignal = (TH2*)arr.FindObjectInCanvas("Signal", "TH2F", "MHSingles");
|
---|
159 | if (!hsignal)
|
---|
160 | {
|
---|
161 | gLog << err << "Histogram Signal not found in '" << filename << "'." << endl;
|
---|
162 | return 3;
|
---|
163 | }
|
---|
164 | TH2 *htime = (TH2*)arr.FindObjectInCanvas("Time", "TH2F", "MHSingles");
|
---|
165 | if (!htime)
|
---|
166 | {
|
---|
167 | gLog << err << "Histogram Time not found in '" << filename << "'." << endl;
|
---|
168 | return 4;
|
---|
169 | }
|
---|
170 | TProfile2D *hpulse = (TProfile2D*)arr.FindObjectInCanvas("Pulse", "TProfile2D", "MHSingles");
|
---|
171 | if (!hpulse)
|
---|
172 | {
|
---|
173 | gLog << err << "Histogram Pulse not found in '" << filename << "'." << endl;
|
---|
174 | return 5;
|
---|
175 | }
|
---|
176 | TH2F *hbase = (TH2F*)arr.FindObjectInCanvas("Baseline", "TH2F", "MHBaseline");
|
---|
177 | if (!hbase)
|
---|
178 | {
|
---|
179 | gLog << err << "Histogram Baseline not found in '" << filename << "'." << endl;
|
---|
180 | return 6;
|
---|
181 | }
|
---|
182 |
|
---|
183 | MRawRunHeader header;
|
---|
184 | if (header.Read()<=0)
|
---|
185 | {
|
---|
186 | gLog << err << "MRawRunheader not found in '" << filename << "'." << endl;
|
---|
187 | return 7;
|
---|
188 | }
|
---|
189 |
|
---|
190 | MParameterI par("NumEvents");
|
---|
191 | if (par.Read()<=0)
|
---|
192 | {
|
---|
193 | gLog << err << "NumEvents not found in '" << filename << "'." << endl;
|
---|
194 | return 8;
|
---|
195 | }
|
---|
196 |
|
---|
197 | MArrayI ext;
|
---|
198 | if (ext.Read("ExtractionRange")<=0)
|
---|
199 | {
|
---|
200 | gLog << err << "ExtractionRange not found in '" << filename << "'." << endl;
|
---|
201 | return 9;
|
---|
202 |
|
---|
203 | }
|
---|
204 |
|
---|
205 | // ======================================================
|
---|
206 |
|
---|
207 | MStatusDisplay *d = new MStatusDisplay;
|
---|
208 |
|
---|
209 | // Camera geometry for displays
|
---|
210 | MGeomCamFAMOUS fact;
|
---|
211 |
|
---|
212 | // ------------------ Spectrum Fit ---------------
|
---|
213 | // Instantiate the display histograms
|
---|
214 | MHCamera cRate(fact);
|
---|
215 | MHCamera cGain(fact);
|
---|
216 | MHCamera cRelSigma(fact);
|
---|
217 | MHCamera cCrosstalk(fact);
|
---|
218 | MHCamera cBaseline(fact);
|
---|
219 | MHCamera cNoise(fact);
|
---|
220 | MHCamera cChi2(fact);
|
---|
221 | MHCamera cNormGain(fact);
|
---|
222 | MHCamera cFitProb(fact);
|
---|
223 | MHCamera cCrosstalkP(fact);
|
---|
224 | MHCamera cCoeffR(fact);
|
---|
225 |
|
---|
226 | // Set name and title for the histograms
|
---|
227 | cRate.SetNameTitle ("Rate", "Dark count rate");
|
---|
228 | cGain.SetNameTitle ("Gain", "Gain distribution");
|
---|
229 | cRelSigma.SetNameTitle ("RelSigma", "Rel. Sigma");
|
---|
230 | cCrosstalk.SetNameTitle ("Crosstalk", "Crosstalk probability");
|
---|
231 | cBaseline.SetNameTitle ("Baseline", "Baseline per sample");
|
---|
232 | cNoise.SetNameTitle ("Noise", "Noise per sample");
|
---|
233 | cChi2.SetNameTitle ("Chi2", "\\Chi^2");
|
---|
234 | cNormGain.SetNameTitle ("NormGain", "Normalized gain");
|
---|
235 | cFitProb.SetNameTitle ("FitProb", "Root's fit probability");
|
---|
236 | cCrosstalkP.SetNameTitle("Pxtalk", "Crosstalk coeff. P");
|
---|
237 | cCoeffR.SetNameTitle ("CoeffR", "Coefficient R");
|
---|
238 |
|
---|
239 | // Instantiate 1D histograms for the distributions
|
---|
240 | // including TM channels
|
---|
241 | TH1F hRate1 ("Rate1", "Dark count rate", 150, 0, 15);
|
---|
242 | TH1F hGain1 ("Gain1", "Gain distribution", 100, 0, 400);
|
---|
243 | TH1F hRelSigma1 ("RelSigma1", "Rel. Sigma", 160, 0, 0.40);
|
---|
244 | TH1F hCrosstalk1 ("Crosstalk1", "Crosstalk probability", 100, 0, 0.50);
|
---|
245 | TH1F hBaseline1 ("Baseline1", "Baseline per sample", 75, -7.5, 7.5);
|
---|
246 | TH1F hNoise1 ("Noise1", "Noise per sample", 60, 0, 30);
|
---|
247 | TH1F hChiSq1 ("ChiSq1", "\\Chi^2", 200, 0, 4);
|
---|
248 | TH1F hNormGain1 ("NormGain1", "Normalized gain", 51, 0.5, 1.5);
|
---|
249 | TH1F hFitProb1 ("FitProb1", "FitProb distribution", 100, 0, 1);
|
---|
250 | TH1F hCrosstalkP1("Pxtalk1", "Crosstalk coeff.", 100, 0, 0.5);
|
---|
251 | TH1F hCoeffR1 ("CoeffR1", "Coefficient R", 90, -1, 2);
|
---|
252 |
|
---|
253 | // excluding TM channels
|
---|
254 | TH1F hRate2 ("Rate2", "Dark count rate", 150, 0, 15);
|
---|
255 | TH1F hGain2 ("Gain2", "Gain distribution", 100, 0, 400);
|
---|
256 | TH1F hRelSigma2 ("RelSigma2", "Rel. Sigma", 160, 0, 0.40);
|
---|
257 | TH1F hCrosstalk2 ("Crosstalk2", "Crosstalk probability", 100, 0, 0.50);
|
---|
258 | TH1F hBaseline2 ("Baseline2", "Baseline per sample", 75, -7.5, 7.5);
|
---|
259 | TH1F hNoise2 ("Noise2", "Noise per sample", 60, 0, 30);
|
---|
260 | TH1F hChiSq2 ("ChiSq2", "\\Chi^2", 200, 0, 4);
|
---|
261 | TH1F hNormGain2 ("NormGain2", "Normalized gain", 51, 0.5, 1.5);
|
---|
262 | TH1F hFitProb2 ("FitProb2", "FitProb distribution", 100, 0, 1);
|
---|
263 | TH1F hCrosstalkP2("Pxtalk2", "Crosstalk coeff.", 100, 0, 0.5);
|
---|
264 | TH1F hCoeffR2 ("CoeffR2", "Coefficient R", 90, -1, 2);
|
---|
265 |
|
---|
266 | // Histogram for the sum of all spectrums
|
---|
267 | TH1F hSum("Sum1", "Signal spectrum of all pixels (excl. blind pixels)",
|
---|
268 | hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
|
---|
269 | hSum.SetXTitle("pulse integral [mV sample]");
|
---|
270 | hSum.SetYTitle("Counts");
|
---|
271 | hSum.SetStats(false);
|
---|
272 | hSum.Sumw2();
|
---|
273 |
|
---|
274 | // Histogram for the sum of all pixels excluding the ones with faulty fits
|
---|
275 | TH1F hSumClear1("SumC1", "Signal spectrum of all pixels (excl. faulty and blind pixels)",
|
---|
276 | hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
|
---|
277 | hSumClear1.SetXTitle("pulse integral [mV sample]");
|
---|
278 | hSumClear1.SetYTitle("Counts");
|
---|
279 | hSumClear1.SetStats(false);
|
---|
280 | hSumClear1.SetLineColor(kBlue);
|
---|
281 | hSumClear1.Sumw2();
|
---|
282 |
|
---|
283 | TH1F hSumClear2("SumC2", "Signal spectrum of all pixels (excp TM)",
|
---|
284 | hsignal->GetNbinsY(), hsignal->GetYaxis()->GetXmin(), hsignal->GetYaxis()->GetXmax());
|
---|
285 | hSumClear2.SetXTitle("pulse integral [mV sample]");
|
---|
286 | hSumClear2.SetYTitle("Counts");
|
---|
287 | hSumClear2.SetStats(false);
|
---|
288 | hSumClear2.SetLineColor(kBlue);
|
---|
289 | hSumClear2.Sumw2();
|
---|
290 |
|
---|
291 | // Arrival time spectrum of the extracted pulses
|
---|
292 | TH1F hTime("Time", "Arrival time spectrum", htime->GetNbinsY(), htime->GetYaxis()->GetXmin(), htime->GetYaxis()->GetXmax());
|
---|
293 | hTime.SetXTitle("pulse arrival time [sample]");
|
---|
294 | hTime.SetYTitle("Counts");
|
---|
295 | hTime.SetStats(false);
|
---|
296 |
|
---|
297 | // average pulse shape of the extracted pulses
|
---|
298 | TH1F hPulse("Puls", "Average pulse", hpulse->GetNbinsY(), hpulse->GetYaxis()->GetXmin(), hpulse->GetYaxis()->GetXmax());
|
---|
299 | hPulse.SetXTitle("pulse arrival time [sample]");
|
---|
300 | hPulse.SetYTitle("Counts");
|
---|
301 | hPulse.SetStats(false);
|
---|
302 |
|
---|
303 | // Spectrum for the normalized individual spectra
|
---|
304 | TH1F hSumScale1("SumScale1", "Signal spectrum of all pixels (excl. blind pixels)", 120, 0.05, 12.05);
|
---|
305 | hSumScale1.SetXTitle("pulse integral [pe]");
|
---|
306 | hSumScale1.SetYTitle("Rate");
|
---|
307 | hSumScale1.SetStats(false);
|
---|
308 | hSumScale1.Sumw2();
|
---|
309 |
|
---|
310 | TH1F hSumScale2("SumScale2", "Signal spectrum of all pixels (excl TM)", 120, 0.05, 12.05);
|
---|
311 | hSumScale2.SetXTitle("pulse integral [pe]");
|
---|
312 | hSumScale2.SetYTitle("Rate");
|
---|
313 | hSumScale2.SetStats(false);
|
---|
314 | hSumScale2.Sumw2();
|
---|
315 |
|
---|
316 | // define fit function for Amplitudespectrum
|
---|
317 | TF1 func("spektrum", fcn_g, 0, hSum.GetXaxis()->GetXmax(), 7);
|
---|
318 | func.SetNpx(2000);
|
---|
319 | func.SetParNames("Maximum", "Gain", "Sigma", "XtalkProb", "Offset", "Noise", "Expo");
|
---|
320 | func.SetLineColor(kRed);
|
---|
321 |
|
---|
322 | //--------------------- fill sum spectrum --------------------------------
|
---|
323 |
|
---|
324 | d->SetStatusLine1("Calculating sum spectrum");
|
---|
325 |
|
---|
326 | // Begin of Loop over Pixels
|
---|
327 | for (Int_t pixel = 0; pixel < hsignal->GetNbinsX(); pixel++)
|
---|
328 | {
|
---|
329 | //jump to next pixel if the current is marked as faulty
|
---|
330 | if (usePixel[pixel]==0)
|
---|
331 | continue;
|
---|
332 |
|
---|
333 | //exclude the pixels without cones
|
---|
334 | if (pixel == 61)
|
---|
335 | continue;
|
---|
336 | if (pixel == 62)
|
---|
337 | continue;
|
---|
338 | if (pixel == 63)
|
---|
339 | continue;
|
---|
340 |
|
---|
341 |
|
---|
342 |
|
---|
343 |
|
---|
344 | TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
|
---|
345 | hSum.Add(hist);
|
---|
346 | delete hist;
|
---|
347 | }
|
---|
348 |
|
---|
349 | //----------------- get starting values -------------------------------
|
---|
350 |
|
---|
351 | hSum.GetXaxis()->SetRangeUser(150, hSum.GetXaxis()->GetXmax());
|
---|
352 |
|
---|
353 | const Int_t maxbin = hSum.GetMaximumBin();
|
---|
354 | const Double_t maxpos = hSum.GetBinCenter(maxbin);
|
---|
355 | const Double_t binwidth = hSum.GetBinWidth(maxbin);
|
---|
356 | const Double_t ampl = hSum.GetBinContent(maxbin);
|
---|
357 |
|
---|
358 | double fwhmSum = 0;
|
---|
359 |
|
---|
360 | //Calculate full width half Maximum
|
---|
361 | for (int i=1; i<maxbin; i++)
|
---|
362 | if (hSum.GetBinContent(maxbin-i)+hSum.GetBinContent(maxbin+i)<ampl)
|
---|
363 | {
|
---|
364 | fwhmSum = 2*(i-0.5)*binwidth;
|
---|
365 | break;
|
---|
366 | }
|
---|
367 |
|
---|
368 | if (fwhmSum==0)
|
---|
369 | {
|
---|
370 | gLog << warn << "Could not determine start value for sigma." << endl;
|
---|
371 | }
|
---|
372 |
|
---|
373 | Double_t sigma_est = fwhmSum/2.3548; // FWHM = 2*sqrt(2*ln(2))*sigma
|
---|
374 |
|
---|
375 | Double_t fitmin = maxpos-sigma_est; // was 3*sigma_est
|
---|
376 | Double_t fitmax = hSum.GetXaxis()->GetXmax();
|
---|
377 |
|
---|
378 | // ------------------- fit --------------------------------
|
---|
379 |
|
---|
380 | //Fit and draw spectrum
|
---|
381 | func.SetParLimits(0, 0, 2*ampl); // Amplitude
|
---|
382 | func.SetParLimits(1, 0, 2*maxpos); // Gain
|
---|
383 | func.SetParLimits(2, 0, 1); // Sigma
|
---|
384 | func.SetParLimits(3, 0, 1); // Crosstalk
|
---|
385 | if (!fixednoise)
|
---|
386 | func.SetParLimits(5, 0, 150); // Noise
|
---|
387 | func.SetParLimits(6, 0, 2); // Expo
|
---|
388 |
|
---|
389 | func.SetParameter(0, ampl); // Amplitude
|
---|
390 | func.SetParameter(1, maxpos); // Gain
|
---|
391 | func.SetParameter(2, 0.10); // Sigma
|
---|
392 | func.SetParameter(3, 0.25); // Crosstalk
|
---|
393 | func.SetParameter(4, 0*integration_window); // Baseline
|
---|
394 | if (fixednoise)
|
---|
395 | func.FixParameter(5, -1); // Noise
|
---|
396 | else
|
---|
397 | func.SetParameter(5, 0.1*maxpos); // Noise
|
---|
398 |
|
---|
399 | func.SetParameter(6, 0.95); // Expo
|
---|
400 |
|
---|
401 | func.SetRange(fitmin, fitmax);
|
---|
402 | hSum.Fit(&func, fast?"N0QSR":"IN0QSR");
|
---|
403 |
|
---|
404 | Double_t res_par[7];
|
---|
405 | func.GetParameters(res_par);
|
---|
406 |
|
---|
407 | //func.FixParameter(6, func.GetParameter(6)); // Expo
|
---|
408 |
|
---|
409 | // ------------------ display result -------------------------------
|
---|
410 |
|
---|
411 | cout << "--------------------" << endl;
|
---|
412 | cout << "AmplEst: " << ampl << endl;
|
---|
413 | cout << "GainEst: " << maxpos << endl;
|
---|
414 | cout << "SigmaEst: " << sigma_est << endl;
|
---|
415 | PrintFunc(func, integration_window);
|
---|
416 | cout << "--------------------" << endl;
|
---|
417 |
|
---|
418 | gROOT->SetSelectedPad(0);
|
---|
419 | TCanvas &c11 = d->AddTab("SumHist");
|
---|
420 | c11.cd();
|
---|
421 | gPad->SetLogy();
|
---|
422 | gPad->SetGridx();
|
---|
423 | gPad->SetGridy();
|
---|
424 | hSum.GetXaxis()->SetRange();
|
---|
425 | hSum.DrawCopy("hist");
|
---|
426 | func.DrawCopy("same");
|
---|
427 |
|
---|
428 | // ===================================================================
|
---|
429 | // Gain Calculation for each Pixel
|
---|
430 | // ===================================================================
|
---|
431 |
|
---|
432 | // counter for number of processed pixel
|
---|
433 | int count_ok = 0;
|
---|
434 |
|
---|
435 | // Begin of Loop over Pixels
|
---|
436 | for (Int_t pixel=0; pixel<hsignal->GetNbinsX(); pixel++)
|
---|
437 | {
|
---|
438 | // User information
|
---|
439 | d->SetStatusLine1(Form("Fitting pixel #%d", pixel));
|
---|
440 | d->SetProgressBarPosition((pixel+1.)/hsignal->GetNbinsX(), 1);
|
---|
441 |
|
---|
442 | // Skip pixels known to be faulty
|
---|
443 | if (usePixel[pixel]==0)
|
---|
444 | continue;
|
---|
445 |
|
---|
446 | // Exclude pixels without cones
|
---|
447 | if (pixel == 61)
|
---|
448 | continue;
|
---|
449 | if (pixel == 62)
|
---|
450 | continue;
|
---|
451 | if (pixel == 63)
|
---|
452 | continue;
|
---|
453 |
|
---|
454 | //Projectipon of a certain Pixel out of Ampl.Spectrum
|
---|
455 | TH1D *hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
|
---|
456 | hist->SetDirectory(0);
|
---|
457 |
|
---|
458 | if (hist->GetEntries()<100)
|
---|
459 | {
|
---|
460 | gLog << warn << pixel << " ...histogram empty." << endl;
|
---|
461 | usePixel[pixel] = 0;
|
---|
462 | delete hist;
|
---|
463 | continue;
|
---|
464 | }
|
---|
465 |
|
---|
466 | //Rebin Projection
|
---|
467 | hist->Rebin(2);
|
---|
468 |
|
---|
469 | // Fit range
|
---|
470 | hist->GetXaxis()->SetRangeUser(150, hist->GetXaxis()->GetXmax());
|
---|
471 |
|
---|
472 | // Determine start values
|
---|
473 | const Int_t maxBin = hist->GetMaximumBin();
|
---|
474 | const Double_t maxPos = hist->GetBinCenter(maxBin);
|
---|
475 |
|
---|
476 | const Double_t gain = res_par[1];
|
---|
477 | const Double_t GainRMS = res_par[2];
|
---|
478 |
|
---|
479 | const double fit_min = maxPos-GainRMS*gain*2.5;
|
---|
480 | const double fit_max = fitmax;//maxPos+gain*(maxOrder-0.5);
|
---|
481 |
|
---|
482 | TArrayD cpy_par(7, res_par);
|
---|
483 |
|
---|
484 | cpy_par[0] = hist->GetBinContent(maxBin);
|
---|
485 | cpy_par[1] = maxPos-res_par[4]; // correct position for avg baseline
|
---|
486 |
|
---|
487 | func.SetParameters(cpy_par.GetArray());
|
---|
488 | func.SetParLimits(0, 0, 2*cpy_par[0]);
|
---|
489 | func.SetParLimits(1, 0, 2*cpy_par[1]);
|
---|
490 |
|
---|
491 | // For individual spectra, the average fit yields 1 anyway
|
---|
492 | //func.SetParameter(6, 0); // Expo
|
---|
493 |
|
---|
494 | // ----------- Fit Pixels spectrum ---------------
|
---|
495 |
|
---|
496 | const TFitResultPtr rc = hist->Fit(&func, /*fast?*/"LLN0QS"/*:"LLIN0QS"*/, "", fit_min, fit_max);
|
---|
497 |
|
---|
498 | // ----------- Calculate quality parameter ---------------
|
---|
499 |
|
---|
500 | Int_t b1 = hist->GetXaxis()->FindFixBin(fit_min);
|
---|
501 | Int_t b2 = hist->GetXaxis()->FindFixBin(fit_max);
|
---|
502 |
|
---|
503 | Double_t chi2 = 0;
|
---|
504 | Int_t cnt = 0;
|
---|
505 | for (int i=b1; i<=b2; i++)
|
---|
506 | {
|
---|
507 | if (hist->GetBinContent(i)<1.5 || func.Eval(hist->GetBinCenter(i))<1.5)
|
---|
508 | continue;
|
---|
509 |
|
---|
510 | const Double_t y = func.Integral(hist->GetBinLowEdge(i), hist->GetBinLowEdge(i+1));
|
---|
511 | const Double_t v = hist->GetBinContent(i)*hist->GetBinWidth(i);
|
---|
512 |
|
---|
513 | const Double_t chi = (v-y)/v;
|
---|
514 |
|
---|
515 | chi2 += chi*chi;
|
---|
516 | cnt ++;
|
---|
517 | }
|
---|
518 |
|
---|
519 | chi2 = cnt==0 ? 0 : sqrt(chi2/cnt);
|
---|
520 |
|
---|
521 | // ----------------- Fit result --------------------
|
---|
522 |
|
---|
523 | const double fit_prob = rc->Prob();
|
---|
524 |
|
---|
525 | const float fRate = integral(func, *hist)/(ext[pixel]*0.5);
|
---|
526 | const float fGain = func.GetParameter(1);
|
---|
527 | const float fGainRMS = func.GetParameter(2);
|
---|
528 | const float fCrosstalkP= func.GetParameter(3);
|
---|
529 | const float fCrosstlk = xtalk(func);
|
---|
530 | const float fOffset = func.GetParameter(4);
|
---|
531 | const float fNoise = func.GetParameter(5)<0 ? fGainRMS*fGain/sqrt(integration_window) : func.GetParameter(5)/sqrt(integration_window);
|
---|
532 | const float fCoeffR = func.GetParameter(6);
|
---|
533 |
|
---|
534 | // Fill histograms with result values
|
---|
535 | cRate.SetBinContent( pixel+1, fRate);
|
---|
536 | cGain.SetBinContent( pixel+1, fGain);
|
---|
537 | cRelSigma.SetBinContent( pixel+1, fGainRMS);
|
---|
538 | cCrosstalk.SetBinContent( pixel+1, fCrosstlk);
|
---|
539 | cBaseline.SetBinContent( pixel+1, fOffset/integration_window);
|
---|
540 | cNoise.SetBinContent( pixel+1, fNoise);
|
---|
541 | cChi2.SetBinContent( pixel+1, chi2);
|
---|
542 | cNormGain.SetBinContent( pixel+1, fGain/gain);
|
---|
543 | cFitProb.SetBinContent( pixel+1, fit_prob);
|
---|
544 | cCrosstalkP.SetBinContent(pixel+1, fCrosstalkP);
|
---|
545 | cCoeffR.SetBinContent( pixel+1, fCoeffR);
|
---|
546 |
|
---|
547 | // ======================================================
|
---|
548 |
|
---|
549 | // Try to determine faulty fits
|
---|
550 |
|
---|
551 | bool ok = int(rc)==0;
|
---|
552 |
|
---|
553 | // mark pixels suspicious with failed fit
|
---|
554 | if (!ok)
|
---|
555 | gLog << warn << pixel << " ...fit failed!" << endl;
|
---|
556 |
|
---|
557 | // mark pixels suspicious with negative GainRMS
|
---|
558 | if (fabs(fGain/gain-1)>0.3)
|
---|
559 | {
|
---|
560 | gLog << warn << pixel << " ...gain deviates more than 30% from sum-gain." << endl;
|
---|
561 | ok = 0;
|
---|
562 | }
|
---|
563 |
|
---|
564 | if (fabs(fOffset/integration_window)>3)
|
---|
565 | {
|
---|
566 | gLog << warn << pixel << " ...baseline deviates." << endl;
|
---|
567 | ok = 0;
|
---|
568 | }
|
---|
569 |
|
---|
570 | // cancel out pixel where the fit was not succsessfull
|
---|
571 | usePixel[pixel] = ok;
|
---|
572 |
|
---|
573 | // Plot pixel 0 and 5 (TM) and all faulty fits
|
---|
574 | if (pixel==0 || pixel==5 || !ok)
|
---|
575 | {
|
---|
576 | TCanvas &c = d->AddTab(Form("Pix%d", pixel));
|
---|
577 | c.cd();
|
---|
578 | gPad->SetLogy();
|
---|
579 | gPad->SetGridx();
|
---|
580 | gPad->SetGridy();
|
---|
581 |
|
---|
582 | hist->SetStats(false);
|
---|
583 | hist->SetXTitle("Extracted signal");
|
---|
584 | hist->SetYTitle("Counts");
|
---|
585 | hist->SetName(Form("Pix%d", pixel));
|
---|
586 | hist->GetXaxis()->SetRange();
|
---|
587 | hist->DrawCopy("hist")->SetDirectory(0);
|
---|
588 | func.DrawCopy("SAME")->SetRange(fit_min, fit_max);
|
---|
589 |
|
---|
590 | cout << "--------------------" << endl;
|
---|
591 | cout << "Pixel: " << pixel << endl;
|
---|
592 | cout << "fit prob: " << fit_prob << endl;
|
---|
593 | cout << "AmplEst: " << cpy_par[0] << endl;
|
---|
594 | cout << "GainEst: " << cpy_par[1] << endl;
|
---|
595 | PrintFunc(func, integration_window);
|
---|
596 | cout << "--------------------" << endl;
|
---|
597 | }
|
---|
598 |
|
---|
599 | if (!ok)
|
---|
600 | {
|
---|
601 | delete hist;
|
---|
602 | continue;
|
---|
603 | }
|
---|
604 |
|
---|
605 | // Fill Parameters into histograms
|
---|
606 | hRate1.Fill( fRate);
|
---|
607 | hGain1.Fill( fGain);
|
---|
608 | hRelSigma1.Fill( fGainRMS);
|
---|
609 | hCrosstalk1.Fill( fCrosstlk);
|
---|
610 | hBaseline1.Fill( fOffset/integration_window);
|
---|
611 | hNoise1.Fill( fNoise);
|
---|
612 | hChiSq1.Fill( chi2);
|
---|
613 | hNormGain1.Fill( fGain/gain);
|
---|
614 | hFitProb1.Fill( fit_prob);
|
---|
615 | hCrosstalkP1.Fill(fCrosstalkP);
|
---|
616 | hCoeffR1.Fill( fCoeffR);
|
---|
617 |
|
---|
618 | if (pmap.index(pixel).pixel()!=8)
|
---|
619 | {
|
---|
620 | hRate2.Fill( fRate);
|
---|
621 | hGain2.Fill( fGain);
|
---|
622 | hRelSigma2.Fill( fGainRMS);
|
---|
623 | hCrosstalk2.Fill( fCrosstlk);
|
---|
624 | hBaseline2.Fill( fOffset/integration_window);
|
---|
625 | hNoise2.Fill( fNoise);
|
---|
626 | hChiSq2.Fill( chi2);
|
---|
627 | hNormGain2.Fill( fGain/gain);
|
---|
628 | hFitProb2.Fill( fit_prob);
|
---|
629 | hCrosstalkP2.Fill(fCrosstalkP);
|
---|
630 | hCoeffR2.Fill( fCoeffR);
|
---|
631 | }
|
---|
632 |
|
---|
633 | // Fill sum spectrum
|
---|
634 | for (int b=1; b<=hist->GetNbinsX(); b++)
|
---|
635 | hSumScale1.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b));
|
---|
636 |
|
---|
637 | if (pmap.index(pixel).pixel()!=8)
|
---|
638 | for (int b=1; b<=hist->GetNbinsX(); b++)
|
---|
639 | hSumScale2.Fill((hist->GetBinCenter(b)-fOffset)/fGain, hist->GetBinContent(b));
|
---|
640 |
|
---|
641 | delete hist;
|
---|
642 |
|
---|
643 | // Because of the rebinning...
|
---|
644 | hist = hsignal->ProjectionY("proj", pixel+1, pixel+1);
|
---|
645 | hSumClear1.Add(hist);
|
---|
646 | if (pmap.index(pixel).pixel()!=8)
|
---|
647 | hSumClear2.Add(hist);
|
---|
648 | delete hist;
|
---|
649 |
|
---|
650 | hist = htime->ProjectionY("proj", pixel+1, pixel+1);
|
---|
651 | hTime.Add(hist);
|
---|
652 | delete hist;
|
---|
653 |
|
---|
654 | hist = hpulse->ProjectionY("proj", pixel+1, pixel+1);
|
---|
655 | hPulse.Add(hist);
|
---|
656 | delete hist;
|
---|
657 |
|
---|
658 | count_ok++;
|
---|
659 | }
|
---|
660 |
|
---|
661 | //------------------fill histograms-----------------------
|
---|
662 | // Display only pixels used and with valid fits
|
---|
663 |
|
---|
664 | cRate.SetUsed(usePixel);
|
---|
665 | cGain.SetUsed(usePixel);
|
---|
666 | cRelSigma.SetUsed(usePixel);
|
---|
667 | cCrosstalk.SetUsed(usePixel);
|
---|
668 | cBaseline.SetUsed(usePixel);
|
---|
669 | cNoise.SetUsed(usePixel);
|
---|
670 | cChi2.SetUsed(usePixel);
|
---|
671 | cNormGain.SetUsed(usePixel);
|
---|
672 | cFitProb.SetUsed(usePixel);
|
---|
673 | cCrosstalkP.SetUsed(usePixel);
|
---|
674 | cCoeffR.SetUsed(usePixel);
|
---|
675 |
|
---|
676 | // --------------------------------------------------------
|
---|
677 | // Display data
|
---|
678 |
|
---|
679 | TCanvas *canv = &d->AddTab("Cams1");
|
---|
680 | canv->Divide(3,2);
|
---|
681 |
|
---|
682 | canv->cd(1);
|
---|
683 | cRate.DrawCopy();
|
---|
684 |
|
---|
685 | canv->cd(2);
|
---|
686 | cGain.DrawCopy();
|
---|
687 |
|
---|
688 | canv->cd(3);
|
---|
689 | cBaseline.DrawCopy();
|
---|
690 |
|
---|
691 | canv->cd(4);
|
---|
692 | cRelSigma.DrawCopy();
|
---|
693 |
|
---|
694 | canv->cd(5);
|
---|
695 | cCrosstalk.DrawCopy();
|
---|
696 |
|
---|
697 | canv->cd(6);
|
---|
698 | cNoise.DrawCopy();
|
---|
699 |
|
---|
700 |
|
---|
701 | canv = &d->AddTab("Cams2");
|
---|
702 | canv->Divide(3,2);
|
---|
703 |
|
---|
704 | canv->cd(1);
|
---|
705 | cFitProb.DrawCopy();
|
---|
706 |
|
---|
707 | canv->cd(2);
|
---|
708 | cChi2.DrawCopy();
|
---|
709 |
|
---|
710 | canv->cd(4);
|
---|
711 | cCoeffR.DrawCopy();
|
---|
712 |
|
---|
713 | canv->cd(5);
|
---|
714 | cCrosstalkP.DrawCopy();
|
---|
715 |
|
---|
716 | // --------------------------------------------------------
|
---|
717 |
|
---|
718 | gStyle->SetOptFit(1);
|
---|
719 |
|
---|
720 | canv = &d->AddTab("Hists1");
|
---|
721 | canv->Divide(3,2);
|
---|
722 |
|
---|
723 | TH1 *hh = 0;
|
---|
724 |
|
---|
725 | canv->cd(1);
|
---|
726 | hh = hRate1.DrawCopy();
|
---|
727 | hh = hRate2.DrawCopy("same");
|
---|
728 |
|
---|
729 | canv->cd(2);
|
---|
730 | hh = hGain1.DrawCopy();
|
---|
731 | hh = hGain2.DrawCopy("same");
|
---|
732 | hh->Fit("gaus", "M");
|
---|
733 |
|
---|
734 | canv->cd(3);
|
---|
735 | hh = hBaseline1.DrawCopy();
|
---|
736 | hh = hBaseline2.DrawCopy("same");
|
---|
737 | hh->Fit("gaus", "M");
|
---|
738 |
|
---|
739 | canv->cd(4);
|
---|
740 | hh = hRelSigma1.DrawCopy();
|
---|
741 | hh = hRelSigma2.DrawCopy("same");
|
---|
742 | hh->Fit("gaus", "M");
|
---|
743 |
|
---|
744 | canv->cd(5);
|
---|
745 | hh = hCrosstalk1.DrawCopy();
|
---|
746 | hh = hCrosstalk2.DrawCopy("same");
|
---|
747 | hh->Fit("gaus", "M");
|
---|
748 |
|
---|
749 | canv->cd(6);
|
---|
750 | hh = hNoise1.DrawCopy();
|
---|
751 | hh = hNoise2.DrawCopy("same");
|
---|
752 | hh->Fit("gaus", "M");
|
---|
753 |
|
---|
754 | // --------------------------------------------------------
|
---|
755 |
|
---|
756 | canv = &d->AddTab("Hists2");
|
---|
757 | canv->Divide(3,2);
|
---|
758 |
|
---|
759 | canv->cd(1);
|
---|
760 | gPad->SetLogy();
|
---|
761 | hh = hFitProb1.DrawCopy();
|
---|
762 | hh = hFitProb2.DrawCopy("same");
|
---|
763 | hh->Fit("gaus", "M");
|
---|
764 |
|
---|
765 | canv->cd(2);
|
---|
766 | hChiSq1.DrawCopy();
|
---|
767 | hChiSq2.DrawCopy("same");
|
---|
768 |
|
---|
769 | canv->cd(4);
|
---|
770 | hh = hCoeffR1.DrawCopy();
|
---|
771 | hh = hCoeffR2.DrawCopy("same");
|
---|
772 | hh->Fit("gaus", "M");
|
---|
773 |
|
---|
774 | canv->cd(5);
|
---|
775 | hh = hCrosstalkP1.DrawCopy();
|
---|
776 | hh = hCrosstalkP2.DrawCopy("same");
|
---|
777 | hh->Fit("gaus", "M");
|
---|
778 |
|
---|
779 | // --------------------------------------------------------
|
---|
780 |
|
---|
781 | canv = &d->AddTab("NormGain");
|
---|
782 | canv->Divide(2,1);
|
---|
783 |
|
---|
784 | canv->cd(1);
|
---|
785 | cNormGain.SetMinimum(0.8);
|
---|
786 | cNormGain.SetMaximum(1.2);
|
---|
787 | cNormGain.DrawCopy();
|
---|
788 |
|
---|
789 | canv->cd(2);
|
---|
790 | gPad->SetLogy();
|
---|
791 | hh = hNormGain1.DrawCopy();
|
---|
792 | hh = hNormGain2.DrawCopy("same");
|
---|
793 | hh->Fit("gaus", "M");
|
---|
794 |
|
---|
795 | //------------------ Draw gain corrected sum specetrum -------------------
|
---|
796 | gROOT->SetSelectedPad(0);
|
---|
797 | c11.cd();
|
---|
798 | hSumClear1.DrawCopy("hist same");
|
---|
799 |
|
---|
800 | //-------------------- fit gain corrected sum spectrum -------------------
|
---|
801 |
|
---|
802 | gROOT->SetSelectedPad(0);
|
---|
803 | TCanvas &c11b = d->AddTab("CleanHist1");
|
---|
804 | c11b.cd();
|
---|
805 | gPad->SetLogy();
|
---|
806 | gPad->SetGridx();
|
---|
807 | gPad->SetGridy();
|
---|
808 |
|
---|
809 | const Int_t maxbin1 = hSumClear1.GetMaximumBin();
|
---|
810 | const Double_t ampl1 = hSumClear1.GetBinContent(maxbin1);
|
---|
811 |
|
---|
812 | func.SetParameters(res_par);
|
---|
813 | func.SetParLimits(0, 0, 2*ampl1);
|
---|
814 | func.SetParameter(0, ampl1);
|
---|
815 | func.ReleaseParameter(6);
|
---|
816 |
|
---|
817 | func.SetRange(155, 3000);
|
---|
818 |
|
---|
819 | hSumClear1.Fit(&func, fast?"LN0QSR":"LIN0QSR");
|
---|
820 |
|
---|
821 | hSumClear1.DrawCopy();
|
---|
822 | func.DrawCopy("same");
|
---|
823 |
|
---|
824 | cout << "--------------------" << endl;
|
---|
825 | PrintFunc(func, integration_window);
|
---|
826 | cout << "--------------------" << endl;
|
---|
827 |
|
---|
828 | //-------------------- fit gain corrected sum spectrum -------------------
|
---|
829 |
|
---|
830 | gROOT->SetSelectedPad(0);
|
---|
831 | TCanvas &c11c = d->AddTab("CleanHist2");
|
---|
832 | c11c.cd();
|
---|
833 | gPad->SetLogy();
|
---|
834 | gPad->SetGridx();
|
---|
835 | gPad->SetGridy();
|
---|
836 |
|
---|
837 | const Int_t maxbin1b = hSumClear2.GetMaximumBin();
|
---|
838 | const Double_t ampl1b = hSumClear2.GetBinContent(maxbin1b);
|
---|
839 |
|
---|
840 | func.SetParameters(res_par);
|
---|
841 | func.SetParLimits(0, 0, 2*ampl1b);
|
---|
842 | func.SetParameter(0, ampl1b);
|
---|
843 | func.ReleaseParameter(6);
|
---|
844 |
|
---|
845 | hSumClear2.Fit(&func, fast?"LN0QSR":"LIN0QSR");
|
---|
846 |
|
---|
847 | hSumClear2.DrawCopy();
|
---|
848 | func.DrawCopy("same");
|
---|
849 |
|
---|
850 | cout << "--------------------" << endl;
|
---|
851 | PrintFunc(func, integration_window);
|
---|
852 | cout << "--------------------" << endl;
|
---|
853 |
|
---|
854 | //-------------------- fit gain corrected sum spectrum -------------------
|
---|
855 |
|
---|
856 | gROOT->SetSelectedPad(0);
|
---|
857 | TCanvas &c12 = d->AddTab("GainHist1");
|
---|
858 | c12.cd();
|
---|
859 | gPad->SetLogy();
|
---|
860 | gPad->SetGridx();
|
---|
861 | gPad->SetGridy();
|
---|
862 |
|
---|
863 | const Int_t maxbin2 = hSumScale1.GetMaximumBin();
|
---|
864 | const Double_t ampl2 = hSumScale1.GetBinContent(maxbin2);
|
---|
865 |
|
---|
866 | //Set fit parameters
|
---|
867 | Double_t par2[7] =
|
---|
868 | {
|
---|
869 | ampl2, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6]
|
---|
870 | };
|
---|
871 |
|
---|
872 | func.SetParameters(par2);
|
---|
873 | func.SetParLimits(0, 0, 2*ampl2);
|
---|
874 | func.FixParameter(1, 1);
|
---|
875 | func.FixParameter(4, 0);
|
---|
876 |
|
---|
877 | func.SetRange(0.8, 12);
|
---|
878 | hSumScale1.Fit(&func, fast?"LN0QSR":"LIN0QSR");
|
---|
879 |
|
---|
880 | hSumScale1.DrawCopy();
|
---|
881 | func.DrawCopy("same");
|
---|
882 |
|
---|
883 | cout << "--------------------" << endl;
|
---|
884 | PrintFunc(func, integration_window);
|
---|
885 | cout << "--------------------" << endl;
|
---|
886 |
|
---|
887 | //-------------------- fit gain corrected sum spectrum -------------------
|
---|
888 |
|
---|
889 | gROOT->SetSelectedPad(0);
|
---|
890 | TCanvas &c12b = d->AddTab("GainHist2");
|
---|
891 | c12b.cd();
|
---|
892 | gPad->SetLogy();
|
---|
893 | gPad->SetGridx();
|
---|
894 | gPad->SetGridy();
|
---|
895 |
|
---|
896 | const Int_t maxbin2b = hSumScale2.GetMaximumBin();
|
---|
897 | const Double_t ampl2b = hSumScale2.GetBinContent(maxbin2b);
|
---|
898 |
|
---|
899 | //Set fit parameters
|
---|
900 | Double_t par2b[7] =
|
---|
901 | {
|
---|
902 | ampl2b, 1, 0.1, res_par[3], 0, res_par[5]<0 ? -1 : res_par[5]/res_par[1], res_par[6]
|
---|
903 | };
|
---|
904 |
|
---|
905 | func.SetParameters(par2b);
|
---|
906 | func.SetParLimits(0, 0, 2*ampl2b);
|
---|
907 | func.FixParameter(1, 1);
|
---|
908 | func.FixParameter(4, 0);
|
---|
909 |
|
---|
910 | func.SetRange(0.8, 12);
|
---|
911 | hSumScale2.Fit(&func, fast?"LN0QSR":"LIN0QSR");
|
---|
912 |
|
---|
913 | hSumScale2.DrawCopy();
|
---|
914 | func.DrawCopy("same");
|
---|
915 |
|
---|
916 | cout << "--------------------" << endl;
|
---|
917 | PrintFunc(func, integration_window);
|
---|
918 | cout << "--------------------" << endl;
|
---|
919 |
|
---|
920 | //--------fit gausses to peaks of gain corrected sum specetrum -----------
|
---|
921 |
|
---|
922 | d->AddTab("ArrTime");
|
---|
923 | gPad->SetGrid();
|
---|
924 | hTime.DrawCopy();
|
---|
925 |
|
---|
926 | // -----------------------------------------------------------------
|
---|
927 |
|
---|
928 | d->AddTab("Pulse");
|
---|
929 | gPad->SetGrid();
|
---|
930 | hPulse.DrawCopy();
|
---|
931 |
|
---|
932 | // ================================================================
|
---|
933 |
|
---|
934 | cout << "Saving results to '" << outfile << "'" << endl;
|
---|
935 | d->SaveAs(outfile);
|
---|
936 | cout << "..success!" << endl;
|
---|
937 |
|
---|
938 | TFile f(outfile, "UPDATE");
|
---|
939 | par.Write();
|
---|
940 | ext.Write("ExtractionRange");
|
---|
941 | header.Write();
|
---|
942 |
|
---|
943 | return 0;
|
---|
944 | }
|
---|