/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz 12/2000 Qi Zhe, 06/2007 ! Copyright: Software Development, 2000-2009 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MCorsikaRunHeader // // Root storage container for the RUN HEADER information // // Class Version 2: // ---------------- // + UInt_t fParticleID // + Float_t fImpactMax // + Float_t fMagneticFieldX // + Float_t fMagneticFieldZ // + Float_t fMagneticFieldAz // + Float_t fAtmosphericLayers[5] // + Float_t fAtmosphericCoeffA[5] // + Float_t fAtmosphericCoeffB[5] // + Float_t fAtmosphericCoeffC[5] // + UInt_t fCerenkovFlag // // Class Version 3: // ---------------- // + UInt_t fNumReuse // // Class Version 4: // ---------------- // + UInt_t fCerenkovFileOption // + UInt_t fHadronModelLowEnergy // + UInt_t fHadronModelHighEnergy // + Float_t fTransitionEnergy // + Bool_t fCurvedAtmosphere // + Float_t fEnergyCutoffHadrons // + Float_t fEnergyCutoffMuons // + Float_t fEnergyCutoffElectrons // + Float_t fEnergyCutoffPhotons // + Float_t fThinningEnergyFractionH // + Float_t fThinningEnergyFractionEM // + Float_t fThinningWeightLimitH // + Float_t fThinningWeightLimitEM // + Float_t fThinningMaxRadius // //////////////////////////////////////////////////////////////////////////// #include "MCorsikaRunHeader.h" #include "MCorsikaFormat.h" #include #include #include "MLog.h" #include "MLogManip.h" #include "MMcEvt.hxx" ClassImp(MCorsikaRunHeader); using namespace std; const Double_t MCorsikaRunHeader::fgEarthRadius = 637131500; // [cm] Earth radius as defined in CORSIKA // -------------------------------------------------------------------------- // // Default constructor. Creates array which stores the pixel assignment. // // MCorsikaRunHeader::MCorsikaRunHeader(const char *name, const char *title) : fNumObsLevel(0), fImpactMax(-1), fZdMin(0), fZdMax(-1), fAzMin(0), fAzMax(0), fWavelengthMin(-1), fWavelengthMax(-1), fViewConeInnerAngle(0), fViewConeOuterAngle(-1) { fName = name ? name : "MCorsikaRunHeader"; fTitle = title ? title : "Raw Run Header Information"; } // -------------------------------------------------------------------------- // // Read in one run header from the binary file // Bool_t MCorsikaRunHeader::ReadEvt(MCorsikaFormat * fInFormat, const uint32_t &blockLength) { vector f(blockLength); if (!fInFormat->Read(f.data(), blockLength*sizeof(Float_t))) return kFALSE; fRunNumber = TMath::Nint(f[0]); fNumEvents = 0; fRunStart.SetCorsikaTime(f[1]); fProgramVersion = f[2]; fNumObsLevel = TMath::Nint(f[3]); if (fNumObsLevel!=1) { *fLog << err << "ERROR - Currently only one observation level is allowed." << endl; return kFALSE; } memset(fObsLevel, 0, 10*4); memcpy(fObsLevel, f.data()+4, fNumObsLevel*4); fSlopeSpectrum = f[14]; fEnergyMin = f[15]; fEnergyMax = f[16]; fEnergyCutoffHadrons = f[17]; fEnergyCutoffMuons = f[18]; fEnergyCutoffElectrons = f[19]; fEnergyCutoffPhotons = f[20]; // Implemented in CORSIKA Version >= 6.822 fImpactMax = -1; // CORSIKA scattering in a disc on the ground if (f[246]>0 && f[247]==0 && !fInFormat->IsEventioFormat()) { *fLog << warn << "WARNING - Events scattered in a disc on the ground." << endl; fImpactMax = f[246]; } // MMCS scattering in a disc perpendicular to the shower axis if (f[246]==0 && f[247]>0) fImpactMax = f[247]; // CORSIKA scattering in a rectangle on the ground if (f[246]>0 && f[247]>0) *fLog << warn << "WARNING - Events scattered in a rectangle on the ground." << endl; // Implemented in CORSIKA Version >= 6.822 memcpy(fAtmosphericLayers, f.data()+248, 5*4); memcpy(fAtmosphericCoeffA, f.data()+253, 5*4); memcpy(fAtmosphericCoeffB, f.data()+258, 5*4); memcpy(fAtmosphericCoeffC, f.data()+263, 5*4); return kTRUE; } // -------------------------------------------------------------------------- // // Read in one event header. It is called for the first event header after // a run header // Bool_t MCorsikaRunHeader::ReadEventHeader(Float_t * g) { // -------------------- Read first event header ------------------- // FIXME: Add sanity checks! // f[76] Cherenkov flag: // bit(1) : CERENKOV option compiled in // bit(2) : IACT option compiled in // bit(3) : CEFFIC option compiled in // bit(4) : ATMEXT option compiled in // bit(5) : ATMEXT option used with refraction enabled // bit(6) : VOLUMEDET option compiled in // bit(7) : CURVED option compiled in // bit(9) : SLATN option compiled in // 11-21 : table number for externam athmosphere (but<1024) // // f[78] Curved athmosphere? (0=flat, 1=curved) // f[84] cherenkov bunch size // f[93] flag for additinal muon information of particle output file // f[145] Muon multiple scattering flag fNumReuse = TMath::Nint(g[96]); // Number i of uses of each cherenkov event fParticleID = TMath::Nint(g[1]); // MAGNETIC FIELD: x/z-component of earth magnetic field in muT fMagneticFieldX = g[69]; // x-component ( BX) fMagneticFieldZ = -g[70]; // z-component (-BZ) fMagneticFieldAz = g[91]; // Azimuth angle of magnetic north expressed in telescope coordinates fHadronModelLowEnergy = TMath::Nint(g[73]); fHadronModelHighEnergy = TMath::Nint(g[74]); // WITH rounding: unbelievable! fCerenkovFlag = TMath::Nint(g[75]); fCerenkovFileOption = TMath::Nint(g[90]); fCurvedAtmosphere = TMath::Nint(g[77])==2; fZdMin = g[79]; // lower edge of theta in ° fZdMax = g[80]; // upper edge of theta in ° fAzMin = 180-g[81]; // lower edge of phi in ° fAzMax = 180-g[82]; // upper edge of phi in ° // FIXME: Correct for direction of magnetic field! if (TMath::Nint(g[83])!=1) *fLog << warn << "WARNING - Cherenkov bunch size not 1, but " << g[83] << endl; // g[84] Number of cherenkov detectors in x // g[85] Number of cherenkov detectors in y // g[86] Grid spacing x // g[87] Grid spacing y // g[88] Length of detectors in x // g[89] Length of detectors in y fImpactMax = -1; /* // This is a trick to use CERARY for storage of the // maximum simulated impact if (TMath::Nint(g[84])==1 && TMath::Nint(g[85])==1 && TMath::Nint(g[88])==1 && TMath::Nint(g[89])==1 && g[86]==g[87]) fImpactMax = g[86]; */ fWavelengthMin = g[94]; // Cherenkov bandwidth lower end in nm fWavelengthMax = g[95]; // Cherenkov bandwidth upper end in nm fThinningEnergyFractionH = g[146]; // EFRCTHN fThinningEnergyFractionEM = g[147]; // EFRCTHN*THINRAT fThinningWeightLimitH = g[148]; // WMAX fThinningWeightLimitEM = g[149]; // WMAX*WEITRAT fThinningMaxRadius = g[150]; // Max radial radius for thinning fViewConeInnerAngle = g[151]; // inner angle of view cone (°) fViewConeOuterAngle = g[152]; // outer angle of view cone (°) fTransitionEnergy = g[153]; return kTRUE; } Bool_t MCorsikaRunHeader::ReadEvtEnd(MCorsikaFormat * fInFormat, Bool_t runNumberVerify) { Float_t f[2]; if (!fInFormat->Read(f, 2 * sizeof(Float_t))) return kFALSE; if (runNumberVerify) { const UInt_t runnum = TMath::Nint(f[0]); if (runnum!=fRunNumber) { *fLog << err << "ERROR - Mismatch in stream: Run number in RUNE ("; *fLog << runnum << ") doesn't match RUNH (" << fRunNumber << ")." << endl; return kFALSE; } } fNumEvents = TMath::Nint(f[1]); return kTRUE; } // -------------------------------------------------------------------------- // // print run header information on *fLog. The option 'header' supresses // the pixel index translation table. // void MCorsikaRunHeader::Print(Option_t *t) const { *fLog << all << endl; *fLog << "Run Number: " << fRunNumber << " (" << fRunStart.GetStringFmt("%d.%m.%Y") << ", V" << fProgramVersion << ")" << endl; *fLog << "Particle ID: " << MMcEvt::GetParticleName(fParticleID) << endl; if (fNumEvents>0) *fLog << "Num Events: " << fNumEvents << " (reuse " << fNumReuse << " times)" << endl; *fLog << "Obs Level: "; for (Byte_t i=0; i0) *fLog << "ImpactMax: " << fImpactMax << "cm" << endl; if (fViewConeOuterAngle>0) *fLog << "ViewCone: " << fViewConeInnerAngle << UTF8::kDeg << " - " << fViewConeOuterAngle << UTF8::kDeg << endl; *fLog << "Zd/Az: "; if (fZdMax>=0 && fZdMin<360) { *fLog << fZdMin << UTF8::kDeg; if (fZdMin==fZdMax) *fLog << " (fixed)"; else *fLog << "-" << fZdMax << UTF8::kDeg; *fLog << " / " << fAzMin << UTF8::kDeg; if (fAzMin==fAzMax) *fLog << " (fixed)"; else *fLog << "-" << fAzMax << UTF8::kDeg; *fLog << " w.r.t. magnetic North." << endl; } if (fZdMin>=360) // 4010.7 *fLog << "-trajectory-" << endl; if (fImpactMax>0) *fLog << "Max.sim.Impact: " << fImpactMax << "cm" << endl; *fLog << "Energy cutoff: "; *fLog << fEnergyCutoffHadrons << "GeV (hadrons), "; *fLog << fEnergyCutoffMuons << "GeV (muons), "; *fLog << fEnergyCutoffElectrons << "GeV (electrons), "; *fLog << fEnergyCutoffPhotons << "GeV (photons)"; *fLog << endl; *fLog << "Thinning: "; if (fThinningWeightLimitH>0) { *fLog << "HADRONIC: E/Eth>" << fThinningEnergyFractionH << " (w>" << fThinningWeightLimitH << "), "; *fLog << "EM: E/Eth>" << fThinningEnergyFractionEM << " (w>" << fThinningWeightLimitEM << "), "; *fLog << "R>" << fThinningMaxRadius << "cm"; *fLog << endl; } else *fLog << "" << endl; *fLog << "Interact.model: "; switch (fHadronModelLowEnergy) { case 1: *fLog << "GEISHA"; break; case 2: *fLog << "UrQMD"; break; case 3: *fLog << "FLUKA"; break; default: *fLog << ""; break; } *fLog << " / "; switch (fHadronModelHighEnergy) { case 0: *fLog << "HDPM"; break; case 1: *fLog << "VENUS"; break; case 2: *fLog << "SIBYLL"; break; case 3: *fLog << "QGSJET"; break; case 4: *fLog << "DPMJET"; break; case 5: *fLog << "neXus"; break; case 6: *fLog << "EPOS"; break; default: *fLog << ""; break; } *fLog << " [lo/hi], Transition at " << fTransitionEnergy << " GeV" << endl; *fLog << "Options used: "; if (Has(kCerenkov)) *fLog << " CERENKOV"; if (Has(kIact)) *fLog << " IACT"; if (Has(kCeffic)) *fLog << " CEFFIC"; if (Has(kAtmext)) *fLog << " ATMEXT" << GetNumAtmosphericModel(); if (Has(kRefraction)) *fLog << " +Refraction"; if (Has(kVolumedet)) *fLog << " VOLUMEDET"; if (Has(kCurved)) *fLog << " CURVED" << (fCurvedAtmosphere?"":""); if (Has(kSlant)) *fLog << " SLANT"; *fLog << " [" << hex << fCerenkovFlag << "]" << dec << endl; if (Has(kCerenkov)) { *fLog << "File format: "; switch (fCerenkovFileOption) { case 0: *fLog << "Cerenkov photons written to DAT-file."; break; case 1: *fLog << "Cerenkov photons written to CER-file"; break; case 2: *fLog << "Cerenkov photons written to CER-file / Wavelength as 8th item in THIN option"; break; default: *fLog << "Cerenkov photons written to CER-file / Prod. height replaced by distance to array center."; break; } *fLog << " [MCERFI=" << fCerenkovFileOption << "]" << endl; } if (HasLayers()) { *fLog << "Atm.Layers: "; for (int i=0; i<5; i++) *fLog << " " << fAtmosphericLayers[i]; } *fLog << endl; *fLog << "Atm.Coeff A: "; for (int i=0; i<5; i++) *fLog << " " << fAtmosphericCoeffA[i]; *fLog << endl; *fLog << "Atm.Coeff B: "; for (int i=0; i<5; i++) *fLog << " " << fAtmosphericCoeffB[i]; *fLog << endl; *fLog << "Atm.Coeff C: "; for (int i=0; i<5; i++) *fLog << " " << fAtmosphericCoeffC[i]; *fLog << endl; }