#ifndef MARS_MCorsikaRunHeader #define MARS_MCorsikaRunHeader /////////////////////////////////////////////////////////////////////// // // // MRunHeader // // // /////////////////////////////////////////////////////////////////////// #ifndef MARS_MTime #include "MTime.h" #endif class MCorsikaFormat; class MCorsikaRunHeader : public MParContainer { friend class MCorsikaEvtHeader; public: enum CerenkovFlag_t { kCerenkov = BIT(0), kIact = BIT(1), kCeffic = BIT(2), kAtmext = BIT(3), kRefraction = BIT(4), kVolumedet = BIT(5), kCurved = BIT(6), kSlant = BIT(8) }; static const Double_t fgEarthRadius; // Take same Earth radius as in CORSIKA (cm) private: UInt_t fRunNumber; // Run number UInt_t fNumReuse; // Number of how many times the same shower is used UInt_t fParticleID; // Particle ID (see MMcEvtBasic or CORSIKA manual) UInt_t fNumEvents; // Number of events MTime fRunStart; // Date of begin (yymmdd) Float_t fProgramVersion; // Version of program Byte_t fNumObsLevel; // Number of observation levels Float_t fObsLevel[10]; // Observation levels [cm] Float_t fImpactMax; // [cm] Maximum simulated impact Float_t fSlopeSpectrum; // Slope of energy spectrum Float_t fEnergyMin; // Lower limit of energy range Float_t fEnergyMax; // Upper limit of energy range Float_t fZdMin; // [rad] Zenith distance Float_t fZdMax; // [rad] Zenith distance Float_t fAzMin; // [rad] Azimuth (north=0; east=90) Float_t fAzMax; // [rad] Azimuth (north=0; east=90) (north denotes the magnet north which is defined to be in the geografic north!) Float_t fMagneticFieldX; // [muT] x-component of earth magnetic field (ceres coordinate system) Float_t fMagneticFieldZ; // [muT] z-component of earth magnetic field (ceres coordinate system) Float_t fMagneticFieldAz; // [rad] Azimuth angle of magnetic north expressed in telescope coordinates Float_t fWavelengthMin; // [nm] Wavelength bandwidth lo edge Float_t fWavelengthMax; // [nm] Wavelength bandwidth up edge Float_t fViewConeInnerAngle; // [deg] Float_t fViewConeOuterAngle; // [deg] Float_t fAtmosphericLayers[5]; // [cm] ATMLAY (see Corsika Manual for details) Float_t fAtmosphericCoeffA[5]; // [g/cm^2] AATM (see Corsika Manual for details) Float_t fAtmosphericCoeffB[5]; // [g/cm^2] BATM (see Corsika Manual for details) Float_t fAtmosphericCoeffC[5]; // [cm] CATM (see Corsika Manual for details) UInt_t fCerenkovFlag; UInt_t fCerenkovFileOption; // MCERFI UInt_t fHadronModelLowEnergy; UInt_t fHadronModelHighEnergy; Float_t fTransitionEnergy; // [GeV] Bool_t fCurvedAtmosphere; Float_t fEnergyCutoffHadrons; // [GeV] Float_t fEnergyCutoffMuons; // [GeV] Float_t fEnergyCutoffElectrons; // [GeV] Float_t fEnergyCutoffPhotons; // [GeV] Float_t fThinningEnergyFractionH; // Hadronic energy limit: EFRCTHN Float_t fThinningEnergyFractionEM; // EM energy limit: EFRCTHN*THINRAT Float_t fThinningWeightLimitH; // Hadronic weight limit: WMAX Float_t fThinningWeightLimitEM; // EM weight limit: WMAX*WEITRAT Float_t fThinningMaxRadius; // [cm] Max radial raius for thinning public: MCorsikaRunHeader(const char *name=NULL, const char *title=NULL); // Getter UInt_t GetRunNumber() const { return fRunNumber; } UInt_t GetParticleID() const { return fParticleID; } UInt_t GetNumEvents() const { return fNumEvents; } UInt_t GetNumReuse() const { return fNumReuse; } const MTime &GetRunStart() const { return fRunStart; } Float_t GetProgramVersion() const { return fProgramVersion; } Float_t GetZdMin() const { return fZdMin; } Float_t GetZdMax() const { return fZdMax; } Float_t GetAzMin() const { return fAzMin; } Float_t GetAzMax() const { return fAzMax; } Float_t GetWavelengthMin() const { return fWavelengthMin; } Float_t GetWavelengthMax() const { return fWavelengthMax; } Float_t GetSlopeSpectrum() const { return fSlopeSpectrum; } Float_t GetEnergyMin() const { return fEnergyMin; } Float_t GetEnergyMax() const { return fEnergyMax; } Float_t GetImpactMax() const { return fImpactMax; } Float_t GetMagneticFieldX() const { return fMagneticFieldX; } Float_t GetMagneticFieldZ() const { return fMagneticFieldZ; } Float_t GetMagneticFieldAz() const { return fMagneticFieldAz; } Float_t GetViewConeInnerAngle() const { return fViewConeInnerAngle; } Float_t GetViewConeOuterAngle() const { return fViewConeOuterAngle; } Bool_t HasViewCone() const { return fViewConeOuterAngle>0; } Float_t GetObsLevel(UInt_t i=0) const { return i>9 ? -1 : fObsLevel[i]; } Bool_t Has(CerenkovFlag_t opt) const { return fCerenkovFlag&opt ? 1 : 0; } UInt_t GetCerenkovFileOption() const { return fCerenkovFileOption; } static Double_t EarthRadius() { return fgEarthRadius; } // Preliminary! Bool_t HasLayers() const { return fAtmosphericLayers[4]>0; } const Float_t *GetAtmosphericLayers() const { return fAtmosphericLayers; } const Float_t *GetAtmosphericCoeffA() const { return fAtmosphericCoeffA; } const Float_t *GetAtmosphericCoeffB() const { return fAtmosphericCoeffB; } const Float_t *GetAtmosphericCoeffC() const { return fAtmosphericCoeffC; } UInt_t GetNumAtmosphericModel() const { return (fCerenkovFlag>>10)&0x3ff; } // I/O Bool_t ReadEvt(MCorsikaFormat * fInFormat, const uint32_t &blockLength); Bool_t ReadEventHeader(Float_t * g); Bool_t ReadEvtEnd(MCorsikaFormat * fInFormat, Bool_t runNumberVerify); // TObject void Print(Option_t *t=NULL) const; ClassDef(MCorsikaRunHeader, 4) // storage container for general info }; #endif