| 1 | #ifndef MARS_MQuaternion
|
|---|
| 2 | #define MARS_MQuaternion
|
|---|
| 3 |
|
|---|
| 4 | #if 1
|
|---|
| 5 |
|
|---|
| 6 | // We prefer to derive from TQuaternion instead of TLorantzVector
|
|---|
| 7 | // because TQuaternion implements vector algebra with just the 3D vector
|
|---|
| 8 |
|
|---|
| 9 | #ifndef ROOT_TQuaternion
|
|---|
| 10 | #include <math.h>
|
|---|
| 11 | #if (__GNUC__ < 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ < 8))
|
|---|
| 12 | #define sqrt ::sqrt
|
|---|
| 13 | #endif
|
|---|
| 14 | #include <TQuaternion.h>
|
|---|
| 15 | #undef sqrt
|
|---|
| 16 | #endif
|
|---|
| 17 |
|
|---|
| 18 | class MQuaternion : public TQuaternion
|
|---|
| 19 | {
|
|---|
| 20 | public:
|
|---|
| 21 | MQuaternion(const TQuaternion &q) : TQuaternion(q) { }
|
|---|
| 22 | MQuaternion(const TVector3 &v, Double_t t=0) : TQuaternion(v, t) { }
|
|---|
| 23 | void operator*=(const TRotation &r)
|
|---|
| 24 | {
|
|---|
| 25 | fVectorPart *= r;
|
|---|
| 26 | }
|
|---|
| 27 | Double_t X() const { return fVectorPart.X(); }
|
|---|
| 28 | Double_t Y() const { return fVectorPart.Y(); }
|
|---|
| 29 | Double_t Z() const { return fVectorPart.Z(); }
|
|---|
| 30 | Double_t T() const { return fRealPart; }
|
|---|
| 31 |
|
|---|
| 32 | // It seems to be a little bit faster than X*X+Y*Y
|
|---|
| 33 | Double_t R2() const { return XYvector().Mod2(); }
|
|---|
| 34 | Double_t R() const { return XYvector().Mod(); }
|
|---|
| 35 |
|
|---|
| 36 | void PropagateDz(const MQuaternion &w, const Double_t dz)
|
|---|
| 37 | {
|
|---|
| 38 | *this += dz/w.Z()*w;
|
|---|
| 39 | }
|
|---|
| 40 |
|
|---|
| 41 | // Propagates the particle by a distance f in z along
|
|---|
| 42 | // its trajectory w, if f is positive, in the opposite
|
|---|
| 43 | // direction otherwise.
|
|---|
| 44 | void PropagateZ(const MQuaternion &w, const Double_t z)
|
|---|
| 45 | {
|
|---|
| 46 | PropagateDz(w, z-Z());
|
|---|
| 47 |
|
|---|
| 48 | // z=3400, Z= 1700, t=0, c=1 -= 3400/-5*-5 -= 3400 Z=0, c>0
|
|---|
| 49 | // += 1700/-5*-5 += 1700 Z=1700, c>0
|
|---|
| 50 | // z=3400, Z=-1700, t=0, c=1 -= -3400/-5*-5 -= -1700 Z=0, c<0
|
|---|
| 51 |
|
|---|
| 52 | // z=3400, Z= 1700, t=0, c=1 -= (3400-1700)/-5*-5 -= 3400 Z=0, c>0
|
|---|
| 53 | }
|
|---|
| 54 |
|
|---|
| 55 | // Move the photon along its trajectory to the x/y plane
|
|---|
| 56 | // so that z=0. Therefor stretch the vector until
|
|---|
| 57 | // its z-component vanishes.
|
|---|
| 58 | //p -= p.Z()/u.Z()*u;
|
|---|
| 59 | void PropagateZ0(const MQuaternion &w)
|
|---|
| 60 | {
|
|---|
| 61 | // If z>0 we still have to move by a distance of z.
|
|---|
| 62 | // If z<0 we have to move in the opposite direction.
|
|---|
| 63 | // --> z has the right sign for PropagateZ
|
|---|
| 64 | PropagateDz(w, -Z());
|
|---|
| 65 |
|
|---|
| 66 | // Z= 1700, t=0, c=1 -= 1700/-5*-5 -= 1700 +c Z=0, c>0
|
|---|
| 67 | // Z=-1700, t=0, c=1 -= -1700/-5*-5 -= -1700 -c Z=0, c<0
|
|---|
| 68 |
|
|---|
| 69 |
|
|---|
| 70 | // Z= 1700, t=0, c=1 -= 1700/ 5* 5 -= 1700 -c Z=0, c<0
|
|---|
| 71 | // Z=-1700, t=0, c=1 -= -1700/ 5* 5 -= -1700 +c Z=0, c>0
|
|---|
| 72 |
|
|---|
| 73 | //PropagateZ(w, Z());
|
|---|
| 74 | }
|
|---|
| 75 |
|
|---|
| 76 | TVector2 XYvector() const { return fVectorPart.XYvector(); }
|
|---|
| 77 |
|
|---|
| 78 | //void Normalize() { fVectorPart *= TMath::Sqrt(1 - R2())/Z(); }
|
|---|
| 79 |
|
|---|
| 80 | void NormalizeVector() { fVectorPart = fVectorPart.Unit(); }
|
|---|
| 81 |
|
|---|
| 82 | ClassDef(MQuaternion, 1)
|
|---|
| 83 | };
|
|---|
| 84 |
|
|---|
| 85 | #else
|
|---|
| 86 |
|
|---|
| 87 | #ifndef ROOT_TLorentzVector
|
|---|
| 88 | #include <TLorentzVector.h>
|
|---|
| 89 | #endif
|
|---|
| 90 |
|
|---|
| 91 | class MQuaternion : public TLorentzVector
|
|---|
| 92 | {
|
|---|
| 93 | public:
|
|---|
| 94 | //MQuaternion(const TLorentzVector &q) : TLorentzVector(q) { }
|
|---|
| 95 | MQuaternion(const TVector3 &v, Double_t t=0) : TLorentzVector(v, t) { }
|
|---|
| 96 | /*
|
|---|
| 97 | void operator*=(const TRotation &r)
|
|---|
| 98 | {
|
|---|
| 99 | fVectorPart *= r;
|
|---|
| 100 | }
|
|---|
| 101 | Double_t X() const { return fVectorPart.X(); }
|
|---|
| 102 | Double_t Y() const { return fVectorPart.Y(); }
|
|---|
| 103 | Double_t Z() const { return fVectorPart.Z(); }
|
|---|
| 104 | Double_t T() const { return fRealPart; }
|
|---|
| 105 | */
|
|---|
| 106 |
|
|---|
| 107 | // It seems to be a little bit faster than X*X+Y*Y
|
|---|
| 108 | Double_t R2() const { return Perp2(); }
|
|---|
| 109 | Double_t R() const { return Perp(); }
|
|---|
| 110 |
|
|---|
| 111 | // Propagates the particle by a distance f in z along
|
|---|
| 112 | // its trajectory w, if f is positive, in the opposite
|
|---|
| 113 | // direction otherwise.
|
|---|
| 114 | void PropagateZ(const MQuaternion &w, const Double_t f)
|
|---|
| 115 | {
|
|---|
| 116 | *this += f/TMath::Abs(w.Z())*w;
|
|---|
| 117 | }
|
|---|
| 118 |
|
|---|
| 119 | // Move the photon along its trajectory to the x/y plane
|
|---|
| 120 | // so that z=0. Therefor stretch the vector until
|
|---|
| 121 | // its z-component vanishes.
|
|---|
| 122 | //p -= p.Z()/u.Z()*u;
|
|---|
| 123 | void PropagateZ0(const MQuaternion &w)
|
|---|
| 124 | {
|
|---|
| 125 | // If z>0 we still have to move by a distance of z.
|
|---|
| 126 | // If z<0 we have to move in th eopposite direction.
|
|---|
| 127 | // --> z has the right sign for PropagateZ
|
|---|
| 128 | PropagateZ(w, Z());
|
|---|
| 129 | }
|
|---|
| 130 |
|
|---|
| 131 | TVector2 XYvector() const { return Vect().XYvector(); }
|
|---|
| 132 |
|
|---|
| 133 | //void Normalize() { fVectorPart *= TMath::Sqrt(1 - R2())/Z(); }
|
|---|
| 134 |
|
|---|
| 135 | ClassDef(MQuaternion, 0)
|
|---|
| 136 | };
|
|---|
| 137 |
|
|---|
| 138 | #endif
|
|---|
| 139 |
|
|---|
| 140 | #endif
|
|---|