#ifndef MARS_DrsCalib #define MARS_DrsCalib #include // fabs #include // errno #include "fits.h" class DrsCalibrate { protected: uint64_t fNumEntries; size_t fNumSamples; size_t fNumChannels; std::vector fSum; std::vector fSum2; public: DrsCalibrate() : fNumEntries(0), fNumSamples(0), fNumChannels(0) { } void Reset() { fNumEntries = 0; fNumSamples = 0; fNumChannels = 0; fSum.clear(); fSum2.clear(); } void InitSize(uint16_t channels, uint16_t samples) { fNumChannels = channels; fNumSamples = samples; fSum.resize(samples*channels); fSum2.resize(samples*channels); } void AddRel(const int16_t *val, const int16_t *start) { for (size_t ch=0; ch1439 ? ((ch-1440)*9+8)*1024 : ch*1024; for (size_t i=0; i0) { // Sign has not changed fSum[abs0] += nperiods; fSum2[abs0] += nperiods*nperiods; continue; } const double p = v0==v1 ? 1 : v0/(v0-v1); const double value = nperiods*p + (nperiods+1)*(1-p); fSum[abs0] += value; fSum2[abs0] += value*value; nperiods++; } } fNumEntries++; } static void ApplyCh(float *vec, const int16_t *val, int16_t start, uint32_t roi, const int32_t *offset, const uint32_t scaleabs, const int64_t *gain, const uint64_t scalegain) { if (start<0) { memset(vec, 0, roi); return; } for (size_t i=0; i25 && p[i]-p[i+1]>25) { p[i] = (p[i-1]+p[i+1])/2; } if (p[i]-p[i-1]>22 && fabs(p[i]-p[i+1])<4 && p[i+1]-p[i+2]>22) { p[i] = (p[i-1]+p[i+2])/2; p[i+1] = p[i]; } } } } std::pair,std::vector > GetSampleStats() const { if (fNumEntries==0) return make_pair(std::vector(),std::vector()); std::vector mean(fSum.size()); std::vector error(fSum.size()); std::vector::const_iterator it = fSum.begin(); std::vector::const_iterator i2 = fSum2.begin(); std::vector::iterator im = mean.begin(); std::vector::iterator ie = error.begin(); while (it!=fSum.end()) { *im = /*cnt ... mean /= fNumEntries; error = sqrt(error/fNumEntries - mean*mean); */ return make_pair(mean, error); } void GetSampleStats(float *ptr, float scale) const { const size_t sz = fNumSamples*fNumChannels; if (fNumEntries==0) { memset(ptr, 0, sizeof(float)*sz*2); return; } std::vector::const_iterator it = fSum.begin(); std::vector::const_iterator i2 = fSum2.begin(); while (it!=fSum.end()) { *ptr = scale*double(*it)/fNumEntries; *(ptr+sz) = scale*sqrt(double(*i2*int64_t(fNumEntries) - *it * *it))/fNumEntries; ptr++; it++; i2++; } } static void GetPixelStats(float *ptr, const float *data, uint16_t roi) { if (roi==0) return; for (int i=0; i<1440; i++) { const float *vec = data+i*roi; int pos = 0; double sum = vec[0]; double sum2 = vec[0]*vec[0]; for (int j=1; jvec[pos]) pos = j; } sum /= roi; sum2 /= roi; *(ptr+0*1440+i) = sum; *(ptr+1*1440+i) = sqrt(sum2 - sum * sum); *(ptr+2*1440+i) = vec[pos]; *(ptr+3*1440+i) = pos; } } static void GetPixelMax(float *max, const float *data, uint16_t roi, int32_t first, int32_t last) { if (roi==0 || first<0 || last<0 || first>=roi || last>=roi || last*pmax) pmax = ptr; max[i] = *pmax; } } const std::vector &GetSum() const { return fSum; } uint64_t GetNumEntries() const { return fNumEntries; } }; struct DrsCalibration { std::vector fOffset; std::vector fGain; std::vector fTrgOff; uint64_t fNumOffset; uint64_t fNumGain; uint64_t fNumTrgOff; uint32_t fStep; uint16_t fRoi; // Region of interest for trgoff uint16_t fNumTm; // Number of time marker channels in trgoff // uint16_t fDAC[8]; DrsCalibration() : fOffset (1440*1024, 0), fGain (1440*1024, 4096), fTrgOff (1600*1024, 0), fNumOffset(1), fNumGain(2000), fNumTrgOff(1), fStep(0) { } void Clear() { // Default gain: // 0.575*[45590]*2.5V / 2^16 = 0.99999 V fOffset.assign(1440*1024, 0); fGain.assign (1440*1024, 4096); fTrgOff.assign(1600*1024, 0); fNumOffset = 1; fNumGain = 2000; fNumTrgOff = 1; fStep = 0; } std::string ReadFitsImp(const std::string &str, std::vector &vec) { std::fits file(str); if (!file) { std::ostringstream msg; msg << "Could not open file " << str << ": " << strerror(errno); return msg.str(); } if (file.GetStr("TELESCOP")!="FACT") { std::ostringstream msg; msg << "Reading " << str << " failed: Not a valid FACT file (TELESCOP not FACT in header)"; return msg.str(); } if (!file.HasKey("STEP")) { std::ostringstream msg; msg << "Reading " << str << " failed: Is not a DRS calib file (STEP not found in header)"; return msg.str(); } if (file.GetNumRows()!=1) { std::ostringstream msg; msg << "Reading " << str << " failed: Number of rows in table is not 1."; return msg.str(); } fStep = file.GetUInt("STEP"); fNumOffset = file.GetUInt("NBOFFSET"); fNumGain = file.GetUInt("NBGAIN"); fNumTrgOff = file.GetUInt("NBTRGOFF"); fRoi = file.GetUInt("NROI"); fNumTm = file.HasKey("NTM") ? file.GetUInt("NTM") : 0; /* fDAC[0] = file.GetUInt("DAC_A"); fDAC[1] = file.GetUInt("DAC_B"); fDAC[4] = file.GetUInt("DAC_C"); */ vec.resize(1440*1024*4 + (1440+fNumTm)*fRoi*2 + 4); float *base = vec.data(); reinterpret_cast(base)[0] = fRoi; file.SetPtrAddress("RunNumberBaseline", base+1, 1); file.SetPtrAddress("RunNumberGain", base+2, 1); file.SetPtrAddress("RunNumberTriggerOffset", base+3, 1); file.SetPtrAddress("BaselineMean", base+4+0*1024*1440, 1024*1440); file.SetPtrAddress("BaselineRms", base+4+1*1024*1440, 1024*1440); file.SetPtrAddress("GainMean", base+4+2*1024*1440, 1024*1440); file.SetPtrAddress("GainRms", base+4+3*1024*1440, 1024*1440); file.SetPtrAddress("TriggerOffsetMean", base+4+4*1024*1440, fRoi*1440); file.SetPtrAddress("TriggerOffsetRms", base+4+4*1024*1440+fRoi*1440, fRoi*1440); if (fNumTm>0) { file.SetPtrAddress("TriggerOffsetTMMean", base+4+4*1024*1440+ 2*fRoi*1440, fRoi*fNumTm); file.SetPtrAddress("TriggerOffsetTMRms", base+4+4*1024*1440+ 2*fRoi*1440+ fRoi*fNumTm, fRoi*fNumTm); } if (!file.GetNextRow()) { std::ostringstream msg; msg << "Reading data from " << str << " failed."; return msg.str(); } /* fDAC[2] = fDAC[1]; fDAC[4] = fDAC[1]; fDAC[5] = fDAC[4]; fDAC[6] = fDAC[4]; fDAC[7] = fDAC[4]; */ fOffset.resize(1024*1440); fGain.resize(1024*1440); fTrgOff.resize(fRoi*(1440+fNumTm)); // Convert back to ADC counts: 256/125 = 4096/2000 // Convert back to sum (mean * num_entries) for (int i=0; i<1024*1440; i++) { fOffset[i] = fNumOffset *256*base[i+1024*1440*0+4]/125; fGain[i] = fNumOffset*fNumGain*256*base[i+1024*1440*2+4]/125; } for (int i=0; i vec; return ReadFitsImp(str, vec); } bool IsValid() { return fStep>2; } bool Apply(float *vec, const int16_t *val, const int16_t *start, uint32_t roi) { if (roi!=fRoi) { for (size_t ch=0; ch<1440; ch++) { const size_t pos = ch*roi; const size_t drs = ch*1024; DrsCalibrate::ApplyCh(vec+pos, val+pos, start[ch], roi, fOffset.data()+drs, fNumOffset, fGain.data() +drs, fNumGain); } return false; } for (size_t ch=0; ch<1440; ch++) { const size_t pos = ch*fRoi; const size_t drs = ch*1024; DrsCalibrate::ApplyCh(vec+pos, val+pos, start[ch], roi, fOffset.data()+drs, fNumOffset, fGain.data() +drs, fNumGain, fTrgOff.data()+pos, fNumTrgOff); } for (size_t ch=0; ch