| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appears in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | ! | 
|---|
| 18 | !   Author(s): Thomas Bretz,  1/2009 <mailto:tbretz@astro.uni-wuerzburg.de> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: CheObs Software Development, 2000-2009 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | // | 
|---|
| 27 | //  APD | 
|---|
| 28 | // | 
|---|
| 29 | // All times in this class are relative times. Therefor the unit for the | 
|---|
| 30 | // time is not intrinsically fixed. In fact the dead-time and recovery- | 
|---|
| 31 | // time given in the constructor must have the same units. This is what | 
|---|
| 32 | // defines the unit of the times given in the function and the unit of | 
|---|
| 33 | // rates given. | 
|---|
| 34 | // For example, if recovery and dead time are given in nanoseconds the | 
|---|
| 35 | // all times must be in nanoseconds and rates are given per nanosecond, | 
|---|
| 36 | // i.e. GHz. | 
|---|
| 37 | // | 
|---|
| 38 | //  Hamamatsu 30x30 cells:  APD(30, 0.2, 3, 35) | 
|---|
| 39 | //  Hamamatsu 60x60 cells:  APD(60, 0.2, 3, 8.75) | 
|---|
| 40 | // | 
|---|
| 41 | // | 
|---|
| 42 | // The implementation of afterpulsing is based on | 
|---|
| 43 | //    A.Du, F.Retiere | 
|---|
| 44 | //    After-pulsing and cross-talk in multi-pixel photon counters | 
|---|
| 45 | //    NIM A, Volume 596, Issue 3, p. 396-401 | 
|---|
| 46 | // | 
|---|
| 47 | // | 
|---|
| 48 | // Example: | 
|---|
| 49 | // | 
|---|
| 50 | //    APD apd(ncells, crosstalk, deadtime, recovery); | 
|---|
| 51 | //    apd.SetAfterpulseProb(0.14, 0.11); | 
|---|
| 52 | // | 
|---|
| 53 | //    while (1) | 
|---|
| 54 | //    { | 
|---|
| 55 | //        // Make the chip "empty" from the influence of external photons | 
|---|
| 56 | //        // It also sets fTime to 0. | 
|---|
| 57 | //        apd.Init(freq); // freq of external noise (eg. nsb) | 
|---|
| 58 | // | 
|---|
| 59 | //        // Now call this function for each external photon you have. The | 
|---|
| 60 | //        // times are relative to the the time you get by apd.GetTime() | 
|---|
| 61 | //        // set automatically after the call to apd.Init(). | 
|---|
| 62 | //        for (int i=0; i<nphot; i++) | 
|---|
| 63 | //            apd.HitRandomCellRelative(dt); | 
|---|
| 64 | // | 
|---|
| 65 | //        [...] | 
|---|
| 66 | // | 
|---|
| 67 | //        // Process and produce afterpulses until a time, wrt to GetTime(), | 
|---|
| 68 | //        // given by the end of your simulated window. Note that this | 
|---|
| 69 | //        // does not produce noise. This must have been properly simulated | 
|---|
| 70 | //        // up to this time already. | 
|---|
| 71 | //        apd.IncreaseTime(dtend); | 
|---|
| 72 | // | 
|---|
| 73 | //        // Now you can excess the afterpulses by | 
|---|
| 74 | //        TIter Next(&a->GetListOfAfterpulses()); | 
|---|
| 75 | //        Afterpulse *ap = 0; | 
|---|
| 76 | //        while ((ap=static_cast<Afterpulse*>(Next()))) | 
|---|
| 77 | //        { | 
|---|
| 78 | //           if (apd.GetTime()>=dtend) | 
|---|
| 79 | //              continue; | 
|---|
| 80 | // | 
|---|
| 81 | //           cout << "Amplitude:    " << ap->GetAmplitude() << endl; | 
|---|
| 82 | //           cout << "Arrival Time: " << ap->GetTime()      << endl; | 
|---|
| 83 | //        } | 
|---|
| 84 | //     } | 
|---|
| 85 | // | 
|---|
| 86 | // | 
|---|
| 87 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 88 | #include "MAvalanchePhotoDiode.h" | 
|---|
| 89 |  | 
|---|
| 90 | #include <TRandom.h> | 
|---|
| 91 |  | 
|---|
| 92 | #include "MMath.h" | 
|---|
| 93 |  | 
|---|
| 94 | #include "MLog.h" | 
|---|
| 95 | #include "MLogManip.h" | 
|---|
| 96 |  | 
|---|
| 97 | ClassImp(APD); | 
|---|
| 98 |  | 
|---|
| 99 | using namespace std; | 
|---|
| 100 |  | 
|---|
| 101 | /* | 
|---|
| 102 | class MyProfile : public TProfile2D | 
|---|
| 103 | { | 
|---|
| 104 | public: | 
|---|
| 105 | void AddBinEntry(Int_t cell) { fBinEntries.fArray[cell]++; } | 
|---|
| 106 | }; | 
|---|
| 107 | */ | 
|---|
| 108 |  | 
|---|
| 109 | // -------------------------------------------------------------------------- | 
|---|
| 110 | // | 
|---|
| 111 | //  Default Constructor. | 
|---|
| 112 | // | 
|---|
| 113 | //    n     is the number od cells in x or y. The APD is assumed to | 
|---|
| 114 | //          be square. | 
|---|
| 115 | //    prob  is the crosstalk probability, i.e., the probability that a | 
|---|
| 116 | //          photon which produced an avalanche will create another | 
|---|
| 117 | //          photon in a neighboring cell | 
|---|
| 118 | //    dt    is the deadtime, i.e., the time in which the APD cell will show | 
|---|
| 119 | //          no response to a photon after a hit | 
|---|
| 120 | //    rt    is the recovering tims, i.e. the exponential (e^(-dt/rt)) | 
|---|
| 121 | //          with which the cell is recovering after being dead | 
|---|
| 122 | // | 
|---|
| 123 | //    prob, dt and ar can be set to 0 to switch the effect off. | 
|---|
| 124 | //    0 is also the dfeault for all three. | 
|---|
| 125 | // | 
|---|
| 126 | APD::APD(Int_t n, Float_t prob, Float_t dt, Float_t rt) | 
|---|
| 127 | : fHist("APD", "", n, 0.5, n+0.5, n, 0.5, n+0.5), | 
|---|
| 128 | fCrosstalkProb(prob), fDeadTime(dt), fRecoveryTime(rt), | 
|---|
| 129 | fTime(-1) | 
|---|
| 130 | { | 
|---|
| 131 | fHist.SetDirectory(0); | 
|---|
| 132 |  | 
|---|
| 133 | fAfterpulses.SetOwner(); | 
|---|
| 134 |  | 
|---|
| 135 | fAfterpulseProb[0] = 0; | 
|---|
| 136 | fAfterpulseProb[1] = 0; | 
|---|
| 137 |  | 
|---|
| 138 | fAfterpulseTau[0] = 15; | 
|---|
| 139 | fAfterpulseTau[1] = 85; | 
|---|
| 140 | } | 
|---|
| 141 |  | 
|---|
| 142 | // -------------------------------------------------------------------------- | 
|---|
| 143 | // | 
|---|
| 144 | // This is the time a chips needs after an external signal to relax to | 
|---|
| 145 | // a "virgin" state, i.e. without no influence of the external pulse | 
|---|
| 146 | // above the given threshold. | 
|---|
| 147 | // | 
|---|
| 148 | // It takes into account the dead time of the cell, the relaxation time | 
|---|
| 149 | // and the two afterpulse distributions. However, in most cases the | 
|---|
| 150 | // afterpulse distribution will dominate (except they are switched off by | 
|---|
| 151 | // a zero probability). | 
|---|
| 152 | // | 
|---|
| 153 | // FIXME: Maybe the calculation of the relaxation time could be optimized? | 
|---|
| 154 | // | 
|---|
| 155 | Float_t APD::GetRelaxationTime(Float_t threshold) const | 
|---|
| 156 | { | 
|---|
| 157 | // Calculate time until the probability of one of these | 
|---|
| 158 | // events falls below the threshold probability. | 
|---|
| 159 | const Double_t rt0 = - TMath::Log(threshold)*fRecoveryTime; | 
|---|
| 160 | const Double_t rt1 = fAfterpulseProb[0]>0 ? -TMath::Log(threshold/fAfterpulseProb[0])*fAfterpulseTau[0] : 0; | 
|---|
| 161 | const Double_t rt2 = fAfterpulseProb[0]>0 ? -TMath::Log(threshold/fAfterpulseProb[1])*fAfterpulseTau[1] : 0; | 
|---|
| 162 |  | 
|---|
| 163 | // Probability not between t and inf, but between t and t+dt | 
|---|
| 164 | // -tau * log ( p / ( 1 - exp(- dt/tau) ) ) = t | 
|---|
| 165 |  | 
|---|
| 166 | return fDeadTime + TMath::Max(rt0, TMath::Max(rt1, rt2)); | 
|---|
| 167 | } | 
|---|
| 168 |  | 
|---|
| 169 | // -------------------------------------------------------------------------- | 
|---|
| 170 | // | 
|---|
| 171 | // This is the recursive implementation of a hit. If a photon hits a cell | 
|---|
| 172 | // at x and y (must be a valid cell!) at time t, at first we check if the | 
|---|
| 173 | // cell is still dead. If it is not dead we calculate the signal height | 
|---|
| 174 | // from the recovery time. Now we check with the crosstalk probability | 
|---|
| 175 | // whether another photon is created. If another photon is created we | 
|---|
| 176 | // calculate randomly which of the four neighbor cells are hit. | 
|---|
| 177 | // If the cell is outside the APD the photon is ignored. As many | 
|---|
| 178 | // new photons are created until our random number is below the crosstak- | 
|---|
| 179 | // probability. | 
|---|
| 180 | // | 
|---|
| 181 | // For each photon the possible afterpulses of two distributions are | 
|---|
| 182 | // created and added to the list of afterpulses. This is done by calling | 
|---|
| 183 | // GenerateAfterpulse for the two afterpulse-distributions. | 
|---|
| 184 | // | 
|---|
| 185 | // The total height of the signal (in units of photons) is returned. | 
|---|
| 186 | // Note, that this can be a fractional number. | 
|---|
| 187 | // | 
|---|
| 188 | // This function looks a bit fancy accessing the histogram and works around | 
|---|
| 189 | // a few histogram functions. This is a speed optimization which works | 
|---|
| 190 | // around a lot of sanity checks which are obsolete in our case. | 
|---|
| 191 | // | 
|---|
| 192 | // The default time is 0. | 
|---|
| 193 | // | 
|---|
| 194 | Float_t APD::HitCellImp(Int_t x, Int_t y, Float_t t) | 
|---|
| 195 | { | 
|---|
| 196 | //        if (x<1 || x>fHist.GetNbinsX() || | 
|---|
| 197 | //            y<1 || y>fHist.GetNbinsY()) | 
|---|
| 198 | //            return 0; | 
|---|
| 199 | #ifdef DEBUG | 
|---|
| 200 | cout << "Hit: " << t << endl; | 
|---|
| 201 | #endif | 
|---|
| 202 |  | 
|---|
| 203 | // Number of the x/y cell in the one dimensional array | 
|---|
| 204 | // const Int_t cell = fHist.GetBin(x, y); | 
|---|
| 205 | const Int_t cell = x + (fHist.GetNbinsX()+2)*y; | 
|---|
| 206 |  | 
|---|
| 207 | // Getting a reference to the float is the fastes way to | 
|---|
| 208 | // access the bin-contents in fArray | 
|---|
| 209 | Float_t &cont = fHist.GetArray()[cell]; | 
|---|
| 210 |  | 
|---|
| 211 | // Calculate the time since the last breakdown | 
|---|
| 212 | // const Double_t dt = t-fHist.GetBinContent(x, y)-fDeadTime; // | 
|---|
| 213 | const Float_t dt = t-cont-fDeadTime; | 
|---|
| 214 |  | 
|---|
| 215 | // Photons within the dead time are just ignored | 
|---|
| 216 | if (/*hx.GetBinContent(x,y)>0 &&*/ dt<=0) | 
|---|
| 217 | { | 
|---|
| 218 | #ifdef DEBUG | 
|---|
| 219 | cout << "Dead: " << t << " " << cont << " " << dt << endl; | 
|---|
| 220 | #endif | 
|---|
| 221 | return 0; | 
|---|
| 222 | } | 
|---|
| 223 | // The signal height (in units of one photon) produced after dead time | 
|---|
| 224 | // depends on the recovery of the cell - described by an exponential. | 
|---|
| 225 | const Float_t weight = fRecoveryTime<=0 ? 1. : 1-TMath::Exp(-dt/fRecoveryTime); | 
|---|
| 226 |  | 
|---|
| 227 | // Now we know the charge in the cell and we can generate | 
|---|
| 228 | // the afterpulses with both time-constants | 
|---|
| 229 | GenerateAfterpulse(cell, 0, weight, t); | 
|---|
| 230 | GenerateAfterpulse(cell, 1, weight, t); | 
|---|
| 231 |  | 
|---|
| 232 | // The probability that the cell emits a photon causing crosstalk | 
|---|
| 233 | // scales as the signal height. | 
|---|
| 234 | const Float_t prob = weight*fCrosstalkProb; | 
|---|
| 235 |  | 
|---|
| 236 | // Set the contents to the time of the last breakdown (now) | 
|---|
| 237 | cont = t; // fHist.SetBinContent(x, y, t) | 
|---|
| 238 |  | 
|---|
| 239 | // Counter for the numbers of produced photons | 
|---|
| 240 | Float_t n = weight; | 
|---|
| 241 |  | 
|---|
| 242 | /* | 
|---|
| 243 | // Check if a photon in a neighboring cell is produced (crosstalk) | 
|---|
| 244 | while (gRandom->Rndm()<fCrosstalkProb) | 
|---|
| 245 | { | 
|---|
| 246 | // Get a random neighbor which is hit. | 
|---|
| 247 | switch (gRandom->Integer(4)) | 
|---|
| 248 | { | 
|---|
| 249 | case 0: x++; if (x>fHist.GetNbinsX()) continue; break; | 
|---|
| 250 | case 1: x--; if (x<1) continue;                 break; | 
|---|
| 251 | case 2: y++; if (y>fHist.GetNbinsY()) continue; break; | 
|---|
| 252 | case 3: y--; if (y<1) continue;                 break; | 
|---|
| 253 | } | 
|---|
| 254 |  | 
|---|
| 255 | n += HitCellImp(x, y, t); | 
|---|
| 256 | } | 
|---|
| 257 | */ | 
|---|
| 258 |  | 
|---|
| 259 |  | 
|---|
| 260 | //for (int i=0; i<1; i++) | 
|---|
| 261 | while (1) | 
|---|
| 262 | { | 
|---|
| 263 | const Double_t rndm = gRandom->Rndm(); | 
|---|
| 264 | if (rndm>=prob/*fCrosstalkProb*/) | 
|---|
| 265 | break; | 
|---|
| 266 |  | 
|---|
| 267 | // We can re-use the random number because it is uniformely | 
|---|
| 268 | // distributed. This saves cpu power | 
|---|
| 269 | const Int_t dir = TMath::FloorNint(4*rndm/prob/*fCrosstalkProb*/); | 
|---|
| 270 |  | 
|---|
| 271 | // Get a random neighbor which is hit. | 
|---|
| 272 | switch (dir) | 
|---|
| 273 | { | 
|---|
| 274 | case 0: if (x<fHist.GetNbinsX()) n += HitCellImp(x+1, y, t); break; | 
|---|
| 275 | case 1: if (x>1)                 n += HitCellImp(x-1, y, t); break; | 
|---|
| 276 | case 2: if (y<fHist.GetNbinsY()) n += HitCellImp(x, y+1, t); break; | 
|---|
| 277 | case 3: if (y>1)                 n += HitCellImp(x, y-1, t); break; | 
|---|
| 278 | } | 
|---|
| 279 |  | 
|---|
| 280 | // In the unlikely case the calculated direction is out-of-range, | 
|---|
| 281 | // i.e. <0 or >3, we would just try to fill the same cell again which | 
|---|
| 282 | } | 
|---|
| 283 |  | 
|---|
| 284 | return n; | 
|---|
| 285 | } | 
|---|
| 286 |  | 
|---|
| 287 | // -------------------------------------------------------------------------- | 
|---|
| 288 | // | 
|---|
| 289 | // Check if x and y is a valid cell. If not return 0, otherwise | 
|---|
| 290 | // HitCelImp(x, y, t). HitCellImp generates Crosstalk and Afterpulses. | 
|---|
| 291 | // | 
|---|
| 292 | // The default time is 0. | 
|---|
| 293 | // | 
|---|
| 294 | Float_t APD::HitCell(Int_t x, Int_t y, Float_t t) | 
|---|
| 295 | { | 
|---|
| 296 | if (x<1 || x>fHist.GetNbinsX() || | 
|---|
| 297 | y<1 || y>fHist.GetNbinsY()) | 
|---|
| 298 | return 0; | 
|---|
| 299 |  | 
|---|
| 300 | return HitCellImp(x, y, t); | 
|---|
| 301 | } | 
|---|
| 302 |  | 
|---|
| 303 | // -------------------------------------------------------------------------- | 
|---|
| 304 | // | 
|---|
| 305 | // Determine randomly (uniformly) a cell which was hit. Return | 
|---|
| 306 | // HitCellImp for this cell and the given time. HitCellImp | 
|---|
| 307 | // generates Crosstalk and Afterpulses | 
|---|
| 308 | // | 
|---|
| 309 | // The default time is 0. | 
|---|
| 310 | // | 
|---|
| 311 | // If you want t w.r.t. fTime use HitRandomCellRelative istead. | 
|---|
| 312 | // | 
|---|
| 313 | Float_t APD::HitRandomCell(Float_t t) | 
|---|
| 314 | { | 
|---|
| 315 | const UInt_t nx  = fHist.GetNbinsX(); | 
|---|
| 316 | const UInt_t ny  = fHist.GetNbinsY(); | 
|---|
| 317 |  | 
|---|
| 318 | const UInt_t idx = gRandom->Integer(nx*ny); | 
|---|
| 319 |  | 
|---|
| 320 | const UInt_t x   = idx%nx; | 
|---|
| 321 | const UInt_t y   = idx/nx; | 
|---|
| 322 |  | 
|---|
| 323 | return HitCellImp(x+1, y+1, t); | 
|---|
| 324 | } | 
|---|
| 325 |  | 
|---|
| 326 | // -------------------------------------------------------------------------- | 
|---|
| 327 | // | 
|---|
| 328 | // Sets all cells with a contents which is well before the time t such that | 
|---|
| 329 | // the chip is "virgin". Therefore all cells are set to a time which | 
|---|
| 330 | // is twice the deadtime before the given time and 1000 times the recovery | 
|---|
| 331 | // time. | 
|---|
| 332 | // | 
|---|
| 333 | // The afterpulse list is deleted. | 
|---|
| 334 | // | 
|---|
| 335 | // If deadtime and recovery time are 0 then t-1 is set. | 
|---|
| 336 | // | 
|---|
| 337 | // Sets fTime to t | 
|---|
| 338 | // | 
|---|
| 339 | // The default time is 0. | 
|---|
| 340 | // | 
|---|
| 341 | void APD::FillEmpty(Float_t t) | 
|---|
| 342 | { | 
|---|
| 343 | const Int_t n = (fHist.GetNbinsX()+2)*(fHist.GetNbinsY()+2); | 
|---|
| 344 |  | 
|---|
| 345 | const Double_t tm = fDeadTime<=0 && fRecoveryTime<=0 ? t-1 : t-2*fDeadTime-1000*fRecoveryTime; | 
|---|
| 346 |  | 
|---|
| 347 | for (int i=0; i<n; i++) | 
|---|
| 348 | fHist.GetArray()[i] = tm; | 
|---|
| 349 |  | 
|---|
| 350 | fHist.SetEntries(1); | 
|---|
| 351 |  | 
|---|
| 352 | fAfterpulses.Delete(); | 
|---|
| 353 |  | 
|---|
| 354 | fTime = t; | 
|---|
| 355 | } | 
|---|
| 356 |  | 
|---|
| 357 | // -------------------------------------------------------------------------- | 
|---|
| 358 | // | 
|---|
| 359 | // First call FillEmpty for the given time t. Then fill each cell by | 
|---|
| 360 | // by calling HitCellImp with time t-gRandom->Exp(n/rate) with n being | 
|---|
| 361 | // the total number of cells. This the time at which the cell was last hit. | 
|---|
| 362 | // | 
|---|
| 363 | // Sets fTime to t | 
|---|
| 364 | // | 
|---|
| 365 | // If the argument t is omitted it defaults to 0. | 
|---|
| 366 | // | 
|---|
| 367 | // Since after calling this function the chip should reflect the | 
|---|
| 368 | // status at the new time fTime=t, all afterpulses are processed | 
|---|
| 369 | // until this time. However, the produced random pulses might have produced | 
|---|
| 370 | // new new afterpulses. | 
|---|
| 371 | // | 
|---|
| 372 | // All afterpulses before the new timestamp are deleted. | 
|---|
| 373 | // | 
|---|
| 374 | // WARNING: Note that this might not correctly reproduce afterpulses | 
|---|
| 375 | //          produced by earlier pulese. | 
|---|
| 376 | // | 
|---|
| 377 | void APD::FillRandom(Float_t rate, Float_t t) | 
|---|
| 378 | { | 
|---|
| 379 | FillEmpty(t); | 
|---|
| 380 |  | 
|---|
| 381 | const Int_t nx = fHist.GetNbinsX(); | 
|---|
| 382 | const Int_t ny = fHist.GetNbinsY(); | 
|---|
| 383 |  | 
|---|
| 384 | const Double_t f = (nx*ny)/rate; | 
|---|
| 385 |  | 
|---|
| 386 | // FIXME: Dead time is not taken into account, | 
|---|
| 387 | //        possible earlier afterpulses are not produced. | 
|---|
| 388 |  | 
|---|
| 389 | for (int x=1; x<=nx; x++) | 
|---|
| 390 | for (int y=1; y<=ny; y++) | 
|---|
| 391 | HitCellImp(x, y, t-MMath::RndmExp(f)); | 
|---|
| 392 |  | 
|---|
| 393 | // Deleting of the afterpulses before fHist.GetMinimum() won't | 
|---|
| 394 | // speed things because we have to loop over them once in any case | 
|---|
| 395 |  | 
|---|
| 396 | ProcessAfterpulses(fHist.GetMinimum(), t); | 
|---|
| 397 | DeleteAfterpulses(t); | 
|---|
| 398 |  | 
|---|
| 399 | fTime = t; | 
|---|
| 400 | } | 
|---|
| 401 |  | 
|---|
| 402 | // -------------------------------------------------------------------------- | 
|---|
| 403 | // | 
|---|
| 404 | // Shift all times including fTime to dt (ie. add -dt to all times) | 
|---|
| 405 | // This allows to set a user-defined T0 or shift T0 to fTime=0. | 
|---|
| 406 | // | 
|---|
| 407 | // However, T0<0 is not allowed (dt cannot be greater than fTime) | 
|---|
| 408 | // | 
|---|
| 409 | void APD::ShiftTime(Double_t dt) | 
|---|
| 410 | { | 
|---|
| 411 | if (dt>fTime) | 
|---|
| 412 | { | 
|---|
| 413 | gLog << warn << "APD::ShiftTime: WARNING - requested time shift results in fTime<0... ignored." << endl; | 
|---|
| 414 | return; | 
|---|
| 415 | } | 
|---|
| 416 |  | 
|---|
| 417 | // If reset was requested shift all times by end backwards | 
|---|
| 418 | // so that fTime is now 0 | 
|---|
| 419 | const Int_t n = (fHist.GetNbinsX()+2)*(fHist.GetNbinsY()+2); | 
|---|
| 420 | for (int i=0; i<n; i++) | 
|---|
| 421 | fHist.GetArray()[i] -= dt; | 
|---|
| 422 |  | 
|---|
| 423 | fTime -= dt; | 
|---|
| 424 | } | 
|---|
| 425 |  | 
|---|
| 426 | // -------------------------------------------------------------------------- | 
|---|
| 427 | // | 
|---|
| 428 | // Evolve the chip from fTime to fTime+dt if it with a given frequency | 
|---|
| 429 | // freq. Returns the total signal "recorded". | 
|---|
| 430 | // | 
|---|
| 431 | // fTime is set to the fTime+dt. | 
|---|
| 432 | // | 
|---|
| 433 | // If you want to evolve over a default relaxation time (relax the chip | 
|---|
| 434 | // from a signal) use Relax instead. | 
|---|
| 435 | // | 
|---|
| 436 | // Since after calling this function the chip should reflect the | 
|---|
| 437 | // status at the new time fTime=fTime+dt, all afterpulses are processed | 
|---|
| 438 | // until this time. However, evolving the chip until this time might | 
|---|
| 439 | // have produced new afterpulses. | 
|---|
| 440 | // | 
|---|
| 441 | // All afterpulses before the new timestamp are deleted. | 
|---|
| 442 | // | 
|---|
| 443 | Float_t APD::Evolve(Double_t freq, Double_t dt) | 
|---|
| 444 | { | 
|---|
| 445 | const Double_t end = fTime+dt; | 
|---|
| 446 |  | 
|---|
| 447 | Float_t hits = 0; | 
|---|
| 448 |  | 
|---|
| 449 | if (freq>0) | 
|---|
| 450 | { | 
|---|
| 451 | const Double_t avglen = 1./freq; | 
|---|
| 452 |  | 
|---|
| 453 | Double_t time = fTime; | 
|---|
| 454 | while (1) | 
|---|
| 455 | { | 
|---|
| 456 | const Double_t deltat = MMath::RndmExp(avglen); | 
|---|
| 457 | if (time+deltat>end) | 
|---|
| 458 | break; | 
|---|
| 459 |  | 
|---|
| 460 | time += deltat; | 
|---|
| 461 |  | 
|---|
| 462 | hits += HitRandomCell(time); | 
|---|
| 463 | } | 
|---|
| 464 | } | 
|---|
| 465 |  | 
|---|
| 466 | // Deleting of the afterpulses before fTime won't speed things | 
|---|
| 467 | // because we have to loop over them once in any case | 
|---|
| 468 |  | 
|---|
| 469 | ProcessAfterpulses(fTime, dt); | 
|---|
| 470 | DeleteAfterpulses(end); | 
|---|
| 471 |  | 
|---|
| 472 | fTime = end; | 
|---|
| 473 |  | 
|---|
| 474 | return hits; | 
|---|
| 475 | } | 
|---|
| 476 |  | 
|---|
| 477 | // -------------------------------------------------------------------------- | 
|---|
| 478 | // | 
|---|
| 479 | // Retunrs the number of cells which have a time t<=fDeadTime, i.e. which are | 
|---|
| 480 | // dead. | 
|---|
| 481 | // The default time is 0. | 
|---|
| 482 | // | 
|---|
| 483 | // Note that if you want to get a correct measure of teh number of dead cells | 
|---|
| 484 | // at the time t, this function will only produce a valid count if the | 
|---|
| 485 | // afterpulses have been processed up to this time. | 
|---|
| 486 | // | 
|---|
| 487 | Int_t APD::CountDeadCells(Float_t t) const | 
|---|
| 488 | { | 
|---|
| 489 | const Int_t nx = fHist.GetNbinsX(); | 
|---|
| 490 | const Int_t ny = fHist.GetNbinsY(); | 
|---|
| 491 |  | 
|---|
| 492 | Int_t n=0; | 
|---|
| 493 | for (int x=1; x<=nx; x++) | 
|---|
| 494 | for (int y=1; y<=ny; y++) | 
|---|
| 495 | if ((t-fHist.GetBinContent(x, y))<=fDeadTime) | 
|---|
| 496 | n++; | 
|---|
| 497 |  | 
|---|
| 498 | return n; | 
|---|
| 499 | } | 
|---|
| 500 |  | 
|---|
| 501 | // -------------------------------------------------------------------------- | 
|---|
| 502 | // | 
|---|
| 503 | // Returs the number of cells which have a time t<=fDeadTime+fRecoveryTime. | 
|---|
| 504 | // The default time is 0. | 
|---|
| 505 | // | 
|---|
| 506 | // Note that if you want to get a correct measure of teh number of dead cells | 
|---|
| 507 | // at the time t, this function will only produce a valid count if the | 
|---|
| 508 | // afterpulses have been processed up to this time. | 
|---|
| 509 | // | 
|---|
| 510 | Int_t APD::CountRecoveringCells(Float_t t) const | 
|---|
| 511 | { | 
|---|
| 512 | const Int_t nx = fHist.GetNbinsX(); | 
|---|
| 513 | const Int_t ny = fHist.GetNbinsY(); | 
|---|
| 514 |  | 
|---|
| 515 | Int_t n=0; | 
|---|
| 516 | for (int x=1; x<=nx; x++) | 
|---|
| 517 | for (int y=1; y<=ny; y++) | 
|---|
| 518 | { | 
|---|
| 519 | Float_t dt = t-fHist.GetBinContent(x, y); | 
|---|
| 520 | if (dt>fDeadTime && dt<=fDeadTime+fRecoveryTime) | 
|---|
| 521 | n++; | 
|---|
| 522 | } | 
|---|
| 523 | return n; | 
|---|
| 524 | } | 
|---|
| 525 |  | 
|---|
| 526 | // -------------------------------------------------------------------------- | 
|---|
| 527 | // | 
|---|
| 528 | // Generate an afterpulse originating from the given cell and a pulse with | 
|---|
| 529 | // charge. The afterpulse distribution to use is specified by | 
|---|
| 530 | // the index. The "current" time to which the afterpulse delay refers must | 
|---|
| 531 | // be given by t. | 
|---|
| 532 | // | 
|---|
| 533 | // A generated Afterpulse is added to the list of afterpulses | 
|---|
| 534 | // | 
|---|
| 535 | void APD::GenerateAfterpulse(UInt_t cell, Int_t idx, Double_t charge, Double_t t) | 
|---|
| 536 | { | 
|---|
| 537 | // The cell had a single avalanche with signal height weight. | 
|---|
| 538 | // This cell now can produce an afterpulse photon/avalanche. | 
|---|
| 539 | const Double_t p = gRandom->Uniform(); | 
|---|
| 540 |  | 
|---|
| 541 | // It's probability scales with the charge of the pulse | 
|---|
| 542 | if (p>charge*fAfterpulseProb[idx]) | 
|---|
| 543 | return; | 
|---|
| 544 |  | 
|---|
| 545 | // Afterpulses come with a well defined time-constant | 
|---|
| 546 | // after the normal pulse | 
|---|
| 547 | const Double_t dt = MMath::RndmExp(fAfterpulseTau[idx]); | 
|---|
| 548 |  | 
|---|
| 549 | fAfterpulses.Add(new Afterpulse(cell, t+dt)); | 
|---|
| 550 |  | 
|---|
| 551 | #ifdef DEBUG | 
|---|
| 552 | cout << "Add : " << t << " + " << dt << " = " << t+dt << endl; | 
|---|
| 553 | #endif | 
|---|
| 554 | } | 
|---|
| 555 |  | 
|---|
| 556 | // -------------------------------------------------------------------------- | 
|---|
| 557 | // | 
|---|
| 558 | // Process afterpulses between time and time+dt. All afterpulses in the list | 
|---|
| 559 | // before t=time are ignored. All afterpulses between t=time and | 
|---|
| 560 | // t=time+dt are processed through HitCellImp. Afterpulses after and | 
|---|
| 561 | // equal t=time+dt are skipped. | 
|---|
| 562 | // | 
|---|
| 563 | // Since the afterpulse list is a sorted list newly generated afterpulses | 
|---|
| 564 | // are always inserted into the list behind the current entry. Consequently, | 
|---|
| 565 | // afterpulses generated by afterpulses will also be processed correctly. | 
|---|
| 566 | // | 
|---|
| 567 | // Afterpulses with zero amplitude are deleted from the list. All other after | 
|---|
| 568 | // pulses remain in the list for later evaluation. | 
|---|
| 569 | // | 
|---|
| 570 | void APD::ProcessAfterpulses(Float_t time, Float_t dt) | 
|---|
| 571 | { | 
|---|
| 572 | #ifdef DEBUG | 
|---|
| 573 | cout << "Process afterpulses from " << time << " to " << time+dt << endl; | 
|---|
| 574 | #endif | 
|---|
| 575 |  | 
|---|
| 576 | const Float_t end = time+dt; | 
|---|
| 577 |  | 
|---|
| 578 | TObjLink *lnk = fAfterpulses.FirstLink(); | 
|---|
| 579 | while (lnk) | 
|---|
| 580 | { | 
|---|
| 581 | Afterpulse &ap = *static_cast<Afterpulse*>(lnk->GetObject()); | 
|---|
| 582 |  | 
|---|
| 583 | // Skip afterpulses which have been processed already | 
|---|
| 584 | // or which we do not have to process anymore | 
|---|
| 585 | if (ap.GetTime()<time || ap.GetAmplitude()>0) | 
|---|
| 586 | { | 
|---|
| 587 | lnk = lnk->Next(); | 
|---|
| 588 | continue; | 
|---|
| 589 | } | 
|---|
| 590 |  | 
|---|
| 591 | // No afterpulses left in correct time window | 
|---|
| 592 | if (ap.GetTime()>=end) | 
|---|
| 593 | break; | 
|---|
| 594 |  | 
|---|
| 595 | // Process afterpulse through HitCellImp | 
|---|
| 596 | const Float_t ampl = ap.Process(*this); | 
|---|
| 597 |  | 
|---|
| 598 | // Step to the next entry already, the current one might get deleted | 
|---|
| 599 | lnk = lnk->Next(); | 
|---|
| 600 |  | 
|---|
| 601 | if (ampl!=0) | 
|---|
| 602 | continue; | 
|---|
| 603 |  | 
|---|
| 604 | #ifdef DEBUG | 
|---|
| 605 | cout << "Del : " << ap.GetTime() << " (" << ampl << ")" << endl; | 
|---|
| 606 | #endif | 
|---|
| 607 |  | 
|---|
| 608 | // The afterpulse "took place" within the dead time of the | 
|---|
| 609 | // pixel ==> No afterpulse, no crosstalk. | 
|---|
| 610 | delete fAfterpulses.Remove(&ap); | 
|---|
| 611 | } | 
|---|
| 612 | } | 
|---|
| 613 |  | 
|---|
| 614 | // -------------------------------------------------------------------------- | 
|---|
| 615 | // | 
|---|
| 616 | // Delete all afterpulses before and equal to t=time from the list | 
|---|
| 617 | // | 
|---|
| 618 | void APD::DeleteAfterpulses(Float_t time) | 
|---|
| 619 | { | 
|---|
| 620 | TIter Next(&fAfterpulses); | 
|---|
| 621 |  | 
|---|
| 622 | Afterpulse *ap = 0; | 
|---|
| 623 |  | 
|---|
| 624 | while ((ap = static_cast<Afterpulse*>(Next()))) | 
|---|
| 625 | { | 
|---|
| 626 | if (ap->GetTime()>=time) | 
|---|
| 627 | break; | 
|---|
| 628 |  | 
|---|
| 629 | delete fAfterpulses.Remove(ap); | 
|---|
| 630 | } | 
|---|
| 631 | } | 
|---|