| 1 | #ifndef MARS_MQuaternion | 
|---|
| 2 | #define MARS_MQuaternion | 
|---|
| 3 |  | 
|---|
| 4 | #if 1 | 
|---|
| 5 |  | 
|---|
| 6 | // We prefer to derive from TQuaternion instead of TLorantzVector | 
|---|
| 7 | // because TQuaternion implements vector algebra with just the 3D vector | 
|---|
| 8 |  | 
|---|
| 9 | #ifndef ROOT_TQuaternion | 
|---|
| 10 | #include <math.h> | 
|---|
| 11 | #if (__GNUC__ < 4) || ((__GNUC__ == 4) && (__GNUC_MINOR__ < 8)) | 
|---|
| 12 | #define sqrt ::sqrt | 
|---|
| 13 | #endif | 
|---|
| 14 | #include <TQuaternion.h> | 
|---|
| 15 | #undef sqrt | 
|---|
| 16 | #endif | 
|---|
| 17 |  | 
|---|
| 18 | class MQuaternion : public TQuaternion | 
|---|
| 19 | { | 
|---|
| 20 | public: | 
|---|
| 21 | MQuaternion(const TQuaternion &q) : TQuaternion(q) { } | 
|---|
| 22 | MQuaternion(const TVector3 &v, Double_t t=0) : TQuaternion(v, t) { } | 
|---|
| 23 | void operator*=(const TRotation &r) | 
|---|
| 24 | { | 
|---|
| 25 | fVectorPart *= r; | 
|---|
| 26 | } | 
|---|
| 27 | Double_t X() const { return fVectorPart.X(); } | 
|---|
| 28 | Double_t Y() const { return fVectorPart.Y(); } | 
|---|
| 29 | Double_t Z() const { return fVectorPart.Z(); } | 
|---|
| 30 | Double_t T() const { return fRealPart; } | 
|---|
| 31 |  | 
|---|
| 32 | // It seems to be a little bit faster than X*X+Y*Y | 
|---|
| 33 | Double_t R2() const { return XYvector().Mod2(); } | 
|---|
| 34 | Double_t R() const { return XYvector().Mod(); } | 
|---|
| 35 |  | 
|---|
| 36 | void PropagateDz(const MQuaternion &w, const Double_t dz) | 
|---|
| 37 | { | 
|---|
| 38 | *this += dz/w.Z()*w; | 
|---|
| 39 | } | 
|---|
| 40 |  | 
|---|
| 41 | // Propagates the particle by a distance f in z along | 
|---|
| 42 | // its trajectory w, if f is positive, in the opposite | 
|---|
| 43 | // direction otherwise. | 
|---|
| 44 | void PropagateZ(const MQuaternion &w, const Double_t z) | 
|---|
| 45 | { | 
|---|
| 46 | PropagateDz(w, z-Z()); | 
|---|
| 47 |  | 
|---|
| 48 | // z=3400, Z= 1700, t=0, c=1    -=  3400/-5*-5     -= 3400       Z=0,    c>0 | 
|---|
| 49 | //                              +=  1700/-5*-5     += 1700       Z=1700, c>0 | 
|---|
| 50 | // z=3400, Z=-1700, t=0, c=1    -= -3400/-5*-5     -= -1700      Z=0, c<0 | 
|---|
| 51 |  | 
|---|
| 52 | // z=3400, Z= 1700, t=0, c=1    -=  (3400-1700)/-5*-5     -= 3400       Z=0,    c>0 | 
|---|
| 53 | } | 
|---|
| 54 |  | 
|---|
| 55 | // Move the photon along its trajectory to the x/y plane | 
|---|
| 56 | // so that z=0. Therefor stretch the vector until | 
|---|
| 57 | // its z-component vanishes. | 
|---|
| 58 | //p -= p.Z()/u.Z()*u; | 
|---|
| 59 | void PropagateZ0(const MQuaternion &w) | 
|---|
| 60 | { | 
|---|
| 61 | // If z>0 we still have to move by a distance of z. | 
|---|
| 62 | // If z<0 we have to move in the opposite direction. | 
|---|
| 63 | //  --> z has the right sign for PropagateZ | 
|---|
| 64 | PropagateDz(w, -Z()); | 
|---|
| 65 |  | 
|---|
| 66 | // Z= 1700, t=0, c=1    -=  1700/-5*-5     -=  1700 +c     Z=0, c>0 | 
|---|
| 67 | // Z=-1700, t=0, c=1    -= -1700/-5*-5     -= -1700 -c     Z=0, c<0 | 
|---|
| 68 |  | 
|---|
| 69 |  | 
|---|
| 70 | // Z= 1700, t=0, c=1    -=  1700/ 5* 5     -=  1700 -c     Z=0, c<0 | 
|---|
| 71 | // Z=-1700, t=0, c=1    -= -1700/ 5* 5     -= -1700 +c     Z=0, c>0 | 
|---|
| 72 |  | 
|---|
| 73 | //PropagateZ(w, Z()); | 
|---|
| 74 | } | 
|---|
| 75 |  | 
|---|
| 76 | TVector2 XYvector() const { return fVectorPart.XYvector(); } | 
|---|
| 77 |  | 
|---|
| 78 | //void Normalize() { fVectorPart *= TMath::Sqrt(1 - R2())/Z(); } | 
|---|
| 79 |  | 
|---|
| 80 | void NormalizeVector() { fVectorPart = fVectorPart.Unit(); } | 
|---|
| 81 |  | 
|---|
| 82 | ClassDef(MQuaternion, 1) | 
|---|
| 83 | }; | 
|---|
| 84 |  | 
|---|
| 85 | #else | 
|---|
| 86 |  | 
|---|
| 87 | #ifndef ROOT_TLorentzVector | 
|---|
| 88 | #include <TLorentzVector.h> | 
|---|
| 89 | #endif | 
|---|
| 90 |  | 
|---|
| 91 | class MQuaternion : public TLorentzVector | 
|---|
| 92 | { | 
|---|
| 93 | public: | 
|---|
| 94 | //MQuaternion(const TLorentzVector &q) : TLorentzVector(q) { } | 
|---|
| 95 | MQuaternion(const TVector3 &v, Double_t t=0) : TLorentzVector(v, t) { } | 
|---|
| 96 | /* | 
|---|
| 97 | void operator*=(const TRotation &r) | 
|---|
| 98 | { | 
|---|
| 99 | fVectorPart *= r; | 
|---|
| 100 | } | 
|---|
| 101 | Double_t X() const { return fVectorPart.X(); } | 
|---|
| 102 | Double_t Y() const { return fVectorPart.Y(); } | 
|---|
| 103 | Double_t Z() const { return fVectorPart.Z(); } | 
|---|
| 104 | Double_t T() const { return fRealPart; } | 
|---|
| 105 | */ | 
|---|
| 106 |  | 
|---|
| 107 | // It seems to be a little bit faster than X*X+Y*Y | 
|---|
| 108 | Double_t R2() const { return Perp2(); } | 
|---|
| 109 | Double_t R() const { return Perp(); } | 
|---|
| 110 |  | 
|---|
| 111 | // Propagates the particle by a distance f in z along | 
|---|
| 112 | // its trajectory w, if f is positive, in the opposite | 
|---|
| 113 | // direction otherwise. | 
|---|
| 114 | void PropagateZ(const MQuaternion &w, const Double_t f) | 
|---|
| 115 | { | 
|---|
| 116 | *this += f/TMath::Abs(w.Z())*w; | 
|---|
| 117 | } | 
|---|
| 118 |  | 
|---|
| 119 | // Move the photon along its trajectory to the x/y plane | 
|---|
| 120 | // so that z=0. Therefor stretch the vector until | 
|---|
| 121 | // its z-component vanishes. | 
|---|
| 122 | //p -= p.Z()/u.Z()*u; | 
|---|
| 123 | void PropagateZ0(const MQuaternion &w) | 
|---|
| 124 | { | 
|---|
| 125 | // If z>0 we still have to move by a distance of z. | 
|---|
| 126 | // If z<0 we have to move in th eopposite direction. | 
|---|
| 127 | //  --> z has the right sign for PropagateZ | 
|---|
| 128 | PropagateZ(w, Z()); | 
|---|
| 129 | } | 
|---|
| 130 |  | 
|---|
| 131 | TVector2 XYvector() const { return Vect().XYvector(); } | 
|---|
| 132 |  | 
|---|
| 133 | //void Normalize() { fVectorPart *= TMath::Sqrt(1 - R2())/Z(); } | 
|---|
| 134 |  | 
|---|
| 135 | ClassDef(MQuaternion, 0) | 
|---|
| 136 | }; | 
|---|
| 137 |  | 
|---|
| 138 | #endif | 
|---|
| 139 |  | 
|---|
| 140 | #endif | 
|---|