/* * factofits.h * * Created on: Oct 16, 2013 * Author: lyard */ #ifndef FACTOFITS_H_ #define FACTOFITS_H_ #include "zofits.h" #include "DrsCalib.h" class factofits : public zofits { public: /// constructors factofits(uint32_t numTiles=DefaultMaxNumTiles(), uint32_t rowPerTile=DefaultNumRowsPerTile(), uint32_t maxMem=DefaultMaxMemory()) : zofits(numTiles, rowPerTile, maxMem) { fStartCellsOffset = -1; fDataOffset = -1; } factofits(const char *fname, uint32_t numTiles=DefaultMaxNumTiles(), uint32_t rowPerTile=DefaultNumRowsPerTile(), uint32_t maxMem=DefaultMaxMemory()) : zofits(fname, numTiles, rowPerTile, maxMem) { fStartCellsOffset = -1; fDataOffset = -1; } virtual ~factofits() { } /// whether or not a calibration was given to the file writer virtual bool IsOffsetCalibration() { return (fOffsetCalibration.size() != 0); } ///assign a given drs offset calibration void SetDrsCalibration(const std::vector &calib) { VerifyCalibrationSize(calib.size()); if (!IsOffsetCalibration()) fOffsetCalibration.resize(1440*1024); for (uint32_t i=0; i<1440*1024; i++) fOffsetCalibration[i] = (int16_t)(calib[i]*4096/2000); } ///assign a given drs offset calibration void SetDrsCalibration(const std::vector& vec) { VerifyCalibrationSize(vec.size()); if (!IsOffsetCalibration()) fOffsetCalibration.resize(1440*1024); for (uint32_t i=0; i<1440*1024; i++) fOffsetCalibration[i] = vec[i]; } ///assign a given drs offset calibration void SetDrsCalibration(const DrsCalibration& drs) { if (drs.fNumOffset==0) return; VerifyCalibrationSize(drs.fOffset.size()); if (!IsOffsetCalibration()) fOffsetCalibration.resize(1440*1024); for (uint32_t i=0; i<1024*1440; i++) fOffsetCalibration[i] = drs.fOffset[i]/drs.fNumOffset; } ///Overload of the super function bool WriteTableHeader(const char* name="DATA") { if (!zofits::WriteTableHeader(name)) return false; if (!IsOffsetCalibration()) return true; //retrieve the column storing the start cell offsets, if required. for (auto it=fRealColumns.cbegin(); it!=fRealColumns.cend(); it++) { if (it->col.name == "StartCellData") fStartCellsOffset = it->col.offset; if (it->col.name == "Data") { fNumSlices = it->col.num; fDataOffset = it->col.offset; if (fNumSlices % 1440 != 0) { #ifdef __EXCEPTIONS throw std::runtime_error("Number of data samples not a multiple of 1440."); #else gLog << ___warn___ << "WARNING - Number of data samples not a multiple of 1440. Doing it uncalibrated." << std::endl; #endif fOffsetCalibration.resize(0); } fNumSlices /= 1440; } } if (fStartCellsOffset < 0) { #ifdef __EXCEPTIONS throw std::runtime_error("FACT Calibration requested, but \"StartCellData\" column not found."); #else gLog << ___warn___ << "WARNING - FACT Calibration requested, but \"StartCellData\" column not found. Doing it uncalibrated." << std::endl; #endif //throw away the calibration data fOffsetCalibration.resize(0); } if (fDataOffset < 0) { #ifdef __EXCEPTIONS throw std::runtime_error("FACT Calibration requested, but \"Data\" column not found."); #else gLog << ___warn___ << "WARNING - FACT Calibration requested, but \"Data\" column not found. Doing it uncalibrated." << std::endl; #endif //throw away the calibration data fOffsetCalibration.resize(0); } return true; } ///Uncompressed version of the DrsCalibration table /* virtual bool WriteDrsOffsetsTable() { if (!IsOffsetCalibration()) return false; ofits c; c.SetStr("XTENSION", "BINTABLE" , "binary table extension"); c.SetInt("BITPIX" , 8 , "8-bit bytes"); c.SetInt("NAXIS" , 2 , "2-dimensional binary table"); c.SetInt("NAXIS1" , 1024*1440*2 , "width of table in bytes"); c.SetInt("NAXIS2" , 1 , "number of rows in table"); c.SetInt("PCOUNT" , 0 , "size of special data area"); c.SetInt("GCOUNT" , 1 , "one data group (required keyword)"); c.SetInt("TFIELDS" , 1 , "number of fields in each row"); c.SetStr("CHECKSUM", "0000000000000000" , "Checksum for the whole HDU"); c.SetStr("DATASUM" , " 0" , "Checksum for the data block"); c.SetStr("EXTNAME" , "ZDrsCellOffsets" , "name of this binary table extension"); c.SetStr("TTYPE1" , "OffsetCalibration" , "label for field 1"); c.SetStr("TFORM1" , "1474560I" , "data format of field: 2-byte INTEGER"); c.End(); vector swappedOffsets; swappedOffsets.resize(1024*1440*sizeof(int16_t)); revcpy(swappedOffsets.data(), (char*)(fOffsetCalibration.data()), 1024*1440); Checksum datasum; datasum.add(swappedOffsets.data(), sizeof(int16_t)*1024*1440); std::ostringstream dataSumStr; dataSumStr << datasum.val(); c.SetStr("DATASUM", dataSumStr.str()); datasum += c.WriteHeader(*this); const off_t here_I_am = tellp(); c.SetStr("CHECKSUM", datasum.str()); c.WriteHeader(*this); seekp(here_I_am); write(swappedOffsets.data(), swappedOffsets.size()); AlignTo2880Bytes(); return good(); }*/ ///Actually write the drs calibration table virtual bool WriteDrsOffsetsTable() { if (!IsOffsetCalibration()) return false; const uint32_t catalog_size = sizeof(int64_t)*2; ofits c; c.SetStr("XTENSION", "BINTABLE" , "binary table extension"); c.SetInt("BITPIX" , 8 , "8-bit bytes"); c.SetInt("NAXIS" , 2 , "2-dimensional binary table"); c.SetInt("NAXIS1" , catalog_size , "width of table in bytes"); c.SetInt("NAXIS2" , 1 , "number of rows in table"); c.SetInt("PCOUNT" , 0 , "size of special data area"); c.SetInt("GCOUNT" , 1 , "one data group (required keyword)"); c.SetInt("TFIELDS" , 1 , "number of fields in each row"); c.SetStr("CHECKSUM", "0000000000000000" , "Checksum for the whole HDU"); c.SetStr("DATASUM" , " 0" , "Checksum for the data block"); c.SetStr("EXTNAME" , "ZDrsCellOffsets" , "name of this binary table extension"); c.SetStr("TTYPE1" , "OffsetCalibration" , "label for field 1"); c.SetStr("ZFORM1" , "1474560I" , "data format of field: 2-byte INTEGER"); c.SetStr("TFORM1" , "1QB" , "data format of variable length bytes"); c.SetStr("ZCTYP1" , "FACT" , "Compression type FACT"); c.SetBool( "ZTABLE", true, "Table is compressed"); c.SetInt( "ZNAXIS1", 1024*1440*2, "Width of uncompressed rows"); c.SetInt( "ZNAXIS2", 1, "Number of uncompressed rows"); c.SetInt( "ZPCOUNT", 0, ""); c.SetInt( "ZHEAPPTR", catalog_size, ""); c.SetInt( "ZTILELEN", 1, "Number of rows per tile"); c.SetInt( "THEAP", catalog_size, ""); c.SetStr( "RAWSUM", " 0", "Checksum of raw little endian data"); c.SetFloat("ZRATIO", 0, "Compression ratio"); c.SetInt( "ZSHRINK", 1, "Catalog shrink factor"); c.End(); c.WriteHeader(*this); const off_t here_I_am = tellp(); //go after the catalog to compress and write the table data seekp(here_I_am + catalog_size); //calculate RAWSUM Checksum rawsum; rawsum.add((char*)(fOffsetCalibration.data()), 1024*1440*sizeof(int16_t)); c.SetStr("RAWSUM", std::to_string(rawsum.val())); //compress data and calculate final, compressed size const uint32_t compressed_header_size = sizeof(FITS::TileHeader) + sizeof(FITS::BlockHeader) + 1*sizeof(uint16_t); std::vector compressed_calib(1024*1440*2 + compressed_header_size + 8); //+8 for checksum; char* data_start = compressed_calib.data() + compressed_header_size; uint32_t compressed_size = compressHUFFMAN16(data_start, (char*)(fOffsetCalibration.data()), 1024*1440, 2, 1);; compressed_size += compressed_header_size; //Write tile header FITS::TileHeader th; std::vector seq(1, FITS::kFactHuffman16); FITS::Compression bh(seq, FITS::kOrderByRow); th.numRows = 1; th.size = compressed_size; bh.SetBlockSize(compressed_size-sizeof(FITS::TileHeader)); memcpy(compressed_calib.data(), &(th), sizeof(FITS::TileHeader)); bh.Memcpy(compressed_calib.data()+sizeof(FITS::TileHeader)); //calculate resulting compressed datasum Checksum datasum; memset(compressed_calib.data()+compressed_size, 0, 8-compressed_size%8); datasum.add(compressed_calib.data(), compressed_size + 8-compressed_size%8); //write the catalog ! seekp(here_I_am); std::vector catalog(2,0); catalog[0] = compressed_size-sizeof(FITS::TileHeader); catalog[1] = sizeof(FITS::TileHeader); std::vector swappedCatalog(catalog_size); revcpy(swappedCatalog.data(), (char*)(catalog.data()), 2);//catalog_size); datasum.add(swappedCatalog.data(), catalog_size); write(swappedCatalog.data(), catalog_size); //update relevant keywords c.SetFloat("ZRATIO", (float)(1024*1440*2)/(float)(compressed_size)); c.SetInt("PCOUNT", compressed_size + catalog_size); c.SetStr("DATASUM", std::to_string(datasum.val())); datasum += c.WriteHeader(*this); c.SetStr("CHECKSUM", datasum.str()); c.WriteHeader(*this); //write the compressed data seekp(here_I_am + catalog_size); write(compressed_calib.data(), compressed_size); AlignTo2880Bytes(); return good(); } ///Apply the drs offset calibration (overload of super-method) virtual void DrsOffsetCalibrate(char* target_location) { if (!IsOffsetCalibration()) return; const int16_t* startCell = reinterpret_cast(target_location + fStartCellsOffset); int16_t* data = reinterpret_cast(target_location + fDataOffset); for (uint32_t ch=0; ch<1440; ch++) { if (startCell[ch] < 0) { data += fNumSlices; continue; } const int16_t modStart = startCell[ch]%1024; const int16_t *off = fOffsetCalibration.data() + ch*1024; const int16_t* cal = off+modStart; const int16_t* end_stride = data+fNumSlices; if (modStart+fNumSlices > 1024) { while (cal < off+1024) *data++ -= *cal++; cal = off; } while (data fOffsetCalibration; ///< The calibration itself int32_t fStartCellsOffset; ///< Offset in bytes for the startcell data int32_t fDataOffset; ///< Offset in bytes for the data int32_t fNumSlices; ///< Number of samples per pixel per event }; //class factofits #endif /* FACTOFITS_H_ */