source: trunk/Mars/macros/pointspreadfunction.C@ 14942

Last change on this file since 14942 was 3119, checked in by jlopez, 21 years ago
*** empty log message ***
File size: 22.5 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17! Author(s): Javier Lopez, 12/2003 <mailto:jlopez@ifae.es>
18! Author(s): Alex Armada, 1/2004 <mailto:armada@ifae.es>
19!
20! Copyright: MAGIC Software Development, 2000-2003
21!
22!
23\* ======================================================================== */
24
25
26//------------------------------------------------------------------------- //
27// //
28// This macro fits the dc signal of a star using a two dimension gaussian //
29// for each dc measurement. Then the values of parameters of the fit are //
30// stored in histograms and shown at the end of the macro. //
31// //
32// USAGE: //
33// It has two arguments, //
34// 1- The first one is the dc file with the tracked star //
35// 2- The second one is a continuos light file used to intercalibrate //
36// the gain of the photomultipliers. //
37// (It's possible not to use the calibration file and then the gain //
38// of the pmts are supouse to be the same for all of them. //
39// 3- The third argument is just the number of dc measurements you want //
40// analize. If you put 0 it just stops after each fit and show you //
41// results. //
42// //
43//--------------------------------------------------------------------------//
44
45const Int_t numPixels = 577;
46Int_t nPixelsFitted;
47Bool_t isPixelsFitted[numPixels];
48Float_t z[numPixels],x[numPixels],y[numPixels],errorz[numPixels];
49Float_t chisquare;
50
51//______________________________________________________________________________
52//
53// Function used by Minuit to do the fit
54//
55void fcn(Int_t &npar, Double_t *gin, Double_t &f, Double_t *par, Int_t iflag)
56{
57 Int_t i;
58
59//calculate chisquare
60 Double_t chisq = 0;
61 Double_t delta;
62 nPixelsFitted=0;
63 for (i=1;i<numPixels; i++) {
64 if (isPixelsFitted[i])
65 {
66 if (errorz[i] != 0.0)
67 {
68 delta = (z[i]-func(x[i],y[i],par))/errorz[i];
69 chisq += delta*delta;
70 nPixelsFitted++;
71 }
72 else
73 cout << "This should never happen errorz[" << i << "] " << errorz[i] << endl;
74 }
75 }
76 f = chisq;
77 chisquare = chisq;
78}
79
80//______________________________________________________________________________
81//
82// The 2D gaussian fucntion used to fit the spot of the star
83//
84Double_t func(float x,float y,Double_t *par)
85{
86 Double_t value=par[0]*TMath::exp(-(x-par[1])*(x-par[1])/(2*par[2]*par[2]))*TMath::exp(-(y-par[3])*(y-par[3])/(2*par[4]*par[4]));
87 return value;
88}
89
90Bool_t HandleInput()
91{
92 TTimer timer("gSystem->ProcessEvents();", 50, kFALSE);
93
94 while (1)
95 {
96 //
97 // While reading the input process gui events asynchronously
98 //
99 timer.TurnOn();
100 TString input = Getline("Type 'q' to exit, <return> to go on: ");
101 timer.TurnOff();
102
103 if (input=="q\n")
104 return kFALSE;
105
106 if (input=="\n")
107 return kTRUE;
108 };
109
110 return kFALSE;
111}
112
113
114void pointspreadfunction(TString fname, TString clname = "NULL", Int_t userNumLines = 1000)
115{
116
117
118 Float_t currmean[numPixels];
119 Float_t currsquaremean[numPixels];
120 Float_t currrms[numPixels];
121 Float_t meanofcurrmean = 0;
122
123 for (Int_t swpix=0; swpix<numPixels; swpix++)
124 {
125 currmean[swpix] = 0.;
126 currsquaremean[swpix] = 0.;
127 currrms[swpix] = 0.;
128 }
129
130 Int_t numLines=0;
131
132 //containers
133 MGeomCamMagic geomcam;
134 MCameraDC curr;
135 MCameraDC currbis;
136
137 const Float_t conv4mm2deg = geomcam.GetConvMm2Deg();
138
139
140 if (clname != "NULL")
141 {
142
143 //
144 // First run over continuos light files to have a DC calibration
145 //
146
147 MParList plist0;
148
149 MTaskList tlist0;
150 plist0.AddToList(&tlist0);
151
152 plist0.AddToList(&geomcam);
153 plist0.AddToList(&curr);
154
155 MReportFileRead read0(clname);
156 read0.SetHasNoHeader();
157 read0.AddToList("MReportCurrents");
158
159 tlist0.AddToList(&read0);
160
161 MEvtLoop evtloop0;
162 evtloop0.SetParList(&plist0);
163
164
165 if (!evtloop0.PreProcess())
166 return;
167
168 while (tlist0.Process())
169 {
170 for (Int_t swpix=0; swpix<numPixels; swpix++)
171 {
172 meanofcurrmean += curr[swpix];
173 currmean[swpix] += curr[swpix];
174 currsquaremean[swpix] += curr[swpix]*curr[swpix];
175 }
176 numLines++;
177 }
178
179 evtloop0.PostProcess();
180
181 meanofcurrmean /= (numLines*numPixels);
182 for (Int_t swpix=0; swpix<numPixels; swpix++)
183 {
184
185 currmean[swpix] /= numLines;
186 currsquaremean[swpix] /= numLines;
187 currrms[swpix] = sqrt(fabs(currsquaremean[swpix] - currmean[swpix]*currmean[swpix]));
188
189 curr[swpix] = currmean[swpix];
190 currbis[swpix] = currrms[swpix];
191
192 currmean[swpix] /= meanofcurrmean;
193 currrms[swpix] /= meanofcurrmean;
194
195 }
196
197
198/* MHCamera display0(geomcam);
199 display0.SetPrettyPalette();
200 display0.Draw();
201
202 // curr.Print();
203 display0.SetCamContent(currbis);
204 cout << "PSF>> DC mean values drawn" << endl;
205 // Remove the comments if you want to go through the file
206 // event-by-event:
207 if (!HandleInput())
208 break;
209*/
210 }
211 else
212 {
213 // If you don't use the continuous light this is the currrms[] array
214 // is the error associated to the currents TMinuit will use.
215 for (Int_t swpix=0; swpix<numPixels; swpix++)
216 {
217 currmean[swpix] = 1.;
218 currrms[swpix] = 0.2;
219 }
220
221 }
222
223//
224// Now we can run over the dc data to extract the psf.
225//
226 const Int_t maxNumLines = 10000;
227
228 Double_t ux[maxNumLines];
229 Double_t uy[maxNumLines];
230 Double_t sx[maxNumLines];
231 Double_t sy[maxNumLines];
232 Double_t chisqu[maxNumLines];
233 Double_t time[maxNumLines];
234
235 MParList plist;
236
237 MGeomCamMagic geomcam;
238 MCameraDC curr;
239 MTaskList tlist;
240
241 plist.AddToList(&geomcam);
242 plist.AddToList(&curr);
243 plist.AddToList(&tlist);
244
245 MReportFileRead read(fname);
246 read.SetHasNoHeader();
247 read.AddToList("MReportCurrents");
248
249 tlist.AddToList(&read);
250
251 MEvtLoop evtloop;
252 evtloop.SetParList(&plist);
253
254 if (!evtloop.PreProcess())
255 return;
256
257 MHCamera display(geomcam);
258 display.SetPrettyPalette();
259 display.Draw();
260 gPad->SetLogy();
261 gPad->cd(1);
262
263 Double_t amin,edm,errdef;
264 Int_t nvpar,nparx,icstat;
265
266 Double_t max,maxerror;
267 Double_t xmean,xsigma,ymean,ysigma;
268 Double_t xmeanerror,xsigmaerror,ymeanerror,ysigmaerror;
269
270 TEllipse ellipse;
271 ellipse.SetFillStyle(4000);
272 ellipse.SetLineWidth(2);
273 ellipse.SetLineColor(2);
274
275 ellipse.Draw();
276
277 Int_t nbinsxy = 80;
278 Float_t minxy = -600*conv4mm2deg;
279 Float_t maxxy = 600*conv4mm2deg;
280 Float_t fromdegtobin = (maxxy-minxy)/nbinsxy;
281
282 TH2D psfhist("psfhist","",nbinsxy,minxy,maxxy,nbinsxy,minxy,maxxy);
283 psfhist->GetXaxis()->SetTitle("[deg]");
284 psfhist->GetYaxis()->SetTitle("[deg]");
285 psfhist->GetZaxis()->SetTitle("DC [uA]");
286
287 TCanvas *psfcanvas = new TCanvas("psfcanvas","Point Spread Funtion 2D",200,20,900,700);
288
289
290 //
291 // Using the first dc measurement we search the pixels which contains the star and define
292 // an area to be fitted by Minuit which is 3 rings of neightbords around the peak of the star.
293 //
294
295 tlist.Process();
296
297 Int_t numLines=0;
298 Float_t minDCStar = 6.0;
299
300 Int_t numPixelsInStar = 0;
301 Float_t maxDC = 0;
302 Int_t swpixelmaxDC;
303
304 Bool_t isPixelsFittedTmp[numPixels];
305
306 for(Int_t swpixel=1; swpixel<numPixels; swpixel++)
307 isPixelsFittedTmp[swpixel] = kFALSE;
308
309 for(Int_t swpixel=1; swpixel<numPixels; swpixel++)
310 {
311 if(curr[swpixel] > maxDC)
312 {
313 swpixelmaxDC = swpixel;
314 maxDC = curr[swpixelmaxDC];
315 }
316
317 if(curr[swpixel]>minDCStar)
318 {
319 numPixelsInStar++;
320 isPixelsFitted[swpixel] = kTRUE;
321 }
322 else
323 isPixelsFitted[swpixel] = kFALSE;
324 }
325
326 if (numPixelsInStar == 0)
327 {
328 cout << "PSF>> Warning: none pixel over minDCStar(" << minDCStar << ')' << endl;
329 return;
330 }
331
332//1st neighboor ring
333 for(Int_t swpixel=1; swpixel<numPixels; swpixel++)
334 if (isPixelsFitted[swpixel])
335 for(Int_t next=0; next<geomcam[swpixel].GetNumNeighbors(); next++)
336 isPixelsFittedTmp[geomcam[swpixel].GetNeighbor(next)] = kTRUE;
337
338 for(Int_t swpixel=1; swpixel<numPixels; swpixel++)
339 if (isPixelsFittedTmp[swpixel])
340 isPixelsFitted[swpixel] = kTRUE;
341
342//2on neighboor ring
343 for(Int_t swpixel=1; swpixel<numPixels; swpixel++)
344 if (isPixelsFitted[swpixel])
345 for(Int_t next=0; next<geomcam[swpixel].GetNumNeighbors(); next++)
346 isPixelsFittedTmp[geomcam[swpixel].GetNeighbor(next)] = kTRUE;
347
348 for(Int_t swpixel=1; swpixel<numPixels; swpixel++)
349 if (isPixelsFittedTmp[swpixel])
350 isPixelsFitted[swpixel] = kTRUE;
351
352
353//3rt neighboor ring
354 for(Int_t swpixel=1; swpixel<numPixels; swpixel++)
355 if (isPixelsFitted[swpixel])
356 for(Int_t next=0; next<geomcam[swpixel].GetNumNeighbors(); next++)
357 isPixelsFittedTmp[geomcam[swpixel].GetNeighbor(next)] = kTRUE;
358
359 for(Int_t swpixel=1; swpixel<numPixels; swpixel++)
360 if (isPixelsFittedTmp[swpixel])
361 isPixelsFitted[swpixel] = kTRUE;
362
363
364 for(Int_t swpixel=1; swpixel<numPixels; swpixel++)
365 curr[swpixel] = (Float_t)isPixelsFitted[swpixel];
366
367/* MHCamera display0(geomcam);
368 display0.SetPrettyPalette();
369 display0.Draw();
370
371 display0.SetCamContent(curr);
372 cout << "PSF>> Fitted pixels drawn" << endl;
373 // Remove the comments if you want to go through the file
374 // event-by-event:
375 if (!HandleInput())
376 break;
377*/
378
379 // Minuit initialization
380
381 TMinuit *gMinuit = new TMinuit(7); //initialize TMinuit with a maximum of 5 params
382 gMinuit->SetFCN(fcn);
383
384 Double_t arglist[10];
385 Int_t ierflg = 0;
386
387 arglist[0] = 1;
388 gMinuit->mnexcm("SET ERR", arglist ,1,ierflg);
389// arglist[0] = -1;
390 arglist[0] = 0;
391 gMinuit->mnexcm("SET PRI", arglist ,1,ierflg);
392
393// Set starting values and step sizes for parameters
394 Double_t vstart[5];
395 Double_t step[5];
396 Double_t lowlimit[5] = {minDCStar, -2., 0.05, -2, 0.05};
397 Double_t uplimit[5] = {30., 2., 1., 2., 1.};
398
399 vstart[0] = maxDC;
400 vstart[1] = geomcam[swpixelmaxDC].GetX()*conv4mm2deg;
401 vstart[2] = 30*TMath::Sqrt(numPixelsInStar/2)*conv4mm2deg;
402 vstart[3] = geomcam[swpixelmaxDC].GetY()*conv4mm2deg;
403 vstart[4] = 30*TMath::Sqrt(numPixelsInStar/2)*conv4mm2deg;
404
405 for(Int_t i=0; i<5; i++)
406 {
407 if (vstart[i] != 0)
408 step[i] = TMath::Abs(vstart[i]/sqrt(2));
409 else
410 step[i] = uplimit[i]/2;
411 }
412
413 gMinuit->mnparm(0, "max", vstart[0], step[0], lowlimit[0], uplimit[0],ierflg);
414 gMinuit->mnparm(1, "xmean", vstart[1], step[1], lowlimit[1], uplimit[1],ierflg);
415 gMinuit->mnparm(2, "xsigma", vstart[2], step[2], lowlimit[2], uplimit[2],ierflg);
416 gMinuit->mnparm(3, "ymean", vstart[3], step[3], lowlimit[3], uplimit[3],ierflg);
417 gMinuit->mnparm(4, "ysigma", vstart[4], step[4], lowlimit[4], uplimit[4],ierflg);
418
419 while (tlist.Process() && numLines < maxNumLines)
420 {
421
422 for (Int_t swpixel=1; swpixel<577; swpixel++)
423 {
424
425 x[swpixel] = geomcam[swpixel].GetX()*conv4mm2deg;
426 y[swpixel] = geomcam[swpixel].GetY()*conv4mm2deg;
427 z[swpixel] = curr[swpixel]/currmean[swpixel];
428 errorz[swpixel] = TMath::Sqrt((curr[swpixel]*currrms[swpixel]/(currmean[swpixel]*currmean[swpixel]))*(curr[swpixel]*currrms[swpixel]/(currmean[swpixel]*currmean[swpixel]))+(0.1)/currmean[swpixel]*(0.1)/currmean[swpixel]);
429
430
431 psfhist->SetBinContent((Int_t)((x[swpixel]+600*conv4mm2deg)/fromdegtobin),(Int_t)((y[swpixel]+600*conv4mm2deg)/fromdegtobin),z[swpixel]);
432 }
433
434 psfcanvas->cd(1);
435 psfhist->Draw("lego2");
436
437// Now ready for minimization step
438 arglist[0] = 500;
439 arglist[1] = 1.;
440 gMinuit->mnexcm("MIGRAD", arglist ,2,ierflg);
441
442// Print results
443/* gMinuit->mnstat(amin,edm,errdef,nvpar,nparx,icstat);
444 gMinuit->mnprin(3,amin);
445*/
446 gMinuit->GetParameter(0,max,maxerror);
447 gMinuit->GetParameter(1,xmean,xmeanerror);
448 gMinuit->GetParameter(2,xsigma,xsigmaerror);
449 gMinuit->GetParameter(3,ymean,ymeanerror);
450 gMinuit->GetParameter(4,ysigma,ysigmaerror);
451
452/* cout << endl;
453 cout << "numLine " << numLines << endl;
454 cout << "max \t" << max << " +- " << maxerror << endl;
455 cout << "xmean \t" << xmean << " +- " << xmeanerror << endl;
456 cout << "xsigma \t" << TMath::Abs(xsigma) << " +- " << xsigmaerror << endl;
457 cout << "ymean \t" << ymean << " +- " << ymeanerror << endl;
458 cout << "ysigma \t" << TMath::Abs(ysigma) << " +- " << ysigmaerror << endl;
459 cout << "chisquare/ndof \t" << chisquare/(nPixelsFitted-5) << endl;
460*/
461
462 chisqu[numLines]=chisquare/(nPixelsFitted-5);
463
464 if(chisqu[numLines]<100.)
465 {
466 ux[numLines]=xmean;
467 uy[numLines]=ymean;
468 sx[numLines]=TMath::Abs(xsigma);
469 sy[numLines]=TMath::Abs(ysigma);
470 time[numLines]=numLines;
471
472 display.SetCamContent(curr);
473 gPad->cd(1);
474 ellipse.SetX1(xmean/conv4mm2deg);
475 ellipse.SetY1(ymean/conv4mm2deg);
476 ellipse.SetR1(TMath::Abs(xsigma)/conv4mm2deg);
477 ellipse.SetR2(TMath::Abs(ysigma)/conv4mm2deg);
478
479 gPad->Modified();
480 gPad->Update();
481
482 // Remove the comments if you want to go through the file
483 //event-by-event:
484 if (userNumLines>0)
485 {
486 if (numLines>userNumLines)
487 break;
488 }
489 else
490 {
491 if (!HandleInput())
492 break;
493 }
494 numLines++;
495 }
496 }
497
498
499 evtloop.PostProcess();
500
501 //
502 // Draw the ditributions of the sigmas the point spread function
503 //
504
505 cout<<"PSF>> Number of lines "<<numLines<<endl;
506
507 gROOT->Reset();
508 gStyle->SetCanvasColor(0);
509 gStyle->SetCanvasBorderMode(0);
510 gStyle->SetPadBorderMode(0);
511 gStyle->SetFrameBorderMode(0);
512 gStyle->SetOptStat(00000000);
513
514//
515// Find in the file name the date, run and project name to put it in the title
516//
517
518 Size_t pos = fname.Last('/');
519 TString iRun = TString(fname(pos+24,5));
520 TString iYear = TString(fname(pos+4,4));
521 TString iMonth = TString(fname(pos+9,2));
522 TString iDay = TString(fname(pos+12,2));
523
524 TString iHour = TString(fname(pos+15,2));
525 TString iMin = TString(fname(pos+18,2));
526 TString iSec = TString(fname(pos+21,2));
527
528 Size_t poslast = fname.Last('.');
529 Size_t posfirst = poslast-1;
530 while (fname[posfirst] != '_')
531 posfirst--;
532
533 TString iSource = TString(fname(posfirst+1,poslast-posfirst-1));
534
535
536 char str[100];
537
538// sprintf(str,"Date %s/%s/%s Run %s Source %s",iYear.Data(),iMonth.Data(),iDay.Data(),iRun.Data(),iSource.Data());
539 sprintf(str,"Date %s/%s/%s StartTime %s:%s:%s Run %s Source %s",iYear.Data(),iMonth.Data(),iDay.Data(),iHour.Data(),iMin.Data(),iSec.Data(),iRun.Data(),iSource.Data());
540
541 c1 = new TCanvas("c1",str,0,0,1200,850);
542// c1 = new TCanvas("c1","Time evolution & distributions",0,0,1200,850);
543 c1->Divide(3,2);
544
545 c1->cd(1);
546
547 TMath math;
548
549 Double_t minmeanx, maxmeanx;
550 minmeanx = ux[math.LocMin(numLines,ux)];
551 maxmeanx = ux[math.LocMax(numLines,ux)];
552
553 Double_t minmeany, maxmeany;
554 minmeany = uy[math.LocMin(numLines,uy)];
555 maxmeany = uy[math.LocMax(numLines,uy)];
556
557 Double_t minmean, maxmean;
558 minmean = math.Min(minmeanx,minmeany);
559 maxmean = math.Max(maxmeanx,maxmeany);
560
561 Double_t diff;
562 diff = maxmean - minmean;
563 diff = 0.1*diff;
564 minmean = minmean - diff;
565 maxmean = maxmean + diff;
566
567 Double_t mintime, maxtime;
568 mintime = time[math.LocMin(numLines,time)];
569 maxtime = time[math.LocMax(numLines,time)];
570
571 TH2D *h1 = new TH2D("h1","",1,mintime-1,maxtime+1,1,minmean,maxmean);
572 h1->GetXaxis()->SetTitle("Event number");
573 h1->GetYaxis()->SetTitle("mean position (deg)");
574 h1->Draw();
575
576 TGraph *grtimeevolmeanx = new TGraph(numLines,time,ux);
577 grtimeevolmeanx->SetMarkerColor(3);
578 grtimeevolmeanx->SetMarkerStyle(20);
579 grtimeevolmeanx->SetMarkerSize (0.4);
580 grtimeevolmeanx->Draw("P");
581
582 TGraph *grtimeevolmeany = new TGraph(numLines,time,uy);
583 grtimeevolmeany->SetMarkerColor(6);
584 grtimeevolmeany->SetMarkerStyle(24);
585 grtimeevolmeany->SetMarkerSize (0.4);
586 grtimeevolmeany->Draw("P");
587
588 legmeanxy = new TLegend(0.8,0.85,0.95,0.95);
589 legmeanxy.SetTextSize(0.03);
590 legmeanxy.AddEntry(grtimeevolmeanx,"mean x","P");
591 legmeanxy.AddEntry(grtimeevolmeany,"mean y","P");
592 legmeanxy.Draw();
593
594 c1->cd(2);
595
596 TMath math;
597
598 Double_t minsigmax, maxsigmax;
599 minsigmax = sx[math.LocMin(numLines,sx)];
600 maxsigmax = sx[math.LocMax(numLines,sx)];
601
602 Double_t minsigmay, maxsigmay;
603 minsigmay = sy[math.LocMin(numLines,sy)];
604 maxsigmay = sy[math.LocMax(numLines,sy)];
605
606 Double_t minsigma, maxsigma;
607 minsigma = math.Min(minsigmax,minsigmay);
608 maxsigma = math.Max(maxsigmax,maxsigmay);
609
610 diff = maxsigma - minsigma;
611 diff = 0.1*diff;
612 minsigma = minsigma - diff;
613 maxsigma = maxsigma + diff;
614
615 TH2D *h2 = new TH2D("h2","",1,mintime-1,maxtime+1,1,minsigma,maxsigma);
616 h2->GetXaxis()->SetTitle("Event number");
617 h2->GetYaxis()->SetTitle("PSF Rms (deg)");
618 h2->Draw();
619
620 TGraph* grtimeevolsigmax= new TGraph(numLines,time,sx);
621 grtimeevolsigmax->SetMarkerColor(3);
622 grtimeevolsigmax->SetMarkerStyle(20);
623 grtimeevolsigmax->SetMarkerSize (0.4);
624 grtimeevolsigmax->Draw("P");
625
626 TGraph* grtimeevolsigmay= new TGraph(numLines,time,sy);
627 grtimeevolsigmay->SetMarkerColor(6);
628 grtimeevolsigmay->SetMarkerStyle(24);
629 grtimeevolsigmay->SetMarkerSize (0.4);
630 grtimeevolsigmay->Draw("P");
631
632 legsigmaxy = new TLegend(0.8,0.85,0.95,0.95);
633 legsigmaxy.SetTextSize(0.03);
634 legsigmaxy.AddEntry(grtimeevolsigmax,"sigma x","P");
635 legsigmaxy.AddEntry(grtimeevolsigmay,"sigma y","P");
636 legsigmaxy.Draw();
637
638 c1->cd(3);
639
640 Double_t minchisqu, maxchisqu;
641
642 minchisqu = chisqu[math.LocMin(numLines,chisqu)];
643 maxchisqu = chisqu[math.LocMax(numLines,chisqu)];
644
645 diff = maxchisqu - minchisqu;
646 diff = 0.1*diff;
647 minchisqu = minchisqu - diff;
648 maxchisqu = maxchisqu + diff;
649
650 TH2D *h3 = new TH2D("h3","",1,mintime-1,maxtime+1,1,minchisqu,maxchisqu);
651 h3->GetXaxis()->SetTitle("Event number");
652 h3->Draw();
653
654 TGraph * grtimeevolchisqu = new TGraph(numLines,time,chisqu);
655 grtimeevolchisqu->SetMarkerColor(215);
656 grtimeevolchisqu->SetMarkerStyle(20);
657 grtimeevolchisqu->SetMarkerSize(0.4);
658 grtimeevolchisqu->Draw("P");
659
660 legchisqu = new TLegend(0.55,0.90,0.95,0.95);
661 legchisqu.SetTextSize(0.03);
662 legchisqu.AddEntry(grtimeevolchisqu,"chi square / ndof","P");
663 legchisqu.Draw();
664
665//***************************************
666
667 const Int_t nbins = 100;
668
669 TH1D *xsigmahist = new TH1D("xsigmahist","",nbins,minsigma,maxsigma);
670 TH1D *ysigmahist = new TH1D("ysigmahist","",nbins,minsigma,maxsigma);
671 TH1D *xmeanhist = new TH1D("xmeanhist","",nbins,minmean,maxmean);
672 TH1D *ymeanhist = new TH1D("ymeanhist","",nbins,minmean,maxmean);
673 TH1D *chisquhist = new TH1D("chisquhist","",nbins,minchisqu,maxchisqu);
674
675 for (Int_t i=0; i<numLines; i++)
676 {
677 xsigmahist->Fill(TMath::Abs(sx[i]));
678 ysigmahist->Fill(TMath::Abs(sy[i]));
679 xmeanhist->Fill(ux[i]);
680 ymeanhist->Fill(uy[i]);
681 chisquhist->Fill(chisqu[i]);
682
683 }
684
685 c1->cd(5);
686
687 TMath math;
688 Double_t maxsigma;
689 Int_t binmaxx, binmaxy;
690 xsigmahist->SetLineColor(3);
691 xsigmahist->SetLineWidth(2);
692 xsigmahist->SetXTitle("RMS [deg]");
693 binmaxx = xsigmahist->GetMaximumBin();
694 binmaxx = xsigmahist->GetBinContent(binmaxx);
695
696 ysigmahist->SetLineColor(6);
697 ysigmahist->SetLineWidth(2);
698 binmaxy = ysigmahist->GetMaximumBin();
699 binmaxy = ysigmahist->GetBinContent(binmaxy);
700
701 maxsigma = math.Max(binmaxx,binmaxy);
702 maxsigma += 1;
703
704 xsigmahist->SetMaximum(maxsigma);
705 ysigmahist->SetMaximum(maxsigma);
706 xsigmahist->DrawCopy();
707 ysigmahist->DrawCopy("Same");
708
709 TLegend *legendsigma = new TLegend(.3,.8,.95,.95);
710 legendsigma->SetTextSize(0.03);
711 char xsigmatitle[100];
712 char ysigmatitle[100];
713 sprintf(xsigmatitle,"PSF Rms on X axis -- %5.2f +/- %5.2f deg",xsigmahist->GetMean(),xsigmahist->GetRMS());
714 sprintf(ysigmatitle,"PSF Rms on Y axis -- %5.2f +/- %5.2f deg",ysigmahist->GetMean(),ysigmahist->GetRMS());
715 legendsigma->AddEntry(xsigmahist,xsigmatitle,"F");
716 legendsigma->AddEntry(ysigmahist,ysigmatitle,"F");
717 legendsigma->Draw();
718
719 c1->cd(4);
720
721 Double_t maxmean;
722
723 xmeanhist->SetLineColor(3);
724 xmeanhist->SetLineWidth(2);
725 xmeanhist->SetXTitle("mean [deg]");
726 binmaxx = xmeanhist->GetMaximumBin();
727 binmaxx = xmeanhist->GetBinContent(binmaxx);
728
729 ymeanhist->SetLineColor(6);
730 ymeanhist->SetLineWidth(2);
731 binmaxy = ymeanhist->GetMaximumBin();
732 binmaxy = ymeanhist->GetBinContent(binmaxy);
733
734 maxmean = math.Max(binmaxx,binmaxy);
735 maxmean += 1;
736
737 xmeanhist->SetMaximum(maxmean);
738 ymeanhist->SetMaximum(maxmean);
739 xmeanhist->DrawCopy();
740 ymeanhist->DrawCopy("Same");
741
742 TLegend *legendmean = new TLegend(.35,.8,.95,.95);
743 legendmean->SetTextSize(0.03);
744 char xmeantitle[100];
745 char ymeantitle[100];
746 sprintf(xmeantitle,"mean on X axis -- %5.2f +/- %5.2f deg",xmeanhist->GetMean(),xmeanhist->GetRMS());
747 sprintf(ymeantitle,"mean on Y axis -- %5.2f +/- %5.2f deg",ymeanhist->GetMean(),ymeanhist->GetRMS());
748 legendmean->AddEntry(xmeanhist,xmeantitle,"F");
749 legendmean->AddEntry(ymeanhist,ymeantitle,"F");
750 legendmean->Draw();
751
752 //meancanvas->Modified();
753 //meancanvas->Update();
754
755 c1->cd(6);
756
757 chisquhist->SetLineColor(215);
758 chisquhist->SetLineWidth(2);
759 chisquhist->SetXTitle("chi square / ndof");
760 TAxis * axis = chisquhist->GetXaxis();
761 axis->SetLabelSize(0.025);
762 chisquhist->DrawCopy();
763
764 TLegend *legendchisqu = new TLegend(.4,.85,.95,.95);
765 legendchisqu->SetTextSize(0.03);
766 char chisqutitle[100];
767 sprintf(chisqutitle,"chi square / ndof -- %5.2f +/- %5.2f ",chisquhist->GetMean(),chisquhist->GetRMS());
768 legendchisqu->AddEntry(chisquhist,chisqutitle,"F");
769 legendchisqu->Draw();
770
771
772 return;
773
774}
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
Note: See TracBrowser for help on using the repository browser.