1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz 1/2009 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: Software Development, 2000-2009
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MSpline3
|
---|
28 | //
|
---|
29 | // This is a extension of TSpline3. In addition to TSpline3 it allows access
|
---|
30 | // to Xmin, Xman and Np. The construction is a bit simplified because no
|
---|
31 | // title hase to be given (it can be given later by SetTitle anyway)
|
---|
32 | // and is provides constructors which allow to scale the x-values by
|
---|
33 | // pre-defined multiplier (e.g. frequency) to create the spline.
|
---|
34 | //
|
---|
35 | //////////////////////////////////////////////////////////////////////////////
|
---|
36 | #include "MSpline3.h"
|
---|
37 |
|
---|
38 | #include <TF1.h>
|
---|
39 | #include <TMath.h>
|
---|
40 |
|
---|
41 | #include "MArrayD.h"
|
---|
42 |
|
---|
43 | ClassImp(MSpline3);
|
---|
44 |
|
---|
45 | using namespace std;
|
---|
46 |
|
---|
47 | // --------------------------------------------------------------------------
|
---|
48 | //
|
---|
49 | // Constructor.
|
---|
50 | //
|
---|
51 | MSpline3::MSpline3(const TF1 &f, const char *opt, Double_t valbeg, Double_t valend)
|
---|
52 | : TSpline3("MSpline3", f.GetXmin(), f.GetXmax(), &f, f.GetNpx(), opt, valbeg, valend)
|
---|
53 | {
|
---|
54 | }
|
---|
55 |
|
---|
56 | MSpline3::MSpline3(const TF1 &f, Double_t freq, const char *opt,Double_t valbeg, Double_t valend)
|
---|
57 | : TSpline3("MSpline3", f.GetXmin()*freq, f.GetXmax()*freq, ConvertFunc(f, freq).GetArray(), f.GetNpx(), opt, valbeg, valend)
|
---|
58 | {
|
---|
59 | }
|
---|
60 |
|
---|
61 | // --------------------------------------------------------------------------
|
---|
62 | //
|
---|
63 | // This is a helper to convert the x-values by multiplying with freq
|
---|
64 | // before initializing the spline
|
---|
65 | //
|
---|
66 | TGraph *MSpline3::ConvertSpline(const TSpline &s, Float_t freq) const
|
---|
67 | {
|
---|
68 | const UInt_t npx = s.GetNpx();
|
---|
69 |
|
---|
70 | // WARNING: This is a stupid workaround because the TSpline3-
|
---|
71 | // constructor takes a pointer as input! It is not thread-safe!
|
---|
72 | static TGraph g;
|
---|
73 | g.Set(npx);
|
---|
74 |
|
---|
75 | for (UInt_t i=0; i<npx; i++)
|
---|
76 | {
|
---|
77 | Double_t x, y;
|
---|
78 | s.GetKnot(i, x, y);
|
---|
79 | g.SetPoint(i, x*freq, y);
|
---|
80 | }
|
---|
81 |
|
---|
82 | return &g;
|
---|
83 | }
|
---|
84 |
|
---|
85 | // --------------------------------------------------------------------------
|
---|
86 | //
|
---|
87 | // This is a helper to convert the x-values by multiplying with freq
|
---|
88 | // before initializing the spline
|
---|
89 | //
|
---|
90 | TGraph *MSpline3::ConvertGraph(const TGraph &s, Float_t freq) const
|
---|
91 | {
|
---|
92 | const UInt_t npx = s.GetN();
|
---|
93 |
|
---|
94 | // WARNING: This is a stupid workaround because the TSpline3-
|
---|
95 | // constructor takes a pointer as input! It is not thread-safe!
|
---|
96 | static TGraph g;
|
---|
97 | g.Set(npx);
|
---|
98 |
|
---|
99 | for (UInt_t i=0; i<npx; i++)
|
---|
100 | {
|
---|
101 | Double_t x, y;
|
---|
102 | s.GetPoint(i, x, y);
|
---|
103 | g.SetPoint(i, x*freq, y);
|
---|
104 | }
|
---|
105 |
|
---|
106 | return &g;
|
---|
107 | }
|
---|
108 |
|
---|
109 | // --------------------------------------------------------------------------
|
---|
110 | //
|
---|
111 | // This is a helper to convert the x-values by multiplying with freq
|
---|
112 | // before initializing the spline. The conversion from the function to
|
---|
113 | // a discrete binning is done similar to the constructor of TSpline
|
---|
114 | //
|
---|
115 | MArrayD &MSpline3::ConvertFunc(const TF1 &f, Float_t freq) const
|
---|
116 | {
|
---|
117 | const UInt_t npx = f.GetNpx();
|
---|
118 |
|
---|
119 | // WARNING: This is a stupid workaround because the TSpline3-
|
---|
120 | // constructor takes a pointer as input! It is not thread-safe!
|
---|
121 | static MArrayD g;
|
---|
122 | g.Set(npx);
|
---|
123 |
|
---|
124 | const Double_t step = (f.GetXmax()-f.GetXmin())/(npx-1);
|
---|
125 |
|
---|
126 | for (UInt_t i=0; i<npx; ++i)
|
---|
127 | {
|
---|
128 | const Double_t x = f.GetXmin() + i*step;
|
---|
129 | g[i] = f.Eval(x);
|
---|
130 | }
|
---|
131 |
|
---|
132 | return g;
|
---|
133 | }
|
---|
134 |
|
---|
135 | // --------------------------------------------------------------------------
|
---|
136 | //
|
---|
137 | // Return the integral in the splines bin i up to x.
|
---|
138 | //
|
---|
139 | // The TSpline3 in the Interval [fX[i], fX[i+1]] is defined as:
|
---|
140 | //
|
---|
141 | // dx = x-fX[i]
|
---|
142 | // y = fY + dx*fB + dx*dx*fC + dx*dx*dx*fD
|
---|
143 | //
|
---|
144 | // This yields the integral:
|
---|
145 | //
|
---|
146 | // int(y) = dx*fY + 1/2*dx*dx*fB + 1/3*dx*dx*dx*fC + 1/4*dx*dx*dx*dx*fD
|
---|
147 | // = dx*(fY + dx*(1/2*fB + dx*(1/3*fC + dx*(1/4*fD))))
|
---|
148 | //
|
---|
149 | // Which gives for the integral range [fX[i], fX[i]+w]:
|
---|
150 | // int(fX[i]+w)-int(fX[i]) = w*(fY + w*(1/2*fB + w*(1/3*fC + w*(1/4*fD))))
|
---|
151 | //
|
---|
152 | // and for the integral range [fX[i]+w, fX[i+1]]:
|
---|
153 | // int(fX[i+1])-int(fX[i]+w) = `
|
---|
154 | // W*(fY + W*(1/2*fB + W*(1/3*fC + W*(1/4*fD)))) -
|
---|
155 | // w*(fY + w*(1/2*fB + w*(1/3*fC + w*(1/4*fD))))
|
---|
156 | // with
|
---|
157 | // W := fX[i+1]-fX[i]
|
---|
158 | //
|
---|
159 | Double_t MSpline3::IntegralBin(Int_t i, Double_t x) const
|
---|
160 | {
|
---|
161 | Double_t x0, y, b, c, d;
|
---|
162 | const_cast<MSpline3*>(this)->GetCoeff(i, x0, y, b, c, d);
|
---|
163 |
|
---|
164 | const Double_t w = x-x0;
|
---|
165 |
|
---|
166 | return w*(y + w*(b/2 + w*(c/3 + w*d/4)));
|
---|
167 | }
|
---|
168 |
|
---|
169 | // --------------------------------------------------------------------------
|
---|
170 | //
|
---|
171 | // Return the integral of the spline's bin i.
|
---|
172 | //
|
---|
173 | Double_t MSpline3::IntegralBin(Int_t i) const
|
---|
174 | {
|
---|
175 | Double_t x, y;
|
---|
176 |
|
---|
177 | GetKnot(i+1, x, y);
|
---|
178 |
|
---|
179 | return IntegralBin(i, x);
|
---|
180 | }
|
---|
181 |
|
---|
182 | // --------------------------------------------------------------------------
|
---|
183 | //
|
---|
184 | // Return the integral from a to b
|
---|
185 | //
|
---|
186 | Double_t MSpline3::Integral(Double_t a, Double_t b) const
|
---|
187 | {
|
---|
188 | const Int_t n = FindX(a);
|
---|
189 | const Int_t m = FindX(b);
|
---|
190 |
|
---|
191 | Double_t sum = -IntegralBin(n, a);
|
---|
192 |
|
---|
193 | for (int i=n; i<=m-1; i++)
|
---|
194 | sum += IntegralBin(i);
|
---|
195 |
|
---|
196 | sum += IntegralBin(m, b);
|
---|
197 |
|
---|
198 | return sum;
|
---|
199 | }
|
---|
200 |
|
---|
201 | // --------------------------------------------------------------------------
|
---|
202 | //
|
---|
203 | // Return the integral between Xmin and Xmax
|
---|
204 | //
|
---|
205 | Double_t MSpline3::Integral() const
|
---|
206 | {
|
---|
207 | Double_t sum = 0;
|
---|
208 |
|
---|
209 | for (int i=0; i<GetNp()-1; i++)
|
---|
210 | sum += IntegralBin(i);
|
---|
211 |
|
---|
212 | return sum;
|
---|
213 | }
|
---|
214 |
|
---|
215 | // --------------------------------------------------------------------------
|
---|
216 | //
|
---|
217 | // Return the integral between Xmin and Xmax of int( f(x)*sin(x) )
|
---|
218 | //
|
---|
219 | // The x-axis is assumed to be in degrees
|
---|
220 | //
|
---|
221 | Double_t MSpline3::IntegralSolidAngle() const
|
---|
222 | {
|
---|
223 | const Int_t n = GetNp();
|
---|
224 |
|
---|
225 | MArrayD x(n);
|
---|
226 | MArrayD y(n);
|
---|
227 |
|
---|
228 | for (int i=0; i<n; i++)
|
---|
229 | {
|
---|
230 | GetKnot(i, x[i], y[i]);
|
---|
231 |
|
---|
232 | x[i] *= TMath::DegToRad();
|
---|
233 | y[i] *= TMath::Sin(x[i]);
|
---|
234 | }
|
---|
235 |
|
---|
236 | return TMath::TwoPi()*MSpline3(x.GetArray(), y.GetArray(), n).Integral();
|
---|
237 | }
|
---|
238 |
|
---|
239 |
|
---|
240 | // FIXME: As soon as TSpline3 allows access to fPoly we can implement
|
---|
241 | // a much faster evaluation of the spline, especially in
|
---|
242 | // special conditions like in MAnalogSignal::AddPulse
|
---|
243 | // This will be the case for root > 5.22/00
|
---|
244 |
|
---|
245 | /*
|
---|
246 | Double_t MSpline3::EvalFast(Double_t x) const
|
---|
247 | {
|
---|
248 | // Eval this spline at x
|
---|
249 | const Int_t klow=FindFast(x);
|
---|
250 | return fPoly[klow].Eval(x);
|
---|
251 | }
|
---|
252 |
|
---|
253 | Int_t MSpline3::FindFast(Double_t x) const
|
---|
254 | {
|
---|
255 | //
|
---|
256 | // If out of boundaries, extrapolate
|
---|
257 | // It may be badly wrong
|
---|
258 |
|
---|
259 | // if (x<=fXmin)
|
---|
260 | // return 0;
|
---|
261 | //
|
---|
262 | // if (x>=fXmax)
|
---|
263 | // return fNp-1;
|
---|
264 |
|
---|
265 | //
|
---|
266 | // Equidistant knots, use histogramming
|
---|
267 | if (fKstep)
|
---|
268 | return TMath::Min(Int_t((x-fXmin)/fDelta),fNp-1);
|
---|
269 |
|
---|
270 | //
|
---|
271 | // Non equidistant knots, binary search
|
---|
272 | Int_t klow = 0;
|
---|
273 | Int_t khig = fNp-1;
|
---|
274 |
|
---|
275 | Int_t khalf;
|
---|
276 | while (khig-klow>1)
|
---|
277 | if(x>fPoly[khalf=(klow+khig)/2].X())
|
---|
278 | klow=khalf;
|
---|
279 | else
|
---|
280 | khig=khalf;
|
---|
281 |
|
---|
282 | // This could be removed, sanity check
|
---|
283 | //if(!(fPoly[klow].X()<=x && x<=fPoly[klow+1].X()))
|
---|
284 | // Error("Eval",
|
---|
285 | // "Binary search failed x(%d) = %f < %f < x(%d) = %f\n",
|
---|
286 | // klow,fPoly[klow].X(),x,fPoly[klow+1].X());
|
---|
287 |
|
---|
288 | return klow;
|
---|
289 | }
|
---|
290 | */
|
---|
291 |
|
---|
292 | void MSpline3::Scale(double scale)
|
---|
293 | {
|
---|
294 | //return fY + dx*fB + dx*dx*fC + dx*dx*dx*fD;
|
---|
295 |
|
---|
296 | for (int i=0; i<fNp; i++)
|
---|
297 | {
|
---|
298 | fPoly[i].B() *= scale;
|
---|
299 | fPoly[i].C() *= scale;
|
---|
300 | fPoly[i].D() *= scale;
|
---|
301 | fPoly[i].Y() *= scale;
|
---|
302 | }
|
---|
303 | }
|
---|