| 1 | #ifndef MARS_MQuaternion | 
|---|
| 2 | #define MARS_MQuaternion | 
|---|
| 3 |  | 
|---|
| 4 | #if 1 | 
|---|
| 5 |  | 
|---|
| 6 | // We prefer to derive from TQuaternion instead of TLorantzVector | 
|---|
| 7 | // because TQuaternion implements vector algebra with just the 3D vector | 
|---|
| 8 |  | 
|---|
| 9 | #ifndef ROOT_TQuaternion | 
|---|
| 10 | #include <math.h> | 
|---|
| 11 | #define sqrt ::sqrt | 
|---|
| 12 | #include <TQuaternion.h> | 
|---|
| 13 | #undef sqrt | 
|---|
| 14 | #endif | 
|---|
| 15 |  | 
|---|
| 16 | class MQuaternion : public TQuaternion | 
|---|
| 17 | { | 
|---|
| 18 | public: | 
|---|
| 19 | MQuaternion(const TQuaternion &q) : TQuaternion(q) { } | 
|---|
| 20 | MQuaternion(const TVector3 &v, Double_t t=0) : TQuaternion(v, t) { } | 
|---|
| 21 | void operator*=(const TRotation &r) | 
|---|
| 22 | { | 
|---|
| 23 | fVectorPart *= r; | 
|---|
| 24 | } | 
|---|
| 25 | Double_t X() const { return fVectorPart.X(); } | 
|---|
| 26 | Double_t Y() const { return fVectorPart.Y(); } | 
|---|
| 27 | Double_t Z() const { return fVectorPart.Z(); } | 
|---|
| 28 | Double_t T() const { return fRealPart; } | 
|---|
| 29 |  | 
|---|
| 30 | // It seems to be a little bit faster than X*X+Y*Y | 
|---|
| 31 | Double_t R2() const { return XYvector().Mod2(); } | 
|---|
| 32 | Double_t R() const { return XYvector().Mod(); } | 
|---|
| 33 |  | 
|---|
| 34 | void PropagateDz(const MQuaternion &w, const Double_t dz) | 
|---|
| 35 | { | 
|---|
| 36 | *this += dz/w.Z()*w; | 
|---|
| 37 | } | 
|---|
| 38 |  | 
|---|
| 39 | // Propagates the particle by a distance f in z along | 
|---|
| 40 | // its trajectory w, if f is positive, in the opposite | 
|---|
| 41 | // direction otherwise. | 
|---|
| 42 | void PropagateZ(const MQuaternion &w, const Double_t z) | 
|---|
| 43 | { | 
|---|
| 44 | PropagateDz(w, z-Z()); | 
|---|
| 45 |  | 
|---|
| 46 | // z=3400, Z= 1700, t=0, c=1    -=  3400/-5*-5     -= 3400       Z=0,    c>0 | 
|---|
| 47 | //                              +=  1700/-5*-5     += 1700       Z=1700, c>0 | 
|---|
| 48 | // z=3400, Z=-1700, t=0, c=1    -= -3400/-5*-5     -= -1700      Z=0, c<0 | 
|---|
| 49 |  | 
|---|
| 50 | // z=3400, Z= 1700, t=0, c=1    -=  (3400-1700)/-5*-5     -= 3400       Z=0,    c>0 | 
|---|
| 51 | } | 
|---|
| 52 |  | 
|---|
| 53 | // Move the photon along its trajectory to the x/y plane | 
|---|
| 54 | // so that z=0. Therefor stretch the vector until | 
|---|
| 55 | // its z-component vanishes. | 
|---|
| 56 | //p -= p.Z()/u.Z()*u; | 
|---|
| 57 | void PropagateZ0(const MQuaternion &w) | 
|---|
| 58 | { | 
|---|
| 59 | // If z>0 we still have to move by a distance of z. | 
|---|
| 60 | // If z<0 we have to move in the opposite direction. | 
|---|
| 61 | //  --> z has the right sign for PropagateZ | 
|---|
| 62 | PropagateDz(w, -Z()); | 
|---|
| 63 |  | 
|---|
| 64 | // Z= 1700, t=0, c=1    -=  1700/-5*-5     -=  1700 +c     Z=0, c>0 | 
|---|
| 65 | // Z=-1700, t=0, c=1    -= -1700/-5*-5     -= -1700 -c     Z=0, c<0 | 
|---|
| 66 |  | 
|---|
| 67 |  | 
|---|
| 68 | // Z= 1700, t=0, c=1    -=  1700/ 5* 5     -=  1700 -c     Z=0, c<0 | 
|---|
| 69 | // Z=-1700, t=0, c=1    -= -1700/ 5* 5     -= -1700 +c     Z=0, c>0 | 
|---|
| 70 |  | 
|---|
| 71 | //PropagateZ(w, Z()); | 
|---|
| 72 | } | 
|---|
| 73 |  | 
|---|
| 74 | TVector2 XYvector() const { return fVectorPart.XYvector(); } | 
|---|
| 75 |  | 
|---|
| 76 | //void Normalize() { fVectorPart *= TMath::Sqrt(1 - R2())/Z(); } | 
|---|
| 77 |  | 
|---|
| 78 | void NormalizeVector() { fVectorPart = fVectorPart.Unit(); } | 
|---|
| 79 |  | 
|---|
| 80 | ClassDef(MQuaternion, 1) | 
|---|
| 81 | }; | 
|---|
| 82 |  | 
|---|
| 83 | #else | 
|---|
| 84 |  | 
|---|
| 85 | #ifndef ROOT_TLorentzVector | 
|---|
| 86 | #include <TLorentzVector.h> | 
|---|
| 87 | #endif | 
|---|
| 88 |  | 
|---|
| 89 | class MQuaternion : public TLorentzVector | 
|---|
| 90 | { | 
|---|
| 91 | public: | 
|---|
| 92 | //MQuaternion(const TLorentzVector &q) : TLorentzVector(q) { } | 
|---|
| 93 | MQuaternion(const TVector3 &v, Double_t t=0) : TLorentzVector(v, t) { } | 
|---|
| 94 | /* | 
|---|
| 95 | void operator*=(const TRotation &r) | 
|---|
| 96 | { | 
|---|
| 97 | fVectorPart *= r; | 
|---|
| 98 | } | 
|---|
| 99 | Double_t X() const { return fVectorPart.X(); } | 
|---|
| 100 | Double_t Y() const { return fVectorPart.Y(); } | 
|---|
| 101 | Double_t Z() const { return fVectorPart.Z(); } | 
|---|
| 102 | Double_t T() const { return fRealPart; } | 
|---|
| 103 | */ | 
|---|
| 104 |  | 
|---|
| 105 | // It seems to be a little bit faster than X*X+Y*Y | 
|---|
| 106 | Double_t R2() const { return Perp2(); } | 
|---|
| 107 | Double_t R() const { return Perp(); } | 
|---|
| 108 |  | 
|---|
| 109 | // Propagates the particle by a distance f in z along | 
|---|
| 110 | // its trajectory w, if f is positive, in the opposite | 
|---|
| 111 | // direction otherwise. | 
|---|
| 112 | void PropagateZ(const MQuaternion &w, const Double_t f) | 
|---|
| 113 | { | 
|---|
| 114 | *this += f/TMath::Abs(w.Z())*w; | 
|---|
| 115 | } | 
|---|
| 116 |  | 
|---|
| 117 | // Move the photon along its trajectory to the x/y plane | 
|---|
| 118 | // so that z=0. Therefor stretch the vector until | 
|---|
| 119 | // its z-component vanishes. | 
|---|
| 120 | //p -= p.Z()/u.Z()*u; | 
|---|
| 121 | void PropagateZ0(const MQuaternion &w) | 
|---|
| 122 | { | 
|---|
| 123 | // If z>0 we still have to move by a distance of z. | 
|---|
| 124 | // If z<0 we have to move in th eopposite direction. | 
|---|
| 125 | //  --> z has the right sign for PropagateZ | 
|---|
| 126 | PropagateZ(w, Z()); | 
|---|
| 127 | } | 
|---|
| 128 |  | 
|---|
| 129 | TVector2 XYvector() const { return Vect().XYvector(); } | 
|---|
| 130 |  | 
|---|
| 131 | //void Normalize() { fVectorPart *= TMath::Sqrt(1 - R2())/Z(); } | 
|---|
| 132 |  | 
|---|
| 133 | ClassDef(MQuaternion, 0) | 
|---|
| 134 | }; | 
|---|
| 135 |  | 
|---|
| 136 | #endif | 
|---|
| 137 |  | 
|---|
| 138 | #endif | 
|---|