| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Thomas Bretz, 11/2003 <mailto:tbretz@astro.uni-wuerzburg.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: MAGIC Software Development, 2000-2008
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | /////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MAstro
|
|---|
| 28 | // ------
|
|---|
| 29 | //
|
|---|
| 30 | ////////////////////////////////////////////////////////////////////////////
|
|---|
| 31 | #include "MAstro.h"
|
|---|
| 32 |
|
|---|
| 33 | #include <math.h> // fmod on darwin
|
|---|
| 34 |
|
|---|
| 35 | #include <iostream>
|
|---|
| 36 |
|
|---|
| 37 | #include <TArrayD.h> // TArrayD
|
|---|
| 38 | #include <TVector3.h> // TVector3
|
|---|
| 39 |
|
|---|
| 40 | #include "MTime.h" // MTime::GetGmst
|
|---|
| 41 | #include "MString.h"
|
|---|
| 42 |
|
|---|
| 43 | #include "MAstroCatalog.h" // FIXME: replace by MVector3!
|
|---|
| 44 |
|
|---|
| 45 | using namespace std;
|
|---|
| 46 |
|
|---|
| 47 | ClassImp(MAstro);
|
|---|
| 48 |
|
|---|
| 49 | const Double_t MAstro::kSynMonth = 29.53058868; // synodic month (new Moon to new Moon)
|
|---|
| 50 | const Double_t MAstro::kEpoch0 = 44240.37917; // First full moon after 1980/1/1
|
|---|
| 51 |
|
|---|
| 52 | Double_t MAstro::RadToHor()
|
|---|
| 53 | {
|
|---|
| 54 | return 24/TMath::TwoPi();
|
|---|
| 55 | }
|
|---|
| 56 |
|
|---|
| 57 | Double_t MAstro::HorToRad()
|
|---|
| 58 | {
|
|---|
| 59 | return TMath::TwoPi()/24;
|
|---|
| 60 | }
|
|---|
| 61 |
|
|---|
| 62 | Double_t MAstro::Trunc(Double_t val)
|
|---|
| 63 | {
|
|---|
| 64 | // dint(A) - truncate to nearest whole number towards zero (double)
|
|---|
| 65 | return val<0 ? TMath::Ceil(val) : TMath::Floor(val);
|
|---|
| 66 | }
|
|---|
| 67 |
|
|---|
| 68 | Double_t MAstro::Round(Double_t val)
|
|---|
| 69 | {
|
|---|
| 70 | // dnint(A) - round to nearest whole number (double)
|
|---|
| 71 | return val<0 ? TMath::Ceil(val-0.5) : TMath::Floor(val+0.5);
|
|---|
| 72 | }
|
|---|
| 73 |
|
|---|
| 74 | Double_t MAstro::Hms2Sec(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 75 | {
|
|---|
| 76 | const Double_t rc = TMath::Sign((60.0 * (60.0 * (Double_t)TMath::Abs(deg) + (Double_t)min) + sec), (Double_t)deg);
|
|---|
| 77 | return sgn=='-' ? -rc : rc;
|
|---|
| 78 | }
|
|---|
| 79 |
|
|---|
| 80 | Double_t MAstro::Dms2Rad(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 81 | {
|
|---|
| 82 | // pi/(180*3600): arcseconds to radians
|
|---|
| 83 | //#define DAS2R 4.8481368110953599358991410235794797595635330237270e-6
|
|---|
| 84 | return Hms2Sec(deg, min, sec, sgn)*TMath::Pi()/(180*3600)/**DAS2R*/;
|
|---|
| 85 | }
|
|---|
| 86 |
|
|---|
| 87 | Double_t MAstro::Hms2Rad(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 88 | {
|
|---|
| 89 | // pi/(12*3600): seconds of time to radians
|
|---|
| 90 | //#define DS2R 7.2722052166430399038487115353692196393452995355905e-5
|
|---|
| 91 | return Hms2Sec(hor, min, sec, sgn)*TMath::Pi()/(12*3600)/**DS2R*/;
|
|---|
| 92 | }
|
|---|
| 93 |
|
|---|
| 94 | Double_t MAstro::Dms2Deg(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 95 | {
|
|---|
| 96 | return Hms2Sec(deg, min, sec, sgn)/3600.;
|
|---|
| 97 | }
|
|---|
| 98 |
|
|---|
| 99 | Double_t MAstro::Hms2Deg(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 100 | {
|
|---|
| 101 | return Hms2Sec(hor, min, sec, sgn)/240.;
|
|---|
| 102 | }
|
|---|
| 103 |
|
|---|
| 104 | Double_t MAstro::Dms2Hor(Int_t deg, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 105 | {
|
|---|
| 106 | return Hms2Sec(deg, min, sec, sgn)/54000.;
|
|---|
| 107 | }
|
|---|
| 108 |
|
|---|
| 109 | Double_t MAstro::Hms2Hor(Int_t hor, UInt_t min, Double_t sec, Char_t sgn)
|
|---|
| 110 | {
|
|---|
| 111 | return Hms2Sec(hor, min, sec, sgn)/3600.;
|
|---|
| 112 | }
|
|---|
| 113 |
|
|---|
| 114 | void MAstro::Day2Hms(Double_t day, Char_t &sgn, UShort_t &hor, UShort_t &min, UShort_t &sec)
|
|---|
| 115 | {
|
|---|
| 116 | /* Handle sign */
|
|---|
| 117 | sgn = day<0?'-':'+';
|
|---|
| 118 |
|
|---|
| 119 | /* Round interval and express in smallest units required */
|
|---|
| 120 | Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds
|
|---|
| 121 |
|
|---|
| 122 | /* Separate into fields */
|
|---|
| 123 | const Double_t ah = Trunc(a/3600.);
|
|---|
| 124 | a -= ah * 3600.;
|
|---|
| 125 | const Double_t am = Trunc(a/60.);
|
|---|
| 126 | a -= am * 60.;
|
|---|
| 127 | const Double_t as = Trunc(a);
|
|---|
| 128 |
|
|---|
| 129 | /* Return results */
|
|---|
| 130 | hor = (UShort_t)ah;
|
|---|
| 131 | min = (UShort_t)am;
|
|---|
| 132 | sec = (UShort_t)as;
|
|---|
| 133 | }
|
|---|
| 134 |
|
|---|
| 135 | void MAstro::Rad2Hms(Double_t rad, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
|---|
| 136 | {
|
|---|
| 137 | Day2Hms(rad/(TMath::Pi()*2), sgn, deg, min, sec);
|
|---|
| 138 | }
|
|---|
| 139 |
|
|---|
| 140 | void MAstro::Rad2Dms(Double_t rad, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
|---|
| 141 | {
|
|---|
| 142 | Rad2Hms(rad*15, sgn, deg, min, sec);
|
|---|
| 143 | }
|
|---|
| 144 |
|
|---|
| 145 | void MAstro::Deg2Dms(Double_t d, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
|---|
| 146 | {
|
|---|
| 147 | Day2Hms(d/24, sgn, deg, min, sec);
|
|---|
| 148 | }
|
|---|
| 149 |
|
|---|
| 150 | void MAstro::Deg2Hms(Double_t d, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
|---|
| 151 | {
|
|---|
| 152 | Day2Hms(d/360, sgn, deg, min, sec);
|
|---|
| 153 | }
|
|---|
| 154 |
|
|---|
| 155 | void MAstro::Hor2Dms(Double_t h, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
|---|
| 156 | {
|
|---|
| 157 | Day2Hms(h*15/24, sgn, deg, min, sec);
|
|---|
| 158 | }
|
|---|
| 159 |
|
|---|
| 160 | void MAstro::Hor2Hms(Double_t h, Char_t &sgn, UShort_t °, UShort_t &min, UShort_t &sec)
|
|---|
| 161 | {
|
|---|
| 162 | Day2Hms(h/24, sgn, deg, min, sec);
|
|---|
| 163 | }
|
|---|
| 164 |
|
|---|
| 165 | void MAstro::Day2Hm(Double_t day, Char_t &sgn, UShort_t &hor, Double_t &min)
|
|---|
| 166 | {
|
|---|
| 167 | /* Handle sign */
|
|---|
| 168 | sgn = day<0?'-':'+';
|
|---|
| 169 |
|
|---|
| 170 | /* Round interval and express in smallest units required */
|
|---|
| 171 | Double_t a = Round(86400. * TMath::Abs(day)); // Days to seconds
|
|---|
| 172 |
|
|---|
| 173 | /* Separate into fields */
|
|---|
| 174 | const Double_t ah = Trunc(a/3600.);
|
|---|
| 175 | a -= ah * 3600.;
|
|---|
| 176 |
|
|---|
| 177 | /* Return results */
|
|---|
| 178 | hor = (UShort_t)ah;
|
|---|
| 179 | min = a/60.;
|
|---|
| 180 | }
|
|---|
| 181 |
|
|---|
| 182 | void MAstro::Rad2Hm(Double_t rad, Char_t &sgn, UShort_t °, Double_t &min)
|
|---|
| 183 | {
|
|---|
| 184 | Day2Hm(rad/(TMath::Pi()*2), sgn, deg, min);
|
|---|
| 185 | }
|
|---|
| 186 |
|
|---|
| 187 | void MAstro::Rad2Dm(Double_t rad, Char_t &sgn, UShort_t °, Double_t &min)
|
|---|
| 188 | {
|
|---|
| 189 | Rad2Hm(rad*15, sgn, deg, min);
|
|---|
| 190 | }
|
|---|
| 191 |
|
|---|
| 192 | void MAstro::Deg2Dm(Double_t d, Char_t &sgn, UShort_t °, Double_t &min)
|
|---|
| 193 | {
|
|---|
| 194 | Day2Hm(d/24, sgn, deg, min);
|
|---|
| 195 | }
|
|---|
| 196 |
|
|---|
| 197 | void MAstro::Deg2Hm(Double_t d, Char_t &sgn, UShort_t °, Double_t &min)
|
|---|
| 198 | {
|
|---|
| 199 | Rad2Hm(d/360, sgn, deg, min);
|
|---|
| 200 | }
|
|---|
| 201 |
|
|---|
| 202 | void MAstro::Hor2Dm(Double_t h, Char_t &sgn, UShort_t °, Double_t &min)
|
|---|
| 203 | {
|
|---|
| 204 | Day2Hm(h*15/24, sgn, deg, min);
|
|---|
| 205 | }
|
|---|
| 206 |
|
|---|
| 207 | void MAstro::Hor2Hm(Double_t h, Char_t &sgn, UShort_t °, Double_t &min)
|
|---|
| 208 | {
|
|---|
| 209 | Day2Hm(h/24, sgn, deg, min);
|
|---|
| 210 | }
|
|---|
| 211 |
|
|---|
| 212 | TString MAstro::GetStringDeg(Double_t deg, const char *fmt)
|
|---|
| 213 | {
|
|---|
| 214 | Char_t sgn;
|
|---|
| 215 | UShort_t d, m, s;
|
|---|
| 216 | Deg2Dms(deg, sgn, d, m, s);
|
|---|
| 217 |
|
|---|
| 218 | return MString::Format(fmt, sgn, d, m ,s);
|
|---|
| 219 | }
|
|---|
| 220 |
|
|---|
| 221 | TString MAstro::GetStringHor(Double_t deg, const char *fmt)
|
|---|
| 222 | {
|
|---|
| 223 | Char_t sgn;
|
|---|
| 224 | UShort_t h, m, s;
|
|---|
| 225 | Hor2Hms(deg, sgn, h, m, s);
|
|---|
| 226 |
|
|---|
| 227 | return MString::Format(fmt, sgn, h, m ,s);
|
|---|
| 228 | }
|
|---|
| 229 |
|
|---|
| 230 | // --------------------------------------------------------------------------
|
|---|
| 231 | //
|
|---|
| 232 | // Interpretes a string ' - 12 30 00.0' or '+ 12 30 00.0'
|
|---|
| 233 | // as floating point value -12.5 or 12.5. If interpretation is
|
|---|
| 234 | // successfull kTRUE is returned, otherwise kFALSE. ret is not
|
|---|
| 235 | // touched if interpretation was not successfull. The successfull
|
|---|
| 236 | // interpreted part is removed from the TString.
|
|---|
| 237 | //
|
|---|
| 238 | Bool_t MAstro::String2Angle(TString &str, Double_t &ret)
|
|---|
| 239 | {
|
|---|
| 240 | Char_t sgn;
|
|---|
| 241 | Int_t d, len;
|
|---|
| 242 | UInt_t m;
|
|---|
| 243 | Float_t s;
|
|---|
| 244 |
|
|---|
| 245 | // Skip whitespaces before %c and after %f
|
|---|
| 246 | int n=sscanf(str.Data(), " %c %d %d %f %n", &sgn, &d, &m, &s, &len);
|
|---|
| 247 |
|
|---|
| 248 | if (n!=4 || (sgn!='+' && sgn!='-'))
|
|---|
| 249 | return kFALSE;
|
|---|
| 250 |
|
|---|
| 251 | str.Remove(0, len);
|
|---|
| 252 |
|
|---|
| 253 | ret = Dms2Deg(d, m, s, sgn);
|
|---|
| 254 | return kTRUE;
|
|---|
| 255 | }
|
|---|
| 256 |
|
|---|
| 257 | // --------------------------------------------------------------------------
|
|---|
| 258 | //
|
|---|
| 259 | // Interpretes a string '-12:30:00.0', '12:30:00.0' or '+12:30:00.0'
|
|---|
| 260 | // as floating point value -12.5, 12.5 or 12.5. If interpretation is
|
|---|
| 261 | // successfull kTRUE is returned, otherwise kFALSE. ret is not
|
|---|
| 262 | // touched if interpretation was not successfull.
|
|---|
| 263 | //
|
|---|
| 264 | Bool_t MAstro::Coordinate2Angle(const TString &str, Double_t &ret)
|
|---|
| 265 | {
|
|---|
| 266 | Char_t sgn = str[0]=='-' ? '-' : '+';
|
|---|
| 267 | Int_t d;
|
|---|
| 268 | UInt_t m;
|
|---|
| 269 | Float_t s;
|
|---|
| 270 |
|
|---|
| 271 | const int n=sscanf(str[0]=='+'||str[0]=='-' ? str.Data()+1 : str.Data(), "%d:%d:%f", &d, &m, &s);
|
|---|
| 272 |
|
|---|
| 273 | if (n!=3)
|
|---|
| 274 | return kFALSE;
|
|---|
| 275 |
|
|---|
| 276 | ret = Dms2Deg(d, m, s, sgn);
|
|---|
| 277 | return kTRUE;
|
|---|
| 278 | }
|
|---|
| 279 |
|
|---|
| 280 | // --------------------------------------------------------------------------
|
|---|
| 281 | //
|
|---|
| 282 | // Returns val=-12.5 as string '-12:30:00'
|
|---|
| 283 | //
|
|---|
| 284 | TString MAstro::Angle2Coordinate(Double_t val)
|
|---|
| 285 | {
|
|---|
| 286 | Char_t sgn;
|
|---|
| 287 | UShort_t d,m,s;
|
|---|
| 288 |
|
|---|
| 289 | Deg2Dms(val, sgn, d, m, s);
|
|---|
| 290 |
|
|---|
| 291 | return MString::Format("%c%02d:%02d:%02d", sgn, d, m, s);
|
|---|
| 292 | }
|
|---|
| 293 |
|
|---|
| 294 | // --------------------------------------------------------------------------
|
|---|
| 295 | //
|
|---|
| 296 | // Return year y, month m and day d corresponding to Mjd.
|
|---|
| 297 | //
|
|---|
| 298 | void MAstro::Mjd2Ymd(UInt_t mjd, UShort_t &y, Byte_t &m, Byte_t &d)
|
|---|
| 299 | {
|
|---|
| 300 | // Express day in Gregorian calendar
|
|---|
| 301 | const ULong_t jd = mjd + 2400001;
|
|---|
| 302 | const ULong_t n4 = 4*(jd+((6*((4*jd-17918)/146097))/4+1)/2-37);
|
|---|
| 303 | const ULong_t nd10 = 10*(((n4-237)%1461)/4)+5;
|
|---|
| 304 |
|
|---|
| 305 | y = n4/1461L-4712;
|
|---|
| 306 | m = ((nd10/306+2)%12)+1;
|
|---|
| 307 | d = (nd10%306)/10+1;
|
|---|
| 308 | }
|
|---|
| 309 |
|
|---|
| 310 | // --------------------------------------------------------------------------
|
|---|
| 311 | //
|
|---|
| 312 | // Return Mjd corresponding to year y, month m and day d.
|
|---|
| 313 | //
|
|---|
| 314 | Int_t MAstro::Ymd2Mjd(UShort_t y, Byte_t m, Byte_t d)
|
|---|
| 315 | {
|
|---|
| 316 | // Month lengths in days
|
|---|
| 317 | static int months[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
|
|---|
| 318 |
|
|---|
| 319 | // Validate month
|
|---|
| 320 | if (m<1 || m>12)
|
|---|
| 321 | return -1;
|
|---|
| 322 |
|
|---|
| 323 | // Allow for leap year
|
|---|
| 324 | months[1] = (y%4==0 && (y%100!=0 || y%400==0)) ? 29 : 28;
|
|---|
| 325 |
|
|---|
| 326 | // Validate day
|
|---|
| 327 | if (d<1 || d>months[m-1])
|
|---|
| 328 | return -1;
|
|---|
| 329 |
|
|---|
| 330 | // Precalculate some values
|
|---|
| 331 | const Byte_t lm = 12-m;
|
|---|
| 332 | const ULong_t lm10 = 4712 + y - lm/10;
|
|---|
| 333 |
|
|---|
| 334 | // Perform the conversion
|
|---|
| 335 | return 1461L*lm10/4 + (306*((m+9)%12)+5)/10 - (3*((lm10+188)/100))/4 + d - 2399904;
|
|---|
| 336 | }
|
|---|
| 337 |
|
|---|
| 338 | // --------------------------------------------------------------------------
|
|---|
| 339 | //
|
|---|
| 340 | // Convert a mjd to a number yymmdd. The century is just cut away, e.g.
|
|---|
| 341 | // 54393 --> 71020 (2007/10/20)
|
|---|
| 342 | // 50741 --> 971020 (1997/10/20)
|
|---|
| 343 | // 17868 --> 71020 (1907/10/20)
|
|---|
| 344 | //
|
|---|
| 345 | UInt_t MAstro::Mjd2Yymmdd(UInt_t mjd)
|
|---|
| 346 | {
|
|---|
| 347 | UShort_t y;
|
|---|
| 348 | Byte_t m, d;
|
|---|
| 349 | Mjd2Ymd(mjd, y, m, d);
|
|---|
| 350 |
|
|---|
| 351 | return d + m*100 + (y%100)*10000;
|
|---|
| 352 | }
|
|---|
| 353 |
|
|---|
| 354 | // --------------------------------------------------------------------------
|
|---|
| 355 | //
|
|---|
| 356 | // Convert a yymmdd number to mjd. The century is defined as 2000 for
|
|---|
| 357 | // yy<70, 1900 otherwise.
|
|---|
| 358 | // 71020 --> 54393 (2007/10/20)
|
|---|
| 359 | // 971020 --> 50741 (1997/10/20)
|
|---|
| 360 | //
|
|---|
| 361 | UInt_t MAstro::Yymmdd2Mjd(UInt_t yymmdd)
|
|---|
| 362 | {
|
|---|
| 363 | const Byte_t dd = yymmdd%100;
|
|---|
| 364 | const Byte_t mm = (yymmdd/100)%100;
|
|---|
| 365 | const UShort_t yy = (yymmdd/10000)%100;
|
|---|
| 366 |
|
|---|
| 367 | return Ymd2Mjd(yy + (yy<70 ? 2000 : 1900), mm, dd);
|
|---|
| 368 | }
|
|---|
| 369 |
|
|---|
| 370 | // --------------------------------------------------------------------------
|
|---|
| 371 | //
|
|---|
| 372 | // theta0, phi0 [rad]: polar angle/zenith distance, azimuth of 1st object
|
|---|
| 373 | // theta1, phi1 [rad]: polar angle/zenith distance, azimuth of 2nd object
|
|---|
| 374 | // AngularDistance [rad]: Angular distance between two objects
|
|---|
| 375 | //
|
|---|
| 376 | Double_t MAstro::AngularDistance(Double_t theta0, Double_t phi0, Double_t theta1, Double_t phi1)
|
|---|
| 377 | {
|
|---|
| 378 | // v1 = theta0/phi0 --> theta0 / 0
|
|---|
| 379 | // v2 = theta1/phi1 --> theta1 / phi1-phi0
|
|---|
| 380 | // acos(alpha) = v1*v2/|v1||v2| |v1|*|v2|=1
|
|---|
| 381 | const Double_t sin2 = TMath::Sin(theta0)*TMath::Sin(theta1);
|
|---|
| 382 | const Double_t cos2 = TMath::Cos(theta0)*TMath::Cos(theta1);
|
|---|
| 383 |
|
|---|
| 384 | return TMath::ACos(sin2*TMath::Cos(phi1-phi0) + cos2);
|
|---|
| 385 | /*
|
|---|
| 386 | TVector3 v0;
|
|---|
| 387 | v0.SetMagThetaPhi(1, theta0, phi0);
|
|---|
| 388 |
|
|---|
| 389 | TVector3 v1;
|
|---|
| 390 | v1.SetMagThetaPhi(1, theta0, phi0);
|
|---|
| 391 |
|
|---|
| 392 | return v0.Angle(v1);
|
|---|
| 393 | */
|
|---|
| 394 | }
|
|---|
| 395 |
|
|---|
| 396 | // --------------------------------------------------------------------------
|
|---|
| 397 | //
|
|---|
| 398 | // Calls MTime::GetGmst() Better use MTime::GetGmst() directly
|
|---|
| 399 | //
|
|---|
| 400 | Double_t MAstro::UT2GMST(Double_t ut1)
|
|---|
| 401 | {
|
|---|
| 402 | return MTime(ut1).GetGmst();
|
|---|
| 403 | }
|
|---|
| 404 |
|
|---|
| 405 | // --------------------------------------------------------------------------
|
|---|
| 406 | //
|
|---|
| 407 | // RotationAngle
|
|---|
| 408 | //
|
|---|
| 409 | // calculates the angle for the rotation of the sky coordinate system
|
|---|
| 410 | // with respect to the local coordinate system. This is identical
|
|---|
| 411 | // to the rotation angle of the sky image in the camera.
|
|---|
| 412 | //
|
|---|
| 413 | // sinl [rad]: sine of observers latitude
|
|---|
| 414 | // cosl [rad]: cosine of observers latitude
|
|---|
| 415 | // theta [rad]: polar angle/zenith distance
|
|---|
| 416 | // phi [rad]: rotation angle/azimuth
|
|---|
| 417 | //
|
|---|
| 418 | // Return sin/cos component of angle
|
|---|
| 419 | //
|
|---|
| 420 | // The convention is such, that the rotation angle is -pi/pi if
|
|---|
| 421 | // right ascension and local rotation angle are counted in the
|
|---|
| 422 | // same direction, 0 if counted in the opposite direction.
|
|---|
| 423 | //
|
|---|
| 424 | // (In other words: The rotation angle is 0 when the source culminates)
|
|---|
| 425 | //
|
|---|
| 426 | // Using vectors it can be done like:
|
|---|
| 427 | // TVector3 v, p;
|
|---|
| 428 | // v.SetMagThetaPhi(1, theta, phi);
|
|---|
| 429 | // p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0);
|
|---|
| 430 | // v = v.Cross(l));
|
|---|
| 431 | // v.RotateZ(-phi);
|
|---|
| 432 | // v.Rotate(-theta)
|
|---|
| 433 | // rho = TMath::ATan2(v(2), v(1));
|
|---|
| 434 | //
|
|---|
| 435 | // For more information see TDAS 00-11, eqs. (18) and (20)
|
|---|
| 436 | //
|
|---|
| 437 | void MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi, Double_t &sin, Double_t &cos)
|
|---|
| 438 | {
|
|---|
| 439 | const Double_t sint = TMath::Sin(theta);
|
|---|
| 440 | const Double_t cost = TMath::Cos(theta);
|
|---|
| 441 |
|
|---|
| 442 | const Double_t snlt = sinl*sint;
|
|---|
| 443 | const Double_t cslt = cosl*cost;
|
|---|
| 444 |
|
|---|
| 445 | const Double_t sinp = TMath::Sin(phi);
|
|---|
| 446 | const Double_t cosp = TMath::Cos(phi);
|
|---|
| 447 |
|
|---|
| 448 | const Double_t v1 = sint*sinp;
|
|---|
| 449 | const Double_t v2 = cslt - snlt*cosp;
|
|---|
| 450 |
|
|---|
| 451 | const Double_t denom = TMath::Sqrt(v1*v1 + v2*v2);
|
|---|
| 452 |
|
|---|
| 453 | sin = cosl*sinp / denom; // y-component
|
|---|
| 454 | cos = (snlt-cslt*cosp) / denom; // x-component
|
|---|
| 455 | }
|
|---|
| 456 |
|
|---|
| 457 | // --------------------------------------------------------------------------
|
|---|
| 458 | //
|
|---|
| 459 | // RotationAngle
|
|---|
| 460 | //
|
|---|
| 461 | // calculates the angle for the rotation of the sky coordinate system
|
|---|
| 462 | // with respect to the local coordinate system. This is identical
|
|---|
| 463 | // to the rotation angle of the sky image in the camera.
|
|---|
| 464 | //
|
|---|
| 465 | // sinl [rad]: sine of observers latitude
|
|---|
| 466 | // cosl [rad]: cosine of observers latitude
|
|---|
| 467 | // theta [rad]: polar angle/zenith distance
|
|---|
| 468 | // phi [rad]: rotation angle/azimuth
|
|---|
| 469 | //
|
|---|
| 470 | // Return angle [rad] in the range -pi, pi
|
|---|
| 471 | //
|
|---|
| 472 | // The convention is such, that the rotation angle is -pi/pi if
|
|---|
| 473 | // right ascension and local rotation angle are counted in the
|
|---|
| 474 | // same direction, 0 if counted in the opposite direction.
|
|---|
| 475 | //
|
|---|
| 476 | // (In other words: The rotation angle is 0 when the source culminates)
|
|---|
| 477 | //
|
|---|
| 478 | // Using vectors it can be done like:
|
|---|
| 479 | // TVector3 v, p;
|
|---|
| 480 | // v.SetMagThetaPhi(1, theta, phi);
|
|---|
| 481 | // p.SetMagThetaPhi(1, TMath::Pi()/2-latitude, 0);
|
|---|
| 482 | // v = v.Cross(l));
|
|---|
| 483 | // v.RotateZ(-phi);
|
|---|
| 484 | // v.Rotate(-theta)
|
|---|
| 485 | // rho = TMath::ATan2(v(2), v(1));
|
|---|
| 486 | //
|
|---|
| 487 | // For more information see TDAS 00-11, eqs. (18) and (20)
|
|---|
| 488 | //
|
|---|
| 489 | Double_t MAstro::RotationAngle(Double_t sinl, Double_t cosl, Double_t theta, Double_t phi)
|
|---|
| 490 | {
|
|---|
| 491 | const Double_t snlt = sinl*TMath::Sin(theta);
|
|---|
| 492 | const Double_t cslt = cosl*TMath::Cos(theta);
|
|---|
| 493 |
|
|---|
| 494 | const Double_t sinp = TMath::Sin(phi);
|
|---|
| 495 | const Double_t cosp = TMath::Cos(phi);
|
|---|
| 496 |
|
|---|
| 497 | return TMath::ATan2(cosl*sinp, snlt-cslt*cosp);
|
|---|
| 498 | }
|
|---|
| 499 |
|
|---|
| 500 | // --------------------------------------------------------------------------
|
|---|
| 501 | //
|
|---|
| 502 | // Estimates the time at which a source culminates.
|
|---|
| 503 | //
|
|---|
| 504 | // ra: right ascension [rad]
|
|---|
| 505 | // elong: observers longitude [rad]
|
|---|
| 506 | // mjd: modified julian date (utc)
|
|---|
| 507 | //
|
|---|
| 508 | // return time in [-12;12]
|
|---|
| 509 | //
|
|---|
| 510 | Double_t MAstro::EstimateCulminationTime(Double_t mjd, Double_t elong, Double_t ra)
|
|---|
| 511 | {
|
|---|
| 512 | // startime at 1.1.2000 for greenwich 0h
|
|---|
| 513 | const Double_t gmt0 = 6.664520;
|
|---|
| 514 |
|
|---|
| 515 | // difference of startime for greenwich for two calendar days [h]
|
|---|
| 516 | const Double_t d0 = 0.06570982224;
|
|---|
| 517 |
|
|---|
| 518 | // mjd of greenwich 1.1.2000 0h
|
|---|
| 519 | const Double_t mjd0 = 51544;
|
|---|
| 520 |
|
|---|
| 521 | // mjd today
|
|---|
| 522 | const Double_t mjd1 = TMath::Floor(mjd);
|
|---|
| 523 |
|
|---|
| 524 | // scale between star-time and sun-time
|
|---|
| 525 | const Double_t scale = 1;//1.00273790926;
|
|---|
| 526 |
|
|---|
| 527 | const Double_t UT = (ra-elong)*RadToHor() - (gmt0 + d0 * (mjd1-mjd0))/scale;
|
|---|
| 528 |
|
|---|
| 529 | return fmod(2412 + UT, 24) - 12;
|
|---|
| 530 | }
|
|---|
| 531 |
|
|---|
| 532 | // --------------------------------------------------------------------------
|
|---|
| 533 | //
|
|---|
| 534 | // Kepler - solve the equation of Kepler
|
|---|
| 535 | //
|
|---|
| 536 | Double_t MAstro::Kepler(Double_t m, Double_t ecc)
|
|---|
| 537 | {
|
|---|
| 538 | m *= TMath::DegToRad();
|
|---|
| 539 |
|
|---|
| 540 | Double_t delta = 0;
|
|---|
| 541 | Double_t e = m;
|
|---|
| 542 | do {
|
|---|
| 543 | delta = e - ecc * sin(e) - m;
|
|---|
| 544 | e -= delta / (1 - ecc * cos(e));
|
|---|
| 545 | } while (fabs(delta) > 1e-6);
|
|---|
| 546 |
|
|---|
| 547 | return e;
|
|---|
| 548 | }
|
|---|
| 549 |
|
|---|
| 550 | // --------------------------------------------------------------------------
|
|---|
| 551 | //
|
|---|
| 552 | // GetMoonPhase - calculate phase of moon as a fraction:
|
|---|
| 553 | // Returns -1 if calculation failed
|
|---|
| 554 | //
|
|---|
| 555 | Double_t MAstro::GetMoonPhase(Double_t mjd)
|
|---|
| 556 | {
|
|---|
| 557 | /****** Calculation of the Sun's position. ******/
|
|---|
| 558 |
|
|---|
| 559 | // date within epoch
|
|---|
| 560 | const Double_t epoch = 44238; // 1980 January 0.0
|
|---|
| 561 | const Double_t day = mjd - epoch;
|
|---|
| 562 | if (day<0)
|
|---|
| 563 | {
|
|---|
| 564 | cout << "MAstro::GetMoonPhase - Day before Jan 1980" << endl;
|
|---|
| 565 | return -1;
|
|---|
| 566 | }
|
|---|
| 567 |
|
|---|
| 568 | // mean anomaly of the Sun
|
|---|
| 569 | const Double_t n = fmod(day*360/365.2422, 360);
|
|---|
| 570 |
|
|---|
| 571 | const Double_t elonge = 278.833540; // ecliptic longitude of the Sun at epoch 1980.0
|
|---|
| 572 | const Double_t elongp = 282.596403; // ecliptic longitude of the Sun at perigee
|
|---|
| 573 |
|
|---|
| 574 | // convert from perigee co-ordinates to epoch 1980.0
|
|---|
| 575 | const Double_t m = fmod(n + elonge - elongp + 360, 360);
|
|---|
| 576 |
|
|---|
| 577 | // solve equation of Kepler
|
|---|
| 578 | const Double_t eccent = 0.016718; // eccentricity of Earth's orbit
|
|---|
| 579 | const Double_t k = Kepler(m, eccent);
|
|---|
| 580 | const Double_t ec0 = sqrt((1 + eccent) / (1 - eccent)) * tan(k / 2);
|
|---|
| 581 | // true anomaly
|
|---|
| 582 | const Double_t ec = 2 * atan(ec0) * TMath::RadToDeg();
|
|---|
| 583 |
|
|---|
| 584 | // Sun's geocentric ecliptic longitude
|
|---|
| 585 | const Double_t lambdasun = fmod(ec + elongp + 720, 360);
|
|---|
| 586 |
|
|---|
| 587 |
|
|---|
| 588 | /****** Calculation of the Moon's position. ******/
|
|---|
| 589 |
|
|---|
| 590 | // Moon's mean longitude.
|
|---|
| 591 | const Double_t mmlong = 64.975464; // moon's mean lonigitude at the epoch
|
|---|
| 592 | const Double_t ml = fmod(13.1763966*day + mmlong + 360, 360);
|
|---|
| 593 | // Moon's mean anomaly.
|
|---|
| 594 | const Double_t mmlongp = 349.383063; // mean longitude of the perigee at the epoch
|
|---|
| 595 | const Double_t mm = fmod(ml - 0.1114041*day - mmlongp + 720, 360);
|
|---|
| 596 | // Evection.
|
|---|
| 597 | const Double_t ev = 1.2739 * sin((2 * (ml - lambdasun) - mm)*TMath::DegToRad());
|
|---|
| 598 | // Annual equation.
|
|---|
| 599 | const Double_t sinm = TMath::Sin(m*TMath::DegToRad());
|
|---|
| 600 | const Double_t ae = 0.1858 * sinm;
|
|---|
| 601 | // Correction term.
|
|---|
| 602 | const Double_t a3 = 0.37 * sinm;
|
|---|
| 603 | // Corrected anomaly.
|
|---|
| 604 | const Double_t mmp = (mm + ev - ae - a3)*TMath::DegToRad();
|
|---|
| 605 | // Correction for the equation of the centre.
|
|---|
| 606 | const Double_t mec = 6.2886 * sin(mmp);
|
|---|
| 607 | // Another correction term.
|
|---|
| 608 | const Double_t a4 = 0.214 * sin(2 * mmp);
|
|---|
| 609 | // Corrected longitude.
|
|---|
| 610 | const Double_t lp = ml + ev + mec - ae + a4;
|
|---|
| 611 | // Variation.
|
|---|
| 612 | const Double_t v = 0.6583 * sin(2 * (lp - lambdasun)*TMath::DegToRad());
|
|---|
| 613 | // True longitude.
|
|---|
| 614 | const Double_t lpp = lp + v;
|
|---|
| 615 | // Age of the Moon in degrees.
|
|---|
| 616 | const Double_t age = (lpp - lambdasun)*TMath::DegToRad();
|
|---|
| 617 |
|
|---|
| 618 | // Calculation of the phase of the Moon.
|
|---|
| 619 | return (1 - TMath::Cos(age)) / 2;
|
|---|
| 620 | }
|
|---|
| 621 |
|
|---|
| 622 | // --------------------------------------------------------------------------
|
|---|
| 623 | //
|
|---|
| 624 | // Calculate the Period to which the time belongs to. The Period is defined
|
|---|
| 625 | // as the number of synodic months ellapsed since the first full moon
|
|---|
| 626 | // after Jan 1st 1980 (which was @ MJD=44240.37917)
|
|---|
| 627 | //
|
|---|
| 628 | Double_t MAstro::GetMoonPeriod(Double_t mjd)
|
|---|
| 629 | {
|
|---|
| 630 | const Double_t et = mjd-kEpoch0; // Elapsed time
|
|---|
| 631 | return et/kSynMonth;
|
|---|
| 632 | }
|
|---|
| 633 |
|
|---|
| 634 | // --------------------------------------------------------------------------
|
|---|
| 635 | //
|
|---|
| 636 | // Convert a moon period back to a mjd
|
|---|
| 637 | //
|
|---|
| 638 | // See also
|
|---|
| 639 | // MAstro::GetMoonPeriod
|
|---|
| 640 | //
|
|---|
| 641 | Double_t MAstro::GetMoonPeriodMjd(Double_t p)
|
|---|
| 642 | {
|
|---|
| 643 | return p*kSynMonth+kEpoch0;
|
|---|
| 644 | }
|
|---|
| 645 |
|
|---|
| 646 | // --------------------------------------------------------------------------
|
|---|
| 647 | //
|
|---|
| 648 | // To get the moon period as defined for MAGIC observation we take the
|
|---|
| 649 | // nearest integer mjd, eg:
|
|---|
| 650 | // 53257.8 --> 53258
|
|---|
| 651 | // 53258.3 --> 53258
|
|---|
| 652 | // Which is the time between 12h and 11:59h of the following day. To
|
|---|
| 653 | // this day-period we assign the moon-period at midnight. To get
|
|---|
| 654 | // the MAGIC definition we now substract 284.
|
|---|
| 655 | //
|
|---|
| 656 | // For MAGIC observation period do eg:
|
|---|
| 657 | // GetMagicPeriod(53257.91042)
|
|---|
| 658 | // or
|
|---|
| 659 | // MTime t;
|
|---|
| 660 | // t.SetMjd(53257.91042);
|
|---|
| 661 | // GetMagicPeriod(t.GetMjd());
|
|---|
| 662 | // or
|
|---|
| 663 | // MTime t;
|
|---|
| 664 | // t.Set(2004, 1, 1, 12, 32, 11);
|
|---|
| 665 | // GetMagicPeriod(t.GetMjd());
|
|---|
| 666 | //
|
|---|
| 667 | // To get a floating point magic period use
|
|---|
| 668 | // GetMoonPeriod(mjd)-284
|
|---|
| 669 | //
|
|---|
| 670 | Int_t MAstro::GetMagicPeriod(Double_t mjd)
|
|---|
| 671 | {
|
|---|
| 672 | const Double_t mmjd = (Double_t)TMath::Nint(mjd);
|
|---|
| 673 | const Double_t period = GetMoonPeriod(mmjd);
|
|---|
| 674 |
|
|---|
| 675 | return (Int_t)TMath::Floor(period)-284;
|
|---|
| 676 | }
|
|---|
| 677 |
|
|---|
| 678 | // --------------------------------------------------------------------------
|
|---|
| 679 | //
|
|---|
| 680 | // Get the start time (12h noon) of the MAGIC period p.
|
|---|
| 681 | //
|
|---|
| 682 | // See also
|
|---|
| 683 | // MAstro::GetMagicPeriod
|
|---|
| 684 | //
|
|---|
| 685 | Double_t MAstro::GetMagicPeriodStart(Int_t p)
|
|---|
| 686 | {
|
|---|
| 687 | return TMath::Floor(GetMoonPeriodMjd(p+284))+0.5;
|
|---|
| 688 | }
|
|---|
| 689 |
|
|---|
| 690 | // --------------------------------------------------------------------------
|
|---|
| 691 | //
|
|---|
| 692 | // Returns right ascension and declination [rad] of the sun at the
|
|---|
| 693 | // given mjd (ra, dec).
|
|---|
| 694 | //
|
|---|
| 695 | // returns the mean longitude [rad].
|
|---|
| 696 | //
|
|---|
| 697 | // from http://xoomer.alice.it/vtomezzo/sunriset/formulas/index.html
|
|---|
| 698 | //
|
|---|
| 699 | Double_t MAstro::GetSunRaDec(Double_t mjd, Double_t &ra, Double_t &dec)
|
|---|
| 700 | {
|
|---|
| 701 | const Double_t T = (mjd-51544.5)/36525;// + (h-12)/24.0;
|
|---|
| 702 |
|
|---|
| 703 | const Double_t T2 = T<0 ? -T*T : T*T;
|
|---|
| 704 | const Double_t T3 = T*T*T;
|
|---|
| 705 |
|
|---|
| 706 | // Find the ecliptic longitude of the Sun
|
|---|
| 707 |
|
|---|
| 708 | // Geometric mean longitude of the Sun
|
|---|
| 709 | const Double_t L = 280.46646 + 36000.76983*T + 0.0003032*T2;
|
|---|
| 710 |
|
|---|
| 711 | // mean anomaly of the Sun
|
|---|
| 712 | Double_t g = 357.52911 + 35999.05029*T - 0.0001537*T2;
|
|---|
| 713 | g *= TMath::DegToRad();
|
|---|
| 714 |
|
|---|
| 715 | // Longitude of the moon's ascending node
|
|---|
| 716 | Double_t omega = 125.04452 - 1934.136261*T + 0.0020708*T2 + T3/450000;
|
|---|
| 717 | omega *= TMath::DegToRad();
|
|---|
| 718 |
|
|---|
| 719 | const Double_t coso = cos(omega);
|
|---|
| 720 | const Double_t sino = sin(omega);
|
|---|
| 721 |
|
|---|
| 722 | // Equation of the center
|
|---|
| 723 | const Double_t C = (1.914602 - 0.004817*T - 0.000014*T2)*sin(g) +
|
|---|
| 724 | (0.019993 - 0.000101*T)*sin(2*g) + 0.000289*sin(3*g);
|
|---|
| 725 |
|
|---|
| 726 | // True longitude of the sun
|
|---|
| 727 | const Double_t tlong = L + C;
|
|---|
| 728 |
|
|---|
| 729 | // Apperent longitude of the Sun (ecliptic)
|
|---|
| 730 | Double_t lambda = tlong - 0.00569 - 0.00478*sino;
|
|---|
| 731 | lambda *= TMath::DegToRad();
|
|---|
| 732 |
|
|---|
| 733 | // Obliquity of the ecliptic
|
|---|
| 734 | Double_t obliq = 23.4392911 - 0.01300416667*T - 0.00000016389*T2 + 0.00000050361*T3 + 0.00255625*coso;
|
|---|
| 735 | obliq *= TMath::DegToRad();
|
|---|
| 736 |
|
|---|
| 737 | // Find the RA and DEC of the Sun
|
|---|
| 738 | const Double_t sinl = sin(lambda);
|
|---|
| 739 |
|
|---|
| 740 | ra = atan2(cos(obliq) * sinl, cos(lambda));
|
|---|
| 741 | dec = asin(sin(obliq) * sinl);
|
|---|
| 742 |
|
|---|
| 743 | return L*TMath::DegToRad();
|
|---|
| 744 | }
|
|---|
| 745 |
|
|---|
| 746 | // --------------------------------------------------------------------------
|
|---|
| 747 | //
|
|---|
| 748 | // Returns right ascension and declination [rad] of the moon at the
|
|---|
| 749 | // given mjd (ra, dec).
|
|---|
| 750 | //
|
|---|
| 751 | void MAstro::GetMoonRaDec(Double_t mjd, Double_t &ra, Double_t &dec)
|
|---|
| 752 | {
|
|---|
| 753 | // Mean Moon orbit elements as of 1990.0
|
|---|
| 754 | const Double_t l0 = 318.351648 * TMath::DegToRad();
|
|---|
| 755 | const Double_t P0 = 36.340410 * TMath::DegToRad();
|
|---|
| 756 | const Double_t N0 = 318.510107 * TMath::DegToRad();
|
|---|
| 757 | const Double_t i = 5.145396 * TMath::DegToRad();
|
|---|
| 758 |
|
|---|
| 759 | Double_t sunra, sundec, g;
|
|---|
| 760 | {
|
|---|
| 761 | const Double_t T = (mjd-51544.5)/36525;// + (h-12)/24.0;
|
|---|
| 762 | const Double_t T2 = T<0 ? -T*T : T*T;
|
|---|
| 763 |
|
|---|
| 764 | GetSunRaDec(mjd, sunra, sundec);
|
|---|
| 765 |
|
|---|
| 766 | // mean anomaly of the Sun
|
|---|
| 767 | g = 357.52911 + 35999.05029*T - 0.0001537*T2;
|
|---|
| 768 | g *= TMath::DegToRad();
|
|---|
| 769 | }
|
|---|
| 770 |
|
|---|
| 771 | const Double_t sing = sin(g)*TMath::DegToRad();
|
|---|
| 772 |
|
|---|
| 773 | const Double_t D = (mjd-47891) * TMath::DegToRad();
|
|---|
| 774 | const Double_t l = 13.1763966*D + l0;
|
|---|
| 775 | const Double_t MMoon = l -0.1114041*D - P0; // Moon's mean anomaly M
|
|---|
| 776 | const Double_t N = N0 -0.0529539*D; // Moon's mean ascending node longitude
|
|---|
| 777 |
|
|---|
| 778 | const Double_t C = l-sunra;
|
|---|
| 779 | const Double_t Ev = 1.2739 * sin(2*C-MMoon) * TMath::DegToRad();
|
|---|
| 780 | const Double_t Ae = 0.1858 * sing;
|
|---|
| 781 | const Double_t A3 = 0.37 * sing;
|
|---|
| 782 | const Double_t MMoon2 = MMoon+Ev-Ae-A3; // corrected Moon anomaly
|
|---|
| 783 |
|
|---|
| 784 | const Double_t Ec = 6.2886 * sin(MMoon2) * TMath::DegToRad(); // equation of centre
|
|---|
| 785 | const Double_t A4 = 0.214 * sin(2*MMoon2)* TMath::DegToRad();
|
|---|
| 786 | const Double_t l2 = l+Ev+Ec-Ae+A4; // corrected Moon's longitude
|
|---|
| 787 |
|
|---|
| 788 | const Double_t V = 0.6583 * sin(2*(l2-sunra)) * TMath::DegToRad();
|
|---|
| 789 | const Double_t l3 = l2+V; // true orbital longitude;
|
|---|
| 790 |
|
|---|
| 791 | const Double_t N2 = N -0.16*sing;
|
|---|
| 792 |
|
|---|
| 793 | ra = fmod( N2 + atan2( sin(l3-N2)*cos(i), cos(l3-N2) ), TMath::TwoPi() );
|
|---|
| 794 | dec = asin(sin(l3-N2)*sin(i) );
|
|---|
| 795 | }
|
|---|
| 796 |
|
|---|
| 797 | // --------------------------------------------------------------------------
|
|---|
| 798 | //
|
|---|
| 799 | // Return Euqation of time in hours for given mjd
|
|---|
| 800 | //
|
|---|
| 801 | Double_t MAstro::GetEquationOfTime(Double_t mjd)
|
|---|
| 802 | {
|
|---|
| 803 | Double_t ra, dec;
|
|---|
| 804 | const Double_t L = fmod(GetSunRaDec(mjd, ra, dec), TMath::TwoPi());
|
|---|
| 805 |
|
|---|
| 806 | if (L-ra>TMath::Pi())
|
|---|
| 807 | ra += TMath::TwoPi();
|
|---|
| 808 |
|
|---|
| 809 | return 24*(L - ra)/TMath::TwoPi();
|
|---|
| 810 | }
|
|---|
| 811 |
|
|---|
| 812 | // --------------------------------------------------------------------------
|
|---|
| 813 | //
|
|---|
| 814 | // Returns noon time (the time of the highest altitude of the sun)
|
|---|
| 815 | // at the given mjd and at the given observers longitude [deg]
|
|---|
| 816 | //
|
|---|
| 817 | // The maximum altitude reached at noon time is
|
|---|
| 818 | // altmax = 90.0 + dec - latit;
|
|---|
| 819 | // if (dec > latit)
|
|---|
| 820 | // altmax = 90.0 + latit - dec;
|
|---|
| 821 | // dec=Declination of the sun
|
|---|
| 822 | //
|
|---|
| 823 | Double_t MAstro::GetNoonTime(Double_t mjd, Double_t longit)
|
|---|
| 824 | {
|
|---|
| 825 | const Double_t equation = GetEquationOfTime(TMath::Floor(mjd));
|
|---|
| 826 | return 12. + equation - longit/15;
|
|---|
| 827 | }
|
|---|
| 828 |
|
|---|
| 829 | // --------------------------------------------------------------------------
|
|---|
| 830 | //
|
|---|
| 831 | // Returns the time (in hours) between noon (the sun culmination)
|
|---|
| 832 | // and the sun being at height alt[deg] (90=zenith, 0=horizont)
|
|---|
| 833 | //
|
|---|
| 834 | // civil twilight: 0deg to -6deg
|
|---|
| 835 | // nautical twilight: -6deg to -12deg
|
|---|
| 836 | // astronom twilight: -12deg to -18deg
|
|---|
| 837 | //
|
|---|
| 838 | // latit is the observers latitude in rad
|
|---|
| 839 | //
|
|---|
| 840 | // returns -1 in case the sun doesn't reach this altitude.
|
|---|
| 841 | // (eg. alt=0: Polarnight or -day)
|
|---|
| 842 | //
|
|---|
| 843 | // To get the sun rise/set:
|
|---|
| 844 | // double timediff = MAstro::GetTimeFromNoonToAlt(mjd, latit*TMath::DegToRad(), par[0]);
|
|---|
| 845 | // double noon = MAstro::GetNoonTime(mjd, longit);
|
|---|
| 846 | // double N = TMath::Floor(mjd)+noon/24.;
|
|---|
| 847 | // double risetime = N-timediff/24.;
|
|---|
| 848 | // double settime = N+timediff/24.;
|
|---|
| 849 | //
|
|---|
| 850 | Double_t MAstro::GetTimeFromNoonToAlt(Double_t mjd, Double_t latit, Double_t alt)
|
|---|
| 851 | {
|
|---|
| 852 | Double_t ra, dec;
|
|---|
| 853 | GetSunRaDec(mjd, ra, dec);
|
|---|
| 854 |
|
|---|
| 855 | const Double_t h = alt*TMath::DegToRad();
|
|---|
| 856 |
|
|---|
| 857 | const Double_t arg = (sin(h) - sin(latit)*sin(dec))/(cos(latit)*cos(dec));
|
|---|
| 858 |
|
|---|
| 859 | return TMath::Abs(arg)>1 ? -1 : 12*acos(arg)/TMath::Pi();
|
|---|
| 860 | }
|
|---|
| 861 |
|
|---|
| 862 | // --------------------------------------------------------------------------
|
|---|
| 863 | //
|
|---|
| 864 | // Returns the time of the sunrise/set calculated before and after
|
|---|
| 865 | // the noon of floor(mjd) (TO BE IMPROVED)
|
|---|
| 866 | //
|
|---|
| 867 | // Being longit and latit the longitude and latitude of the observer
|
|---|
| 868 | // in deg and alt the hight above or below the horizont in deg.
|
|---|
| 869 | //
|
|---|
| 870 | // civil twilight: 0deg to -6deg
|
|---|
| 871 | // nautical twilight: -6deg to -12deg
|
|---|
| 872 | // astronom twilight: -12deg to -18deg
|
|---|
| 873 | //
|
|---|
| 874 | // A TArrayD(2) is returned with the the mjd of the sunrise in
|
|---|
| 875 | // TArray[0] and the mjd of the sunset in TArrayD[1].
|
|---|
| 876 | //
|
|---|
| 877 | TArrayD MAstro::GetSunRiseSet(Double_t mjd, Double_t longit, Double_t latit, Double_t alt)
|
|---|
| 878 | {
|
|---|
| 879 | const Double_t timediff = MAstro::GetTimeFromNoonToAlt(mjd, latit*TMath::DegToRad(), alt);
|
|---|
| 880 | const Double_t noon = MAstro::GetNoonTime(mjd, longit);
|
|---|
| 881 |
|
|---|
| 882 | const Double_t N = TMath::Floor(mjd)+noon/24.;
|
|---|
| 883 |
|
|---|
| 884 | const Double_t rise = timediff<0 ? N-0.5 : N-timediff/24.;
|
|---|
| 885 | const Double_t set = timediff<0 ? N+0.5 : N+timediff/24.;
|
|---|
| 886 |
|
|---|
| 887 | TArrayD rc(2);
|
|---|
| 888 | rc[0] = rise;
|
|---|
| 889 | rc[1] = set;
|
|---|
| 890 | return rc;
|
|---|
| 891 | }
|
|---|
| 892 |
|
|---|
| 893 | // --------------------------------------------------------------------------
|
|---|
| 894 | //
|
|---|
| 895 | // Returns the distance in x,y between two polar-vectors (eg. Alt/Az, Ra/Dec)
|
|---|
| 896 | // projected on aplain in a distance dist. For Magic this this the distance
|
|---|
| 897 | // of the camera plain (1700mm) dist also determins the unit in which
|
|---|
| 898 | // the TVector2 is returned.
|
|---|
| 899 | //
|
|---|
| 900 | // v0 is the reference vector (eg. the vector to the center of the camera)
|
|---|
| 901 | // v1 is the vector to which we determin the distance on the plain
|
|---|
| 902 | //
|
|---|
| 903 | // (see also MStarCamTrans::Loc0LocToCam())
|
|---|
| 904 | //
|
|---|
| 905 | TVector2 MAstro::GetDistOnPlain(const TVector3 &v0, TVector3 v1, Double_t dist)
|
|---|
| 906 | {
|
|---|
| 907 | v1.RotateZ(-v0.Phi());
|
|---|
| 908 | v1.RotateY(-v0.Theta());
|
|---|
| 909 | v1.RotateZ(-TMath::Pi()/2); // exchange x and y
|
|---|
| 910 | v1 *= dist/v1.Z();
|
|---|
| 911 |
|
|---|
| 912 | return v1.XYvector(); //TVector2(v1.Y(), -v1.X());//v1.XYvector();
|
|---|
| 913 | }
|
|---|
| 914 |
|
|---|
| 915 | // --------------------------------------------------------------------------
|
|---|
| 916 | //
|
|---|
| 917 | // Calculate the absolute misspointing from the nominal zenith angle nomzd
|
|---|
| 918 | // and the deviations in zd (devzd) and az (devaz).
|
|---|
| 919 | // All values given in deg, the return value, too.
|
|---|
| 920 | //
|
|---|
| 921 | Double_t MAstro::GetDevAbs(Double_t nomzd, Double_t meszd, Double_t devaz)
|
|---|
| 922 | {
|
|---|
| 923 | nomzd *= TMath::DegToRad();
|
|---|
| 924 | meszd *= TMath::DegToRad();
|
|---|
| 925 | devaz *= TMath::DegToRad();
|
|---|
| 926 |
|
|---|
| 927 | const double x = sin(meszd) * sin(nomzd) * cos(devaz);
|
|---|
| 928 | const double y = cos(meszd) * cos(nomzd);
|
|---|
| 929 |
|
|---|
| 930 | return acos(x + y) * TMath::RadToDeg();
|
|---|
| 931 | }
|
|---|
| 932 |
|
|---|
| 933 | // --------------------------------------------------------------------------
|
|---|
| 934 | //
|
|---|
| 935 | // Returned is the offset (number of days) which must be added to
|
|---|
| 936 | // March 1st of the given year, eg:
|
|---|
| 937 | //
|
|---|
| 938 | // Int_t offset = GetDayOfEaster(2004);
|
|---|
| 939 | //
|
|---|
| 940 | // MTime t;
|
|---|
| 941 | // t.Set(year, 3, 1);
|
|---|
| 942 | // t.SetMjd(t.GetMjd()+offset);
|
|---|
| 943 | //
|
|---|
| 944 | // cout << t << endl;
|
|---|
| 945 | //
|
|---|
| 946 | // If the date coudn't be calculated -1 is returned.
|
|---|
| 947 | //
|
|---|
| 948 | // The minimum value returned is 21 corresponding to March 22.
|
|---|
| 949 | // The maximum value returned is 55 corresponding to April 25.
|
|---|
| 950 | //
|
|---|
| 951 | // --------------------------------------------------------------------------
|
|---|
| 952 | //
|
|---|
| 953 | // Gauss'sche Formel zur Berechnung des Osterdatums
|
|---|
| 954 | // Wann wird Ostern gefeiert? Wie erfährt man das Osterdatum für ein
|
|---|
| 955 | // bestimmtes Jahr, ohne in einen Kalender zu schauen?
|
|---|
| 956 | //
|
|---|
| 957 | // Ostern ist ein "bewegliches" Fest. Es wird am ersten Sonntag nach dem
|
|---|
| 958 | // ersten Frühlingsvollmond gefeiert. Damit ist der 22. März der früheste
|
|---|
| 959 | // Termin, der 25. April der letzte, auf den Ostern fallen kann. Von
|
|---|
| 960 | // diesem Termin hängen auch die Feste Christi Himmelfahrt, das 40 Tage
|
|---|
| 961 | // nach Ostern, und Pfingsten, das 50 Tage nach Ostern gefeiert wird, ab.
|
|---|
| 962 | //
|
|---|
| 963 | // Von Carl Friedrich Gauß (Mathematiker, Astronom und Physiker;
|
|---|
| 964 | // 1777-1855) stammt ein Algorithmus, der es erlaubt ohne Kenntnis des
|
|---|
| 965 | // Mondkalenders die Daten der Osterfeste für die Jahre 1700 bis 2199 zu
|
|---|
| 966 | // bestimmen.
|
|---|
| 967 | //
|
|---|
| 968 | // Gib eine Jahreszahl zwischen 1700 und 2199 ein:
|
|---|
| 969 | //
|
|---|
| 970 | // Und so funktioniert der Algorithmus:
|
|---|
| 971 | //
|
|---|
| 972 | // Es sei:
|
|---|
| 973 | //
|
|---|
| 974 | // J die Jahreszahl
|
|---|
| 975 | // a der Divisionsrest von J/19
|
|---|
| 976 | // b der Divisionsrest von J/4
|
|---|
| 977 | // c der Divisionsrest von J/7
|
|---|
| 978 | // d der Divisionsrest von (19*a + M)/30
|
|---|
| 979 | // e der Divisionsrest von (2*b + 4*c + 6*d + N)/7
|
|---|
| 980 | //
|
|---|
| 981 | // wobei M und N folgende Werte annehmen:
|
|---|
| 982 | //
|
|---|
| 983 | // für die Jahre M N
|
|---|
| 984 | // 1583-1599 22 2
|
|---|
| 985 | // 1600-1699 22 2
|
|---|
| 986 | // 1700-1799 23 3
|
|---|
| 987 | // 1800-1899 23 4
|
|---|
| 988 | // 1900-1999 24 5
|
|---|
| 989 | // 2000-2099 24 5
|
|---|
| 990 | // 2100-2199 24 6
|
|---|
| 991 | // 2200-2299 25 0
|
|---|
| 992 | // 2300-2399 26 1
|
|---|
| 993 | // 2400-2499 25 1
|
|---|
| 994 | //
|
|---|
| 995 | // Dann fällt Ostern auf den
|
|---|
| 996 | // (22 + d + e)ten März
|
|---|
| 997 | //
|
|---|
| 998 | // oder den
|
|---|
| 999 | // (d + e - 9)ten April
|
|---|
| 1000 | //
|
|---|
| 1001 | // Beachte:
|
|---|
| 1002 | // Anstelle des 26. Aprils ist immer der 19. April zu setzen,
|
|---|
| 1003 | // anstelle des 25. Aprils immer dann der 18. April, wenn d=28 und a>10.
|
|---|
| 1004 | //
|
|---|
| 1005 | // Literatur:
|
|---|
| 1006 | // Schüler-Rechenduden
|
|---|
| 1007 | // Bibliographisches Institut
|
|---|
| 1008 | // Mannheim, 1966
|
|---|
| 1009 | //
|
|---|
| 1010 | // --------------------------------------------------------------------------
|
|---|
| 1011 | //
|
|---|
| 1012 | // Der Ostersonntag ist ein sog. unregelmäßiger Feiertag. Alle anderen
|
|---|
| 1013 | // unregelmäßigen Feiertage eines Jahres leiten sich von diesem Tag ab:
|
|---|
| 1014 | //
|
|---|
| 1015 | // * Aschermittwoch ist 46 Tage vor Ostern.
|
|---|
| 1016 | // * Pfingsten ist 49 Tage nach Ostern.
|
|---|
| 1017 | // * Christi Himmelfahrt ist 10 Tage vor Pfingsten.
|
|---|
| 1018 | // * Fronleichnam ist 11 Tage nach Pfingsten.
|
|---|
| 1019 | //
|
|---|
| 1020 | // Man muß also nur den Ostersonntag ermitteln, um alle anderen
|
|---|
| 1021 | // unregelmäßigen Feiertage zu berechnen. Doch wie geht das?
|
|---|
| 1022 | //
|
|---|
| 1023 | // Dazu etwas Geschichte:
|
|---|
| 1024 | //
|
|---|
| 1025 | // Das 1. Kirchenkonzil im Jahre 325 hat festgelegt:
|
|---|
| 1026 | //
|
|---|
| 1027 | // * Ostern ist stets am ersten Sonntag nach dem ersten Vollmond des
|
|---|
| 1028 | // Frühlings.
|
|---|
| 1029 | // * Stichtag ist der 21. März, die "Frühlings-Tagundnachtgleiche".
|
|---|
| 1030 | //
|
|---|
| 1031 | // Am 15.10.1582 wurde von Papst Gregor XIII. der bis dahin gültige
|
|---|
| 1032 | // Julianische Kalender reformiert. Der noch heute gültige Gregorianische
|
|---|
| 1033 | // Kalender legt dabei folgendes fest:
|
|---|
| 1034 | //
|
|---|
| 1035 | // Ein Jahr hat 365 Tage und ein Schaltjahr wird eingefügt, wenn das Jahr
|
|---|
| 1036 | // durch 4 oder durch 400, aber nicht durch 100 teilbar ist. Hieraus
|
|---|
| 1037 | // ergeben sich die zwei notwendigen Konstanten, um den Ostersonntag zu
|
|---|
| 1038 | // berechnen:
|
|---|
| 1039 | //
|
|---|
| 1040 | // 1. Die Jahreslänge von und bis zum Zeitpunkt der
|
|---|
| 1041 | // Frühlings-Tagundnachtgleiche: 365,2422 mittlere Sonnentage
|
|---|
| 1042 | // 2. Ein Mondmonat: 29,5306 mittlere Sonnentage
|
|---|
| 1043 | //
|
|---|
| 1044 | // Mit der "Osterformel", von Carl Friedrich Gauß (1777-1855) im Jahre 1800
|
|---|
| 1045 | // entwickelt, läßt sich der Ostersonntag für jedes Jahr von 1583 bis 8202
|
|---|
| 1046 | // berechnen.
|
|---|
| 1047 | //
|
|---|
| 1048 | // Der früheste mögliche Ostertermin ist der 22. März. (Wenn der Vollmond
|
|---|
| 1049 | // auf den 21. März fällt und der 22. März ein Sonntag ist.)
|
|---|
| 1050 | //
|
|---|
| 1051 | // Der späteste mögliche Ostertermin ist der 25. April. (Wenn der Vollmond
|
|---|
| 1052 | // auf den 21. März fällt und der 21. März ein Sonntag ist.)
|
|---|
| 1053 | //
|
|---|
| 1054 | Int_t MAstro::GetEasterOffset(UShort_t year)
|
|---|
| 1055 | {
|
|---|
| 1056 | if (year<1583 || year>2499)
|
|---|
| 1057 | {
|
|---|
| 1058 | cout << "MAstro::GetDayOfEaster - Year " << year << " not between 1700 and 2199" << endl;
|
|---|
| 1059 | return -1;
|
|---|
| 1060 | }
|
|---|
| 1061 |
|
|---|
| 1062 | Int_t M=0;
|
|---|
| 1063 | Int_t N=0;
|
|---|
| 1064 | switch (year/100)
|
|---|
| 1065 | {
|
|---|
| 1066 | case 15:
|
|---|
| 1067 | case 16: M=22; N=2; break;
|
|---|
| 1068 | case 17: M=23; N=3; break;
|
|---|
| 1069 | case 18: M=23; N=4; break;
|
|---|
| 1070 | case 19:
|
|---|
| 1071 | case 20: M=24; N=5; break;
|
|---|
| 1072 | case 21: M=24; N=6; break;
|
|---|
| 1073 | case 22: M=25; N=0; break;
|
|---|
| 1074 | case 23: M=26; N=1; break;
|
|---|
| 1075 | case 24: M=25; N=1; break;
|
|---|
| 1076 | }
|
|---|
| 1077 |
|
|---|
| 1078 | const Int_t a = year%19;
|
|---|
| 1079 | const Int_t b = year%4;
|
|---|
| 1080 | const Int_t c = year%7;
|
|---|
| 1081 | const Int_t d = (19*a + M)%30;
|
|---|
| 1082 | const Int_t e = (2*b + 4*c + 6*d + N)%7;
|
|---|
| 1083 |
|
|---|
| 1084 | if (e==6 && d==28 && a>10)
|
|---|
| 1085 | return 48;
|
|---|
| 1086 |
|
|---|
| 1087 | if (d+e==35)
|
|---|
| 1088 | return 49;
|
|---|
| 1089 |
|
|---|
| 1090 | return d + e + 21;
|
|---|
| 1091 | }
|
|---|