| 1 | // **************************************************************************
|
|---|
| 2 | /** @class Interpolator2D
|
|---|
| 3 |
|
|---|
| 4 | @brief Extra- and interpolate in 2D
|
|---|
| 5 |
|
|---|
| 6 | This class implements a kind of Delaunay triangulation. It calculated the
|
|---|
| 7 | Voronoi points and the corresponding Delaunay triangles. Within each
|
|---|
| 8 | triangle a bi-linear interpolation is provided.
|
|---|
| 9 |
|
|---|
| 10 | A special selection criterion is applied for points outside the grid,
|
|---|
| 11 | so that extrapolation is possible. Note that extrapolation of far away
|
|---|
| 12 | points (as in the 1D case) is not recommended.
|
|---|
| 13 |
|
|---|
| 14 | */
|
|---|
| 15 | // **************************************************************************
|
|---|
| 16 | #ifndef FACT_Interpolator2D
|
|---|
| 17 | #define FACT_Interpolator2D
|
|---|
| 18 |
|
|---|
| 19 | #include <float.h>
|
|---|
| 20 | #include <math.h>
|
|---|
| 21 | #include <vector>
|
|---|
| 22 |
|
|---|
| 23 | class Interpolator2D
|
|---|
| 24 | {
|
|---|
| 25 | public:
|
|---|
| 26 | struct vec
|
|---|
| 27 | {
|
|---|
| 28 | double x;
|
|---|
| 29 | double y;
|
|---|
| 30 |
|
|---|
| 31 | vec(double _x=0, double _y=0) : x(_x), y(_y) { }
|
|---|
| 32 |
|
|---|
| 33 | vec orto() const { return vec(-y, x); }
|
|---|
| 34 |
|
|---|
| 35 | double dist(const vec &v) const { return hypot(x-v.x, y-v.y); }
|
|---|
| 36 | double operator^(const vec &v) const { return x*v.y - y*v.x; }
|
|---|
| 37 | vec operator-(const vec &v) const { return vec(x-v.x, y-v.y); }
|
|---|
| 38 | vec operator+(const vec &v) const { return vec(x+v.x, y+v.y); }
|
|---|
| 39 | vec operator/(double b) const { return vec(x/b, y/b); }
|
|---|
| 40 | };
|
|---|
| 41 |
|
|---|
| 42 |
|
|---|
| 43 | struct point : vec
|
|---|
| 44 | {
|
|---|
| 45 | unsigned int i;
|
|---|
| 46 | point(unsigned int _i=0, double _x=0, double _y=0) : vec(_x, _y), i(_i) { }
|
|---|
| 47 | };
|
|---|
| 48 |
|
|---|
| 49 | struct circle : point
|
|---|
| 50 | {
|
|---|
| 51 | point p[3];
|
|---|
| 52 | double r;
|
|---|
| 53 |
|
|---|
| 54 | static bool sameSide(const vec &p1, const vec &p2, const vec &a, const vec &b)
|
|---|
| 55 | {
|
|---|
| 56 | return ((b-a)^(p1-a))*((b-a)^(p2-a)) > 0;
|
|---|
| 57 | }
|
|---|
| 58 |
|
|---|
| 59 | bool isInsideTriangle(const vec &v) const
|
|---|
| 60 | {
|
|---|
| 61 | return sameSide(v, p[0], p[1], p[2]) && sameSide(v, p[1], p[0], p[2]) && sameSide(v, p[2], p[0], p[1]);
|
|---|
| 62 | }
|
|---|
| 63 |
|
|---|
| 64 | bool isInsideCircle(const vec &v) const
|
|---|
| 65 | {
|
|---|
| 66 | return dist(v) < r;
|
|---|
| 67 | }
|
|---|
| 68 | };
|
|---|
| 69 |
|
|---|
| 70 | struct weight : point
|
|---|
| 71 | {
|
|---|
| 72 | circle c;
|
|---|
| 73 | double w[3];
|
|---|
| 74 | };
|
|---|
| 75 |
|
|---|
| 76 | private:
|
|---|
| 77 | std::vector<point> inputGrid; /// positions of the data points (e.g. sensors)
|
|---|
| 78 | std::vector<point> outputGrid; /// positions at which inter-/extrapolated values should be provided
|
|---|
| 79 | std::vector<circle> circles; /// the calculated circles/triangles
|
|---|
| 80 | std::vector<weight> weights; /// the weights used for the interpolation
|
|---|
| 81 |
|
|---|
| 82 | // --------------------------------------------------------------------------
|
|---|
| 83 | //
|
|---|
| 84 | //! Calculate the collection of circles/triangles which describe the
|
|---|
| 85 | //! input grid. This is the collection of circles which are calculated
|
|---|
| 86 | //! from any three points and do not contain any other point of the grid.
|
|---|
| 87 | //
|
|---|
| 88 | void CalculateGrid()
|
|---|
| 89 | {
|
|---|
| 90 | circles.reserve(2*inputGrid.size());
|
|---|
| 91 |
|
|---|
| 92 | // Loop over all triplets of points
|
|---|
| 93 | for (auto it0=inputGrid.cbegin(); it0<inputGrid.cend(); it0++)
|
|---|
| 94 | {
|
|---|
| 95 | for (auto it1=inputGrid.cbegin(); it1<it0; it1++)
|
|---|
| 96 | {
|
|---|
| 97 | for (auto it2=inputGrid.cbegin(); it2<it1; it2++)
|
|---|
| 98 | {
|
|---|
| 99 | // Calculate the circle through the three points
|
|---|
| 100 |
|
|---|
| 101 | // Vectors along the side of the corresponding triangle
|
|---|
| 102 | const vec v1 = *it1 - *it0;
|
|---|
| 103 | const vec v2 = *it2 - *it1;
|
|---|
| 104 |
|
|---|
| 105 | // Orthogonal vectors on the sides
|
|---|
| 106 | const vec n1 = v1.orto();
|
|---|
| 107 | const vec n2 = v2.orto();
|
|---|
| 108 |
|
|---|
| 109 | // Center point of two of the three sides
|
|---|
| 110 | const vec p1 = (*it0 + *it1)/2;
|
|---|
| 111 | const vec p2 = (*it1 + *it2)/2;
|
|---|
| 112 |
|
|---|
| 113 | // Calculate the crossing point of the two
|
|---|
| 114 | // orthogonal vectors originating in the
|
|---|
| 115 | // center of the sides.
|
|---|
| 116 | const double denom = n1^n2;
|
|---|
| 117 | if (denom==0)
|
|---|
| 118 | continue;
|
|---|
| 119 |
|
|---|
| 120 | const vec x(n1.x, n2.x);
|
|---|
| 121 | const vec y(n1.y, n2.y);
|
|---|
| 122 |
|
|---|
| 123 | const vec w(p1^(p1+n1), p2^(p2+n2));
|
|---|
| 124 |
|
|---|
| 125 | circle c;
|
|---|
| 126 |
|
|---|
| 127 | // This is the x and y coordinate of the circle
|
|---|
| 128 | // through the three points and the circle's radius.
|
|---|
| 129 | c.x = (x^w)/denom;
|
|---|
| 130 | c.y = (y^w)/denom;
|
|---|
| 131 | c.r = c.dist(*it1);
|
|---|
| 132 |
|
|---|
| 133 | // Check if any other grid point lays within this circle
|
|---|
| 134 | auto it3 = inputGrid.cbegin();
|
|---|
| 135 | for (; it3<inputGrid.cend(); it3++)
|
|---|
| 136 | {
|
|---|
| 137 | if (it3==it0 || it3==it1 || it3==it2)
|
|---|
| 138 | continue;
|
|---|
| 139 |
|
|---|
| 140 | if (c.isInsideCircle(*it3))
|
|---|
| 141 | break;
|
|---|
| 142 | }
|
|---|
| 143 |
|
|---|
| 144 | // If a point was found inside, reject the circle
|
|---|
| 145 | if (it3!=inputGrid.cend())
|
|---|
| 146 | continue;
|
|---|
| 147 |
|
|---|
| 148 | // Store the three points of the triangle
|
|---|
| 149 | c.p[0] = *it0;
|
|---|
| 150 | c.p[1] = *it1;
|
|---|
| 151 | c.p[2] = *it2;
|
|---|
| 152 |
|
|---|
| 153 | // Keep in list
|
|---|
| 154 | circles.push_back(c);
|
|---|
| 155 | }
|
|---|
| 156 | }
|
|---|
| 157 | }
|
|---|
| 158 | }
|
|---|
| 159 |
|
|---|
| 160 | // --------------------------------------------------------------------------
|
|---|
| 161 | //
|
|---|
| 162 | //! Calculate the weights corresponding to the points in the output grid.
|
|---|
| 163 | //! Weights are calculated by bi-linear interpolation. For interpolation,
|
|---|
| 164 | //! the triangle which contains the point and has the smallest radius
|
|---|
| 165 | //! is searched. If this is not available in case of extrapolation,
|
|---|
| 166 | //! the condition is relaxed and requires only the circle to contain
|
|---|
| 167 | //! the point. If such circle is not available, the circle with the
|
|---|
| 168 | //! closest center is chosen.
|
|---|
| 169 | //
|
|---|
| 170 | bool CalculateWeights()
|
|---|
| 171 | {
|
|---|
| 172 | weights.reserve(outputGrid.size());
|
|---|
| 173 |
|
|---|
| 174 | // Loop over all points in the output grid
|
|---|
| 175 | for (auto ip=outputGrid.cbegin(); ip<outputGrid.cend(); ip++)
|
|---|
| 176 | {
|
|---|
| 177 | double mindd = DBL_MAX;
|
|---|
| 178 |
|
|---|
| 179 | auto mint = circles.cend();
|
|---|
| 180 | auto minc = circles.cend();
|
|---|
| 181 | auto mind = circles.cend();
|
|---|
| 182 |
|
|---|
| 183 | for (auto ic=circles.cbegin(); ic<circles.cend(); ic++)
|
|---|
| 184 | {
|
|---|
| 185 | // Check if point is inside the triangle
|
|---|
| 186 | if (ic->isInsideTriangle(*ip))
|
|---|
| 187 | {
|
|---|
| 188 | if (mint==circles.cend() || ic->r<mint->r)
|
|---|
| 189 | mint = ic;
|
|---|
| 190 | }
|
|---|
| 191 |
|
|---|
| 192 | // If we have found such a triangle, no need to check for more
|
|---|
| 193 | if (mint!=circles.cend())
|
|---|
| 194 | continue;
|
|---|
| 195 |
|
|---|
| 196 | // maybe at least inside the circle
|
|---|
| 197 | const double dd = ic->dist(*ip);
|
|---|
| 198 | if (dd<ic->r)
|
|---|
| 199 | {
|
|---|
| 200 | if (minc==circles.cend() || ic->r<minc->r)
|
|---|
| 201 | minc = ic;
|
|---|
| 202 | }
|
|---|
| 203 |
|
|---|
| 204 | // If we found such a circle, no need to check for more
|
|---|
| 205 | if (minc!=circles.cend())
|
|---|
| 206 | continue;
|
|---|
| 207 |
|
|---|
| 208 | // then look for the closest circle center
|
|---|
| 209 | if (dd<mindd)
|
|---|
| 210 | {
|
|---|
| 211 | mindd = dd;
|
|---|
| 212 | mind = ic;
|
|---|
| 213 | }
|
|---|
| 214 | }
|
|---|
| 215 |
|
|---|
| 216 | // Choose the best of the three options
|
|---|
| 217 | const auto it = mint==circles.cend() ? (minc==circles.cend() ? mind : minc) : mint;
|
|---|
| 218 | if (it==circles.cend())
|
|---|
| 219 | return false;
|
|---|
| 220 |
|
|---|
| 221 | // Calculate the bi-linear interpolation
|
|---|
| 222 | const vec &p1 = it->p[0];
|
|---|
| 223 | const vec &p2 = it->p[1];
|
|---|
| 224 | const vec &p3 = it->p[2];
|
|---|
| 225 |
|
|---|
| 226 | const double dy23 = p2.y - p3.y;
|
|---|
| 227 | const double dy31 = p3.y - p1.y;
|
|---|
| 228 | const double dy12 = p1.y - p2.y;
|
|---|
| 229 |
|
|---|
| 230 | const double dx32 = p3.x - p2.x;
|
|---|
| 231 | const double dx13 = p1.x - p3.x;
|
|---|
| 232 | const double dx21 = p2.x - p1.x;
|
|---|
| 233 |
|
|---|
| 234 | const double dxy23 = p2^p3;
|
|---|
| 235 | const double dxy31 = p3^p1;
|
|---|
| 236 | const double dxy12 = p1^p2;
|
|---|
| 237 |
|
|---|
| 238 | const double det = dxy12 + dxy23 + dxy31;
|
|---|
| 239 |
|
|---|
| 240 | const double w1 = (dy23*ip->x + dx32*ip->y + dxy23)/det;
|
|---|
| 241 | const double w2 = (dy31*ip->x + dx13*ip->y + dxy31)/det;
|
|---|
| 242 | const double w3 = (dy12*ip->x + dx21*ip->y + dxy12)/det;
|
|---|
| 243 |
|
|---|
| 244 | // Store the original grid-point, the circle's parameters
|
|---|
| 245 | // and the calculate weights
|
|---|
| 246 | weight w;
|
|---|
| 247 | w.x = ip->x;
|
|---|
| 248 | w.y = ip->y;
|
|---|
| 249 | w.c = *it;
|
|---|
| 250 | w.w[0] = w1;
|
|---|
| 251 | w.w[1] = w2;
|
|---|
| 252 | w.w[2] = w3;
|
|---|
| 253 |
|
|---|
| 254 | weights.push_back(w);
|
|---|
| 255 | }
|
|---|
| 256 |
|
|---|
| 257 | return true;
|
|---|
| 258 | }
|
|---|
| 259 |
|
|---|
| 260 | public:
|
|---|
| 261 | // --------------------------------------------------------------------------
|
|---|
| 262 | //
|
|---|
| 263 | //! Default constructor. Does nothing.
|
|---|
| 264 | //
|
|---|
| 265 | Interpolator2D()
|
|---|
| 266 | {
|
|---|
| 267 | }
|
|---|
| 268 |
|
|---|
| 269 | // --------------------------------------------------------------------------
|
|---|
| 270 | //
|
|---|
| 271 | //! Initialize the input grid (the points at which values are known).
|
|---|
| 272 | //!
|
|---|
| 273 | //! @param n
|
|---|
| 274 | //! number of data points
|
|---|
| 275 | //!
|
|---|
| 276 | //! @param x
|
|---|
| 277 | //! x coordinates of data points
|
|---|
| 278 | //!
|
|---|
| 279 | //! @param n
|
|---|
| 280 | //! y coordinates of data points
|
|---|
| 281 | //
|
|---|
| 282 | Interpolator2D(int n, double *x, double *y)
|
|---|
| 283 | {
|
|---|
| 284 | SetInputGrid(n, x, y);
|
|---|
| 285 | }
|
|---|
| 286 |
|
|---|
| 287 | Interpolator2D(const std::vector<Interpolator2D::vec> &v)
|
|---|
| 288 | {
|
|---|
| 289 | SetInputGrid(v);
|
|---|
| 290 | }
|
|---|
| 291 |
|
|---|
| 292 | const std::vector<Interpolator2D::weight> getWeights() const { return weights; }
|
|---|
| 293 | const std::vector<Interpolator2D::point> getInputGrid() const { return inputGrid; }
|
|---|
| 294 | const std::vector<Interpolator2D::point> getOutputGrid() const { return outputGrid; }
|
|---|
| 295 |
|
|---|
| 296 | // --------------------------------------------------------------------------
|
|---|
| 297 | //
|
|---|
| 298 | //! Set a new input grid (the points at which values are known).
|
|---|
| 299 | //! Invalidates the output grid and the calculated weights.
|
|---|
| 300 | //! Calculates the triangles corresponding to the new grid.
|
|---|
| 301 | //!
|
|---|
| 302 | //! @param n
|
|---|
| 303 | //! number of data points
|
|---|
| 304 | //!
|
|---|
| 305 | //! @param x
|
|---|
| 306 | //! x coordinates of data points
|
|---|
| 307 | //!
|
|---|
| 308 | //! @param n
|
|---|
| 309 | //! y coordinates of data points
|
|---|
| 310 | //
|
|---|
| 311 | void SetInputGrid(int n, double *x, double *y)
|
|---|
| 312 | {
|
|---|
| 313 | circles.clear();
|
|---|
| 314 | weights.clear();
|
|---|
| 315 | outputGrid.clear();
|
|---|
| 316 |
|
|---|
| 317 | inputGrid.clear();
|
|---|
| 318 | inputGrid.reserve(n);
|
|---|
| 319 | for (int i=0; i<n; i++)
|
|---|
| 320 | inputGrid.emplace_back(i, x[i], y[i]);
|
|---|
| 321 |
|
|---|
| 322 | CalculateGrid();
|
|---|
| 323 | }
|
|---|
| 324 |
|
|---|
| 325 | void SetInputGrid(const std::vector<Interpolator2D::vec> &v)
|
|---|
| 326 | {
|
|---|
| 327 | circles.clear();
|
|---|
| 328 | weights.clear();
|
|---|
| 329 | outputGrid.clear();
|
|---|
| 330 |
|
|---|
| 331 | inputGrid.clear();
|
|---|
| 332 | inputGrid.reserve(v.size());
|
|---|
| 333 | for (std::size_t i=0; i<v.size(); i++)
|
|---|
| 334 | inputGrid.emplace_back(i, v[i].x, v[i].y);
|
|---|
| 335 |
|
|---|
| 336 | CalculateGrid();
|
|---|
| 337 | }
|
|---|
| 338 |
|
|---|
| 339 | // --------------------------------------------------------------------------
|
|---|
| 340 | //
|
|---|
| 341 | //! Set a new output grid (the points at which you want interpolated
|
|---|
| 342 | //! or extrapolated values). Calculates new weights.
|
|---|
| 343 | //!
|
|---|
| 344 | //! @param n
|
|---|
| 345 | //! number of points
|
|---|
| 346 | //!
|
|---|
| 347 | //! @param x
|
|---|
| 348 | //! x coordinates of points
|
|---|
| 349 | //!
|
|---|
| 350 | //! @param n
|
|---|
| 351 | //! y coordinates of points
|
|---|
| 352 | //!
|
|---|
| 353 | //! @returns
|
|---|
| 354 | //! false if the calculation of the weights failed, true in
|
|---|
| 355 | //! case of success
|
|---|
| 356 | //
|
|---|
| 357 | bool SetOutputGrid(int n, double *x, double *y)
|
|---|
| 358 | {
|
|---|
| 359 | if (inputGrid.empty())
|
|---|
| 360 | return false;
|
|---|
| 361 |
|
|---|
| 362 | weights.clear();
|
|---|
| 363 |
|
|---|
| 364 | outputGrid.clear();
|
|---|
| 365 | outputGrid.reserve(n);
|
|---|
| 366 | for (int i=0; i<n; i++)
|
|---|
| 367 | outputGrid.emplace_back(i, x[i], y[i]);
|
|---|
| 368 |
|
|---|
| 369 | return CalculateWeights();
|
|---|
| 370 | }
|
|---|
| 371 |
|
|---|
| 372 | bool SetOutputGrid(const std::vector<std::pair<double,double>> &v)
|
|---|
| 373 | {
|
|---|
| 374 | if (inputGrid.empty())
|
|---|
| 375 | return false;
|
|---|
| 376 |
|
|---|
| 377 | weights.clear();
|
|---|
| 378 |
|
|---|
| 379 | outputGrid.clear();
|
|---|
| 380 | outputGrid.reserve(v.size());
|
|---|
| 381 | for (std::size_t i=0; i<v.size(); i++)
|
|---|
| 382 | outputGrid.emplace_back(i, v[i].first, v[i].second);
|
|---|
| 383 |
|
|---|
| 384 | return CalculateWeights();
|
|---|
| 385 | }
|
|---|
| 386 |
|
|---|
| 387 | // --------------------------------------------------------------------------
|
|---|
| 388 | //
|
|---|
| 389 | //! Perform interpolation.
|
|---|
| 390 | //!
|
|---|
| 391 | //! @param z
|
|---|
| 392 | //! Values at the coordinates of the input grid. The order
|
|---|
| 393 | //! must be identical.
|
|---|
| 394 | //!
|
|---|
| 395 | //! @returns
|
|---|
| 396 | //! A vector<double> is returned with the interpolated values in the
|
|---|
| 397 | //! same order than the putput grid. If the provided vector does
|
|---|
| 398 | //! not match the size of the inputGrid, an empty vector is returned.
|
|---|
| 399 | //
|
|---|
| 400 | std::vector<double> Interpolate(const std::vector<double> &z) const
|
|---|
| 401 | {
|
|---|
| 402 | if (z.size()!=inputGrid.size())
|
|---|
| 403 | return std::vector<double>();
|
|---|
| 404 |
|
|---|
| 405 | std::vector<double> rc;
|
|---|
| 406 | rc.reserve(z.size());
|
|---|
| 407 |
|
|---|
| 408 | for (auto it=weights.cbegin(); it<weights.cend(); it++)
|
|---|
| 409 | rc.push_back(z[it->c.p[0].i] * it->w[0] + z[it->c.p[1].i] * it->w[1] + z[it->c.p[2].i] * it->w[2]);
|
|---|
| 410 |
|
|---|
| 411 | return rc;
|
|---|
| 412 | }
|
|---|
| 413 | };
|
|---|
| 414 | #endif
|
|---|