source: trunk/Mars/mcore/zofits.h@ 17241

Last change on this file since 17241 was 17239, checked in by lyard, 11 years ago
zofits with extra default values setters
File size: 42.9 KB
Line 
1/*
2 * zofits.h
3 *
4 * FACT native compressed FITS writer
5 * Author: lyard
6 */
7
8#include "ofits.h"
9#include "zfits.h"
10#include "Queue.h"
11#include "MemoryManager.h"
12
13#ifdef USE_BOOST_THREADS
14#include <boost/thread.hpp>
15#endif
16
17#ifndef __MARS__
18namespace std
19{
20#else
21using namespace std;
22#endif
23
24class zofits : public ofits
25{
26 /// Overriding of the begin() operator to get the smallest item in the list instead of the true begin
27 template<class S>
28 struct QueueMin : std::list<S>
29 {
30 typename std::list<S>::iterator begin()
31 {
32 return min_element(std::list<S>::begin(), std::list<S>::end());
33 }
34 };
35
36 /// Parameters required to write a tile to disk
37 struct WriteTarget
38 {
39 bool operator < (const WriteTarget& other)
40 {
41 return tile_num < other.tile_num;
42 }
43
44 uint32_t tile_num; ///< Tile index of the data (to make sure that they are written in the correct order)
45 uint32_t size; ///< Size to write
46 shared_ptr<MemoryChunk> data; ///< Memory block to write
47 };
48
49 /// Parameters required to compress a tile of data
50 struct CompressionTarget
51 {
52 shared_ptr<MemoryChunk> src; ///< Original data
53 shared_ptr<MemoryChunk> transposed_src; ///< Transposed data
54 WriteTarget target; ///< Compressed data
55 uint32_t num_rows; ///< Number of rows to compress
56 };
57
58public:
59 /// constructors
60 /// @param numTiles how many data groups should be pre-reserved ?
61 /// @param rowPerTile how many rows will be grouped together in a single tile
62 /// @param maxUsableMem how many bytes of memory can be used by the compression buffers
63 zofits(uint32_t numTiles = fgNumTiles,
64 uint32_t rowPerTile = fgRowPerTile,
65 uint64_t maxUsableMem= fgMaxUsableMem) : ofits(),
66 fMemPool(0, maxUsableMem),
67 fWriteToDiskQueue(bind(&zofits::WriteBufferToDisk, this, placeholders::_1), false)
68 {
69 InitMemberVariables(numTiles, rowPerTile, maxUsableMem);
70 SetNumThreads(fgNumQueues);
71 }
72
73 /// @param fname the target filename
74 /// @param numTiles how many data groups should be pre-reserved ?
75 /// @param rowPerTile how many rows will be grouped together in a single tile
76 /// @param maxUsableMem how many bytes of memory can be used by the compression buffers
77 zofits(const char* fname,
78 uint32_t numTiles = fgNumTiles,
79 uint32_t rowPerTile = fgRowPerTile,
80 uint64_t maxUsableMem= fgMaxUsableMem) : ofits(fname),
81 fMemPool(0, maxUsableMem),
82 fWriteToDiskQueue(bind(&zofits::WriteBufferToDisk, this, placeholders::_1), false)
83 {
84 InitMemberVariables(numTiles, rowPerTile, maxUsableMem);
85 SetNumThreads(fgNumQueues);
86 }
87
88 /// destructors
89 virtual ~zofits()
90 {
91 }
92
93 //initialization of member variables
94 /// @param nt number of tiles
95 /// @param rpt number of rows per tile
96 /// @param maxUsableMem max amount of RAM to be used by the compression buffers
97 void InitMemberVariables(const uint32_t nt=0, const uint32_t rpt=0, const uint64_t maxUsableMem=0)
98 {
99 if (nt == 0)
100 throw runtime_error("There must be at least 1 tile of data (0 specified). This is required by the FITS standard. Please try again with num_tile >= 1.");
101
102 fCheckOffset = 0;
103 fNumQueues = 0;
104
105 fNumTiles = nt;
106 fNumRowsPerTile = rpt;
107
108 fBuffer = NULL;
109 fRealRowWidth = 0;
110 fCatalogExtraRows = 0;
111 fCatalogOffset = 0;
112
113 fMaxUsableMem = maxUsableMem;
114#ifdef __EXCEPTIONS
115 fThreadsException = exception_ptr();
116#endif
117 }
118
119 /// write the header of the binary table
120 /// @param name the name of the table to be created
121 /// @return the state of the file
122 virtual bool WriteTableHeader(const char* name="DATA")
123 {
124 reallocateBuffers();
125
126 ofits::WriteTableHeader(name);
127
128 if (fNumQueues != 0)
129 {
130 //start the compression queues
131 for (auto it=fCompressionQueues.begin(); it!= fCompressionQueues.end(); it++)
132 it->start();
133
134 //start the disk writer
135 fWriteToDiskQueue.start();
136 }
137
138 //mark that no tile has been written so far
139 fLatestWrittenTile = -1;
140
141 return good();
142 }
143
144 /// open a new file.
145 /// @param filename the name of the file
146 /// @param Whether or not the name of the extension should be added or not
147 void open(const char* filename, bool addEXTNAMEKey=true)
148 {
149 ofits::open(filename, addEXTNAMEKey);
150
151 //add compression-related header entries
152 SetBool( "ZTABLE", true, "Table is compressed");
153 SetInt( "ZNAXIS1", 0, "Width of uncompressed rows");
154 SetInt( "ZNAXIS2", 0, "Number of uncompressed rows");
155 SetInt( "ZPCOUNT", 0, "");
156 SetInt( "ZHEAPPTR", 0, "");
157 SetInt( "ZTILELEN", fNumRowsPerTile, "Number of rows per tile");
158 SetInt( "THEAP", 0, "");
159 SetStr( "RAWSUM", " 0", "Checksum of raw little endian data");
160 SetFloat("ZRATIO", 0, "Compression ratio");
161
162 fCatalogExtraRows = 0;
163 fRawSum.reset();
164 }
165
166 /// Super method. does nothing as zofits does not know about DrsOffsets
167 /// @return the state of the file
168 virtual bool WriteDrsOffsetsTable()
169 {
170 return good();
171 }
172
173 /// Returns the number of bytes per uncompressed row
174 /// @return number of bytes per uncompressed row
175 uint32_t GetBytesPerRow() const
176 {
177 return fRealRowWidth;
178 }
179
180 /// Write the data catalog
181 /// @return the state of the file
182 bool WriteCatalog()
183 {
184 const uint32_t one_catalog_row_size = fTable.num_cols*2*sizeof(uint64_t);
185 const uint32_t total_catalog_size = fCatalog.size()*one_catalog_row_size;
186
187 // swap the catalog bytes before writing
188 vector<char> swapped_catalog(total_catalog_size);
189 uint32_t shift = 0;
190 for (auto it=fCatalog.begin(); it!=fCatalog.end(); it++)
191 {
192 revcpy<sizeof(uint64_t)>(swapped_catalog.data() + shift, (char*)(it->data()), fTable.num_cols*2);
193 shift += one_catalog_row_size;
194 }
195
196 // first time writing ? remember where we are
197 if (fCatalogOffset == 0)
198 fCatalogOffset = tellp();
199
200 // remember where we came from
201 const off_t where_are_we = tellp();
202
203 // write to disk
204 seekp(fCatalogOffset);
205 write(swapped_catalog.data(), total_catalog_size);
206 if (where_are_we != fCatalogOffset)
207 seekp(where_are_we);
208
209 // udpate checksum
210 fCatalogSum.reset();
211 fCatalogSum.add(swapped_catalog.data(), total_catalog_size);
212
213 return good();
214 }
215
216 /// Applies the DrsOffsets calibration to the data. Does nothing as zofits knows nothing about drsoffsets.
217 virtual void DrsOffsetCalibrate(char* )
218 {
219
220 }
221
222 /// Grows the catalog in case not enough rows were allocated
223 void GrowCatalog()
224 {
225 uint32_t orig_catalog_size = fCatalog.size();
226
227 fCatalog.resize(fCatalog.size()*2);
228 for (uint32_t i=orig_catalog_size;i<fCatalog.size(); i++)
229 {
230 fCatalog[i].resize(fTable.num_cols);
231 for (auto it=(fCatalog[i].begin()); it!=fCatalog[i].end(); it++)
232 *it = CatalogEntry(0,0);
233 }
234
235 fCatalogExtraRows += orig_catalog_size;
236 fNumTiles += orig_catalog_size;
237 }
238
239 /// write one row of data
240 /// @param ptr the source buffer
241 /// @param the number of bytes to write
242 /// @return the state of the file. WARNING: with multithreading, this will most likely be the state of the file before the data is actually written
243 bool WriteRow(const void* ptr, size_t cnt, bool = true)
244 {
245 if (cnt != fRealRowWidth)
246 {
247#ifdef __EXCEPTIONS
248 throw runtime_error("Wrong size of row given to WriteRow");
249#else
250 gLog << ___err___ << "ERROR - Wrong size of row given to WriteRow" << endl;
251 return false;
252#endif
253 }
254
255 if (fTable.num_rows >= fNumRowsPerTile*fNumTiles)
256 {
257// GrowCatalog();
258#ifdef __EXCEPTIONS
259 throw runtime_error("Maximum number of rows exceeded for this file");
260#else
261 gLog << ___err___ << "ERROR - Maximum number of rows exceeded for this file" << endl;
262 return false;
263#endif
264 }
265
266 //copy current row to pool or rows waiting for compression
267 char* target_location = fBuffer + fRealRowWidth*(fTable.num_rows%fNumRowsPerTile);
268 memcpy(target_location, ptr, fRealRowWidth);
269
270 //for now, make an extra copy of the data, for RAWSUM checksuming.
271 //Ideally this should be moved to the threads
272 //However, because the RAWSUM must be calculated before the tile is transposed, I am not sure whether
273 //one extra memcpy per row written is worse than 100 rows checksumed when the tile is full....
274 const uint32_t rawOffset = (fTable.num_rows*fRealRowWidth)%4;
275 char* buffer = fRawSumBuffer.data() + rawOffset;
276 auto ib = fRawSumBuffer.begin();
277 auto ie = fRawSumBuffer.rbegin();
278 *ib++ = 0;
279 *ib++ = 0;
280 *ib++ = 0;
281 *ib = 0;
282
283 *ie++ = 0;
284 *ie++ = 0;
285 *ie++ = 0;
286 *ie = 0;
287
288 memcpy(buffer, ptr, fRealRowWidth);
289
290 fRawSum.add(fRawSumBuffer, false);
291
292 DrsOffsetCalibrate(target_location);
293
294 fTable.num_rows++;
295
296 if (fTable.num_rows % fNumRowsPerTile == 0)
297 {
298 CompressionTarget compress_target;
299 SetNextCompression(compress_target);
300
301 if (fNumQueues == 0)
302 { //no worker threads. do everything in-line
303 uint64_t size_to_write = CompressBuffer(compress_target);
304
305 WriteTarget write_target;
306 write_target.size = size_to_write;
307 write_target.data = compress_target.target.data;
308 write_target.tile_num = compress_target.target.tile_num;
309
310 return WriteBufferToDisk(write_target);
311 }
312 else
313 {
314 //if all queues are empty, use queue 0
315 uint32_t min_index = 0;
316 uint32_t min_size = numeric_limits<uint32_t>::max();
317 uint32_t current_index = 0;
318
319 for (auto it=fCompressionQueues.begin(); it!=fCompressionQueues.end(); it++)
320 {
321 if (it->size() < min_size)
322 {
323 min_index = current_index;
324 min_size = it->size();
325 }
326 current_index++;
327 }
328
329 if (!fCompressionQueues[min_index].post(compress_target))
330 throw runtime_error("The compression queues are not started. Did you close the file before writing this row ?");
331 }
332 }
333
334 return good();
335 }
336
337 /// update the real number of rows
338 void FlushNumRows()
339 {
340 SetInt("NAXIS2", (fTable.num_rows + fNumRowsPerTile-1)/fNumRowsPerTile);
341 SetInt("ZNAXIS2", fTable.num_rows);
342 FlushHeader();
343 }
344
345 /// Setup the environment to compress yet another tile of data
346 /// @param target the struct where to host the produced parameters
347 void SetNextCompression(CompressionTarget& target)
348 {
349 //get space for transposed data
350 shared_ptr<MemoryChunk> transposed_data = fMemPool.malloc();
351
352 //fill up write to disk target
353 WriteTarget write_target;
354 write_target.tile_num = (fTable.num_rows-1)/fNumRowsPerTile;
355 write_target.size = 0;
356 write_target.data = fMemPool.malloc();
357
358 //fill up compression target
359 target.src = fSmartBuffer;
360 target.transposed_src = transposed_data;
361 target.target = write_target;
362 target.num_rows = fTable.num_rows;
363
364 //get a new buffer to host the incoming data
365 fSmartBuffer = fMemPool.malloc();
366 fBuffer = fSmartBuffer.get()->get();
367 }
368
369 /// Shrinks a catalog that is too long to fit into the reserved space at the beginning of the file.
370 void ShrinkCatalog()
371 {
372 //did we write more rows than what the catalog could host ?
373 if (fCatalogExtraRows != 0)
374 {
375 //how many rows can the regular catalog host ?
376 const uint32_t max_regular_rows = (fCatalog.size() - fCatalogExtraRows)*fNumRowsPerTile;
377 //what's the shrink factor to be applied ?
378 const uint32_t shrink_factor = fTable.num_rows/max_regular_rows + ((fTable.num_rows%max_regular_rows) ? 1 : 0);
379
380 //shrink the catalog !
381 for (uint32_t i=0; i<fTable.num_rows/fNumRowsPerTile; i+= shrink_factor)
382 {//add the elements one by one, so that the empty ones at the end (i.e. fTable.num_rows%shrink_factor) do not create havok
383 const uint32_t target_catalog_row = i/shrink_factor;
384 //move data from current row (i) to target row
385 for (uint32_t j=0; j<fTable.num_cols; j++)
386 {
387 fCatalog[target_catalog_row][j].second = fCatalog[i][j].second;
388 fCatalog[target_catalog_row][j].first = 0;
389 uint64_t last_size = fCatalog[i][j].first;
390 uint64_t last_offset = fCatalog[i][j].second;
391
392 for (uint32_t k=1; k<shrink_factor; k++)
393 {
394 if (fCatalog[i+k][j].second != 0)
395 {
396 fCatalog[target_catalog_row][j].first += fCatalog[i+k][j].second - last_offset;
397 }
398 else
399 {
400 fCatalog[target_catalog_row][j].first += last_size;
401 break;
402 }
403 last_size = fCatalog[i+k][j].first;
404 last_offset = fCatalog[i+k][j].second;
405 }
406 }
407 }
408
409 fCatalog.resize(fCatalog.size() - fCatalogExtraRows);
410
411 //update header keywords
412 const uint32_t new_num_rows_per_tiles = fNumRowsPerTile*shrink_factor;
413 const uint32_t new_num_tiles_written = (fTable.num_rows + new_num_rows_per_tiles-1)/new_num_rows_per_tiles;
414 SetInt("THEAP", new_num_tiles_written*2*sizeof(int64_t)*fTable.num_cols);
415 SetInt("NAXIS2", new_num_tiles_written);
416 SetInt("ZTILELEN", new_num_rows_per_tiles);
417 cout << "New num rows per tiles: " << new_num_rows_per_tiles << " shrink factor: " << shrink_factor << endl;
418 cout << "Num tiles written: " << new_num_tiles_written << endl;
419 }
420 }
421
422 /// close an open file.
423 /// @return the state of the file
424 bool close()
425 {
426 // stop compression and write threads
427 for (auto it=fCompressionQueues.begin(); it != fCompressionQueues.end(); it++)
428 it->wait();
429
430 fWriteToDiskQueue.wait();
431
432 if (tellp() < 0)
433 {
434#ifdef __EXCEPTIONS
435 throw runtime_error("Looks like the file has been closed already");
436#else
437 return false;
438#endif
439 }
440
441#ifdef __EXCEPTIONS
442 //check if something hapenned while the compression threads were working
443 if (fThreadsException != exception_ptr())
444 {
445 //if so, re-throw the exception that was generated
446 rethrow_exception(fThreadsException);
447 }
448#endif
449
450 //write the last tile of data (if any
451 if (fTable.num_rows%fNumRowsPerTile != 0)
452 {
453 CompressionTarget compress_target;
454 SetNextCompression(compress_target);
455
456 //set number of threads to zero before calling compressBuffer
457 int32_t backup_num_queues = fNumQueues;
458 fNumQueues = 0;
459 uint64_t size_to_write = CompressBuffer(compress_target);
460 fNumQueues = backup_num_queues;
461
462 WriteTarget write_target;
463 write_target.size = size_to_write;
464 write_target.data = compress_target.target.data;
465 write_target.tile_num = compress_target.target.tile_num;
466
467 if (!WriteBufferToDisk(write_target))
468 throw runtime_error("Something went wrong while writing the last tile...");
469 }
470
471 AlignTo2880Bytes();
472
473 //update header keywords
474 SetInt("ZNAXIS1", fRealRowWidth);
475 SetInt("ZNAXIS2", fTable.num_rows);
476
477 SetInt("ZHEAPPTR", fCatalog.size()*fTable.num_cols*sizeof(uint64_t)*2);
478
479 const uint32_t total_num_tiles_written = (fTable.num_rows + fNumRowsPerTile-1)/fNumRowsPerTile;
480 const uint32_t total_catalog_width = 2*sizeof(int64_t)*fTable.num_cols;
481
482 SetInt("THEAP", total_num_tiles_written*total_catalog_width);
483 SetInt("NAXIS1", total_catalog_width);
484 SetInt("NAXIS2", total_num_tiles_written);
485
486 ostringstream str;
487 str << fRawSum.val();
488 SetStr("RAWSUM", str.str());
489
490 int64_t heap_size = 0;
491 int64_t compressed_offset = 0;
492
493 for (uint32_t i=0; i<total_num_tiles_written; i++)
494 {
495 compressed_offset += sizeof(TileHeader);
496 heap_size += sizeof(TileHeader);
497 for (uint32_t j=0; j<fCatalog[i].size(); j++)
498 {
499 heap_size += fCatalog[i][j].first;
500 fCatalog[i][j].second = compressed_offset;
501 compressed_offset += fCatalog[i][j].first;
502 if (fCatalog[i][j].first == 0)
503 fCatalog[i][j].second = 0;
504 }
505 }
506
507 const float compression_ratio = (float)(fRealRowWidth*fTable.num_rows)/(float)heap_size;
508 SetFloat("ZRATIO", compression_ratio);
509
510 //add to the heap size the size of the gap between the catalog and the actual heap
511 heap_size += (fCatalog.size() - total_num_tiles_written)*fTable.num_cols*sizeof(uint64_t)*2;
512
513 SetInt("PCOUNT", heap_size, "size of special data area");
514
515 //Just for updating the fCatalogSum value
516 WriteCatalog();
517
518 fDataSum += fCatalogSum;
519
520 const Checksum checksm = UpdateHeaderChecksum();
521
522 ofstream::close();
523
524 if ((checksm+fDataSum).valid())
525 return true;
526
527 ostringstream sout;
528 sout << "Checksum (" << std::hex << checksm.val() << ") invalid.";
529#ifdef __EXCEPTIONS
530 throw runtime_error(sout.str());
531#else
532 gLog << ___err___ << "ERROR - " << sout.str() << endl;
533 return false;
534#endif
535 }
536
537 /// Overload of the ofits method. Just calls the zofits specific one with default, uncompressed options for this column
538 bool AddColumn(uint32_t cnt, char typechar, const string& name, const string& unit, const string& comment="", bool addHeaderKeys=true)
539 {
540 return AddColumn(kFactRaw, cnt, typechar, name, unit, comment, addHeaderKeys);
541 }
542
543 /// Overload of the simplified compressed version
544 bool AddColumn(const FITS::Compression &comp, uint32_t cnt, char typechar, const string& name, const string& unit, const string& comment="", bool addHeaderKeys=true)
545 {
546 if (!ofits::AddColumn(1, 'Q', name, unit, comment, addHeaderKeys))
547 return false;
548
549 Table::Column col;
550 size_t size = SizeFromType(typechar);
551
552 col.name = name;
553 col.type = typechar;
554 col.num = cnt;
555 col.size = size;
556 col.offset = fRealRowWidth;
557
558 fRealRowWidth += size*cnt;
559
560 fRealColumns.emplace_back(CompressedColumn(col, comp));
561
562 ostringstream strKey, strVal, strCom;
563 strKey << "ZFORM" << fRealColumns.size();
564 strVal << cnt << typechar;
565 strCom << "format of " << name << " [" << CommentFromType(typechar);
566 SetStr(strKey.str(), strVal.str(), strCom.str());
567
568 strKey.str("");
569 strVal.str("");
570 strCom.str("");
571 strKey << "ZCTYP" << fRealColumns.size();
572 strVal << "FACT";
573 strCom << "Compression type FACT";
574 SetStr(strKey.str(), strVal.str(), strCom.str());
575
576 return true;
577 }
578
579 /// static setter for the default number of threads to use. -1 means all available physical cores
580 static void SetDefaultNumThreads (int32_t num) { fgNumQueues = num;}
581 static void SetDefaultNumTiles (uint32_t num) { fgNumTiles = num;}
582 static void SetDefaultNumRowPerTile(uint32_t num) { fgRowPerTile = num;}
583 static void SetDefaultMaxUsableMem (uint64_t size) { fgMaxUsableMem = size;}
584
585 static int32_t GetDefaultNumThreads() { return fgNumQueues;}
586 static uint32_t GetDefaultNumTiles() { return fgNumTiles;}
587 static uint32_t GetDefaultNumRowPerTile() { return fgRowPerTile;}
588 static uint64_t GetDefaulMaxUsableMem() { return fgMaxUsableMem;}
589
590 /// Get and set the actual number of threads for this object
591 int32_t GetNumThreads() const { return fNumQueues;}
592 bool SetNumThreads(int32_t num)
593 {
594 if (is_open())
595 {
596#ifdef __EXCEPTIONS
597 throw runtime_error("File must be closed before changing the number of compression threads");
598#else
599 gLog << ___err___ << "ERROR - File must be closed before changing the number of compression threads" << endl;
600#endif
601 return false;
602 }
603
604 //get number of physically available threads
605#ifdef USE_BOOST_THREADS
606 int32_t num_available_cores = boost::thread::hardware_concurrency();
607#else
608 int32_t num_available_cores = thread::hardware_concurrency();
609#endif
610
611 // could not detect number of available cores from system properties...
612 // assume that 5 cores are available (4 compression, 1 write)
613 if (num_available_cores == 0)
614 num_available_cores = 5;
615
616 // Throw an exception if too many cores are requested
617 if (num > num_available_cores)
618 {
619 ostringstream str;
620 str << "You will be using more threads(" << num << ") than available cores(" << num_available_cores << "). Expect sub-optimal performances";
621#ifdef __EXCEPTIONS
622 throw runtime_error(str.str());
623#else
624 gLog << ___err___ << "WARNING - " << str.str() << endl;
625#endif
626 }
627
628 if (num == -1)
629 num = num_available_cores-2; // 1 for writing, 1 for the main thread
630
631 if (fCompressionQueues.size() == (uint32_t)num)
632 return true;
633
634 //cannot be const, as resize does not want it that way
635 Queue<CompressionTarget> queue(bind(&zofits::CompressBuffer, this, placeholders::_1), false);
636
637 //shrink if required
638 if ((uint32_t)num < fCompressionQueues.size())
639 {
640 fCompressionQueues.resize(num, queue);
641 return true;
642 }
643
644 //grow if required
645 fCompressionQueues.resize(num, queue);
646
647 fNumQueues = num;
648
649 return true;
650 }
651
652protected:
653
654 /// Allocates the required objects.
655 void reallocateBuffers()
656 {
657 const size_t chunk_size = fRealRowWidth*fNumRowsPerTile + fRealColumns.size()*sizeof(BlockHeader) + sizeof(TileHeader) + 8; //+8 for checksuming;
658 fMemPool.setChunkSize(chunk_size);
659
660 fSmartBuffer = fMemPool.malloc();
661 fBuffer = fSmartBuffer.get()->get();
662
663 fRawSumBuffer.resize(fRealRowWidth + 4-fRealRowWidth%4); //for checksuming
664
665 //give the catalog enough space
666 fCatalog.resize(fNumTiles);
667 for (uint32_t i=0;i<fNumTiles;i++)
668 {
669 fCatalog[i].resize(fRealColumns.size());
670 for (auto it=fCatalog[i].begin(); it!=fCatalog[i].end(); it++)
671 *it = CatalogEntry(0,0);
672 }
673 }
674
675 /// Actually does the writing to disk (and checksuming)
676 /// @param src the buffer to write
677 /// @param sizeToWrite how many bytes should be written
678 /// @return the state of the file
679 bool writeCompressedDataToDisk(char* src, const uint32_t sizeToWrite)
680 {
681 char* checkSumPointer = src+4;
682 int32_t extraBytes = 0;
683 uint32_t sizeToChecksum = sizeToWrite;
684 if (fCheckOffset != 0)
685 {//should we extend the array to the left ?
686 sizeToChecksum += fCheckOffset;
687 checkSumPointer -= fCheckOffset;
688 memset(checkSumPointer, 0, fCheckOffset);
689 }
690 if (sizeToChecksum%4 != 0)
691 {//should we extend the array to the right ?
692 extraBytes = 4 - (sizeToChecksum%4);
693 memset(checkSumPointer+sizeToChecksum, 0,extraBytes);
694 sizeToChecksum += extraBytes;
695 }
696
697 //do the checksum
698 fDataSum.add(checkSumPointer, sizeToChecksum);
699
700 fCheckOffset = (4 - extraBytes)%4;
701 //write data to disk
702 write(src+4, sizeToWrite);
703
704 return good();
705 }
706
707 /// Compress a given buffer based on the target. This is the method executed by the threads
708 /// @param target the struct hosting the parameters of the compression
709 /// @return number of bytes of the compressed data, or always 1 when used by the Queues
710 uint32_t CompressBuffer(const CompressionTarget& target)
711 {
712 uint64_t compressed_size = 0;
713#ifdef __EXCEPTIONS
714 try
715 {
716#endif
717 //transpose the original data
718 copyTransposeTile(target.src.get()->get(), target.transposed_src.get()->get());
719
720 //compress the buffer
721 compressed_size = compressBuffer(target.target.data.get()->get(), target.transposed_src.get()->get(), target.num_rows);
722#ifdef __EXCEPTIONS
723 }
724 catch (...)
725 {
726 fThreadsException = current_exception();
727 if (fNumQueues == 0)
728 rethrow_exception(fThreadsException);
729 }
730#endif
731
732 if (fNumQueues == 0)
733 return compressed_size;
734
735 //post the result to the writing queue
736 //get a copy so that it becomes non-const
737 WriteTarget wt;
738 wt.tile_num = target.target.tile_num;
739 wt.size = compressed_size;
740 wt.data = target.target.data;
741
742 fWriteToDiskQueue.post(wt);
743
744 // if used by the queue, always return true as the elements are not ordered
745 return 1;
746 }
747
748 /// Write one compressed tile to disk. This is the method executed by the writing thread
749 /// @param target the struct hosting the write parameters
750 bool WriteBufferToDisk(const WriteTarget& target)
751 {
752 //is this the tile we're supposed to write ?
753 if (target.tile_num != (uint32_t)(fLatestWrittenTile+1))
754 return false;
755
756 fLatestWrittenTile++;
757
758#ifdef __EXCEPTIONS
759 try
760 {
761#endif
762 if (!writeCompressedDataToDisk(target.data.get()->get(), target.size))
763 {//could not write the data to disk
764 ostringstream str;
765 str << "An error occured while writing to disk: ";
766 if (eof())
767 str << "End-Of-File";
768 if (failbit)
769 str << "Logical error on i/o operation";
770 if (badbit)
771 str << "Writing error on i/o operation";
772#ifdef __EXCEPTIONS
773 throw runtime_error(str.str());
774#else
775 gLog << ___err___ << "ERROR - " << str.str() << endl;
776#endif
777 }
778#ifdef __EXCEPTIONS
779 }
780 catch(...)
781 {
782 fThreadsException = current_exception();
783 if (fNumQueues == 0)
784 rethrow_exception(fThreadsException);
785 }
786#endif
787 return true;
788 }
789
790 /// Compress a given buffer based on its source and destination
791 //src cannot be const, as applySMOOTHING is done in place
792 /// @param dest the buffer hosting the compressed data
793 /// @param src the buffer hosting the transposed data
794 /// @param num_rows the number of uncompressed rows in the transposed buffer
795 /// @param the number of bytes of the compressed data
796 uint64_t compressBuffer(char* dest, char* src, uint32_t num_rows)
797 {
798 const uint32_t thisRoundNumRows = (num_rows%fNumRowsPerTile) ? num_rows%fNumRowsPerTile : fNumRowsPerTile;
799 const uint32_t currentCatalogRow = (num_rows-1)/fNumRowsPerTile;
800 uint32_t offset = 0;
801
802 //skip the checksum reserved area
803 dest += 4;
804
805 //skip the 'TILE' marker and tile size entry
806 uint64_t compressedOffset = sizeof(TileHeader);
807
808 //now compress each column one by one by calling compression on arrays
809 for (uint32_t i=0;i<fRealColumns.size();i++)
810 {
811 fCatalog[currentCatalogRow][i].second = compressedOffset;
812
813 if (fRealColumns[i].col.num == 0) continue;
814
815 Compression& head = fRealColumns[i].block_head;
816
817 //set the default byte telling if uncompressed the compressed Flag
818 const uint64_t previousOffset = compressedOffset;
819
820 //skip header data
821 compressedOffset += head.getSizeOnDisk();
822
823 for (uint32_t j=0;j<head.getNumProcs();j++)//sequence.size(); j++)
824 {
825 switch (head.getProc(j))
826 {
827 case kFactRaw:
828 compressedOffset += compressUNCOMPRESSED(dest + compressedOffset, src + offset, thisRoundNumRows*fRealColumns[i].col.size*fRealColumns[i].col.num);
829 break;
830 case kFactSmoothing:
831 applySMOOTHING(src + offset, thisRoundNumRows*fRealColumns[i].col.num);
832 break;
833 case kFactHuffman16:
834 if (head.getOrdering() == kOrderByCol)
835 compressedOffset += compressHUFFMAN16(dest + compressedOffset, src + offset, thisRoundNumRows, fRealColumns[i].col.size, fRealColumns[i].col.num);
836 else
837 compressedOffset += compressHUFFMAN16(dest + compressedOffset, src + offset, fRealColumns[i].col.num, fRealColumns[i].col.size, thisRoundNumRows);
838 break;
839 }
840 }
841
842 //check if compressed size is larger than uncompressed
843 if ((head.getProc(0) != kFactRaw) && (compressedOffset - previousOffset > fRealColumns[i].col.size*fRealColumns[i].col.num*thisRoundNumRows+head.getSizeOnDisk()))// && two)
844 {//if so set flag and redo it uncompressed
845 // cout << "Redoing uncompressed ! " << endl;
846 //de-smooth !
847 if (head.getProc(0) == kFactSmoothing)
848 UnApplySMOOTHING(src+offset, fRealColumns[i].col.num*thisRoundNumRows);
849
850 Compression he;
851
852 compressedOffset = previousOffset + he.getSizeOnDisk();
853 compressedOffset += compressUNCOMPRESSED(dest + compressedOffset, src + offset, thisRoundNumRows*fRealColumns[i].col.size*fRealColumns[i].col.num);
854
855 he.SetBlockSize(compressedOffset - previousOffset);
856 he.Memcpy(dest+previousOffset);
857
858 offset += thisRoundNumRows*fRealColumns[i].col.size*fRealColumns[i].col.num;
859
860 fCatalog[currentCatalogRow][i].first = compressedOffset - fCatalog[currentCatalogRow][i].second;
861 continue;
862 }
863
864 head.SetBlockSize(compressedOffset - previousOffset);
865 head.Memcpy(dest + previousOffset);
866
867 offset += thisRoundNumRows*fRealColumns[i].col.size*fRealColumns[i].col.num;
868 fCatalog[currentCatalogRow][i].first = compressedOffset - fCatalog[currentCatalogRow][i].second;
869 }
870
871 TileHeader tile_head(thisRoundNumRows, compressedOffset);
872 memcpy(dest, &tile_head, sizeof(TileHeader));
873
874 return compressedOffset;
875 }
876
877 /// Transpose a tile to a new buffer
878 /// @param src buffer hosting the regular, row-ordered data
879 /// @param dest the target buffer that will receive the transposed data
880 void copyTransposeTile(const char* src, char* dest)
881 {
882 const uint32_t thisRoundNumRows = (fTable.num_rows%fNumRowsPerTile) ? fTable.num_rows%fNumRowsPerTile : fNumRowsPerTile;
883
884 //copy the tile and transpose it
885 for (uint32_t i=0;i<fRealColumns.size();i++)
886 {
887 switch (fRealColumns[i].block_head.getOrdering())
888 {
889 case kOrderByRow:
890 for (uint32_t k=0;k<thisRoundNumRows;k++)
891 {//regular, "semi-transposed" copy
892 memcpy(dest, src+k*fRealRowWidth+fRealColumns[i].col.offset, fRealColumns[i].col.size*fRealColumns[i].col.num);
893 dest += fRealColumns[i].col.size*fRealColumns[i].col.num;
894 }
895 break;
896
897 case kOrderByCol :
898 for (uint32_t j=0;j<fRealColumns[i].col.num;j++)
899 for (uint32_t k=0;k<thisRoundNumRows;k++)
900 {//transposed copy
901 memcpy(dest, src+k*fRealRowWidth+fRealColumns[i].col.offset+fRealColumns[i].col.size*j, fRealColumns[i].col.size);
902 dest += fRealColumns[i].col.size;
903 }
904 break;
905 };
906 }
907 }
908
909 /// Specific compression functions
910 /// @param dest the target buffer
911 /// @param src the source buffer
912 /// @param size number of bytes to copy
913 /// @return number of bytes written
914 uint32_t compressUNCOMPRESSED(char* dest, const char* src, uint32_t size)
915 {
916 memcpy(dest, src, size);
917 return size;
918 }
919
920 /// Do huffman encoding
921 /// @param dest the buffer that will receive the compressed data
922 /// @param src the buffer hosting the transposed data
923 /// @param numRows number of rows of data in the transposed buffer
924 /// @param sizeOfElems size in bytes of one data elements
925 /// @param numRowElems number of elements on each row
926 /// @return number of bytes written
927 uint32_t compressHUFFMAN16(char* dest, const char* src, uint32_t numRows, uint32_t sizeOfElems, uint32_t numRowElems)
928 {
929 string huffmanOutput;
930 uint32_t previousHuffmanSize = 0;
931 if (numRows < 2)
932 {//if we have less than 2 elems to compress, Huffman encoder does not work (and has no point). Just return larger size than uncompressed to trigger the raw storage.
933 return numRows*sizeOfElems*numRowElems + 1000;
934 }
935 if (sizeOfElems < 2 )
936 {
937#ifdef __EXCEPTIONS
938 throw runtime_error("HUFMANN16 can only encode columns with 16-bit or longer types");
939#else
940 gLog << ___err___ << "ERROR - HUFMANN16 can only encode columns with 16-bit or longer types" << endl;
941 return 0;
942#endif
943 }
944 uint32_t huffmanOffset = 0;
945 for (uint32_t j=0;j<numRowElems;j++)
946 {
947 Huffman::Encode(huffmanOutput,
948 reinterpret_cast<const uint16_t*>(&src[j*sizeOfElems*numRows]),
949 numRows*(sizeOfElems/2));
950 reinterpret_cast<uint32_t*>(&dest[huffmanOffset])[0] = huffmanOutput.size() - previousHuffmanSize;
951 huffmanOffset += sizeof(uint32_t);
952 previousHuffmanSize = huffmanOutput.size();
953 }
954 const size_t totalSize = huffmanOutput.size() + huffmanOffset;
955
956 //only copy if not larger than not-compressed size
957 if (totalSize < numRows*sizeOfElems*numRowElems)
958 memcpy(&dest[huffmanOffset], huffmanOutput.data(), huffmanOutput.size());
959
960 return totalSize;
961 }
962
963 /// Applies Thomas' DRS4 smoothing
964 /// @param data where to apply it
965 /// @param numElems how many elements of type int16_t are stored in the buffer
966 /// @return number of bytes modified
967 uint32_t applySMOOTHING(char* data, uint32_t numElems)
968 {
969 int16_t* short_data = reinterpret_cast<int16_t*>(data);
970 for (int j=numElems-1;j>1;j--)
971 short_data[j] = short_data[j] - (short_data[j-1]+short_data[j-2])/2;
972
973 return numElems*sizeof(int16_t);
974 }
975
976 /// Apply the inverse transform of the integer smoothing
977 /// @param data where to apply it
978 /// @param numElems how many elements of type int16_t are stored in the buffer
979 /// @return number of bytes modified
980 uint32_t UnApplySMOOTHING(char* data, uint32_t numElems)
981 {
982 int16_t* short_data = reinterpret_cast<int16_t*>(data);
983 //un-do the integer smoothing
984 for (uint32_t j=2;j<numElems;j++)
985 short_data[j] = short_data[j] + (short_data[j-1]+short_data[j-2])/2;
986
987 return numElems*sizeof(uint16_t);
988 }
989
990
991
992 //thread related stuff
993 MemoryManager fMemPool; ///< Actual memory manager, providing memory for the compression buffers
994 static int32_t fgNumQueues; ///< Default number of threads to be used by the objects
995 static uint32_t fgNumTiles; ///< Default number of reserved tiles
996 static uint32_t fgRowPerTile; ///< Default number of rows per tile
997 static uint64_t fgMaxUsableMem; ///< Default usable memory PER OBJECT
998 int32_t fNumQueues; ///< Current number of threads that will be used by this object
999 uint64_t fMaxUsableMem; ///< Maximum number of bytes that can be allocated by the memory manager
1000 int32_t fLatestWrittenTile; ///< Index of the last tile written to disk (for correct ordering while using several threads)
1001
1002 vector<Queue<CompressionTarget>> fCompressionQueues; ///< Processing queues (=threads)
1003 Queue<WriteTarget, QueueMin<WriteTarget>> fWriteToDiskQueue; ///< Writing queue (=thread)
1004
1005 // catalog related stuff
1006 struct CatalogEntry
1007 {
1008 CatalogEntry(int64_t f=0, int64_t s=0) : first(f), second(s) {};
1009 int64_t first; ///< Size of this column in the tile
1010 int64_t second; ///< offset of this column in the tile, from the start of the heap area
1011 } __attribute__((__packed__));
1012
1013 typedef vector<CatalogEntry> CatalogRow;
1014 typedef vector<CatalogRow> CatalogType;
1015 CatalogType fCatalog; ///< Catalog for this file
1016// uint32_t fCatalogSize; ///< Actual catalog size (.size() is slow on large lists)
1017 uint32_t fNumTiles; ///< Number of pre-reserved tiles
1018 uint32_t fNumRowsPerTile; ///< Number of rows per tile
1019 off_t fCatalogOffset; ///< Offset of the catalog from the beginning of the file
1020 uint32_t fCatalogExtraRows; ///< Number of extra rows written on top of the initial capacity of the file
1021
1022 // checksum related stuff
1023 Checksum fCatalogSum; ///< Checksum of the catalog
1024 Checksum fRawSum; ///< Raw sum (specific to FACT)
1025 int32_t fCheckOffset; ///< offset to the data pointer to calculate the checksum
1026
1027 // data layout related stuff
1028 /// Regular columns augmented with compression informations
1029 struct CompressedColumn
1030 {
1031 CompressedColumn(const Table::Column& c, const Compression& h) : col(c),
1032 block_head(h)
1033 {}
1034 Table::Column col; ///< the regular column entry
1035 Compression block_head; ///< the compression data associated with that column
1036 };
1037 vector<CompressedColumn> fRealColumns; ///< Vector hosting the columns of the file
1038 uint32_t fRealRowWidth; ///< Width in bytes of one uncompressed row
1039 shared_ptr<MemoryChunk> fSmartBuffer; ///< Smart pointer to the buffer where the incoming rows are written
1040 char* fBuffer; ///< regular version of fSmartBuffer
1041 vector<char> fRawSumBuffer;///< buffer used for checksuming the incoming data, before compression
1042
1043#ifdef __EXCEPTIONS
1044 exception_ptr fThreadsException; ///< exception pointer to store exceptions coming from the threads
1045#endif
1046
1047};
1048
1049int32_t zofits::fgNumQueues = 0;
1050uint32_t zofits::fgNumTiles = 1000;
1051uint32_t zofits::fgRowPerTile = 100;
1052uint64_t zofits::fgMaxUsableMem = 1073741824; // one gigabyte
1053
1054#ifndef __MARS__
1055}; //namespace std
1056#endif
Note: See TracBrowser for help on using the repository browser.