| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appears in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Thomas Bretz, 1/2009 <mailto:tbretz@astro.uni-wuerzburg.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: CheObs Software Development, 2000-2009
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // APD
|
|---|
| 28 | //
|
|---|
| 29 | // All times in this class are relative times. Therefor the unit for the
|
|---|
| 30 | // time is not intrinsically fixed. In fact the dead-time and recovery-
|
|---|
| 31 | // time given in the constructor must have the same units. This is what
|
|---|
| 32 | // defines the unit of the times given in the function and the unit of
|
|---|
| 33 | // rates given.
|
|---|
| 34 | // For example, if recovery and dead time are given in nanoseconds the
|
|---|
| 35 | // all times must be in nanoseconds and rates are given per nanosecond,
|
|---|
| 36 | // i.e. GHz.
|
|---|
| 37 | //
|
|---|
| 38 | // Hamamatsu 30x30 cells: APD(30, 0.2, 3, 35)
|
|---|
| 39 | // Hamamatsu 60x60 cells: APD(60, 0.2, 3, 8.75)
|
|---|
| 40 | //
|
|---|
| 41 | //
|
|---|
| 42 | // The implementation of afterpulsing is based on
|
|---|
| 43 | // A.Du, F.Retiere
|
|---|
| 44 | // After-pulsing and cross-talk in multi-pixel photon counters
|
|---|
| 45 | // NIM A, Volume 596, Issue 3, p. 396-401
|
|---|
| 46 | //
|
|---|
| 47 | //
|
|---|
| 48 | // Example:
|
|---|
| 49 | //
|
|---|
| 50 | // APD apd(ncells, crosstalk, deadtime, recovery);
|
|---|
| 51 | // apd.SetAfterpulseProb(0.14, 0.11);
|
|---|
| 52 | //
|
|---|
| 53 | // while (1)
|
|---|
| 54 | // {
|
|---|
| 55 | // // Make the chip "empty" from the influence of external photons
|
|---|
| 56 | // // It also sets fTime to 0.
|
|---|
| 57 | // apd.Init(freq); // freq of external noise (eg. nsb)
|
|---|
| 58 | //
|
|---|
| 59 | // // Now call this function for each external photon you have. The
|
|---|
| 60 | // // times are relative to the the time you get by apd.GetTime()
|
|---|
| 61 | // // set automatically after the call to apd.Init().
|
|---|
| 62 | // for (int i=0; i<nphot; i++)
|
|---|
| 63 | // apd.HitRandomCellRelative(dt);
|
|---|
| 64 | //
|
|---|
| 65 | // [...]
|
|---|
| 66 | //
|
|---|
| 67 | // // Process and produce afterpulses until a time, wrt to GetTime(),
|
|---|
| 68 | // // given by the end of your simulated window. Note that this
|
|---|
| 69 | // // does not produce noise. This must have been properly simulated
|
|---|
| 70 | // // up to this time already.
|
|---|
| 71 | // apd.IncreaseTime(dtend);
|
|---|
| 72 | //
|
|---|
| 73 | // // Now you can excess the afterpulses by
|
|---|
| 74 | // TIter Next(&a->GetListOfAfterpulses());
|
|---|
| 75 | // Afterpulse *ap = 0;
|
|---|
| 76 | // while ((ap=static_cast<Afterpulse*>(Next())))
|
|---|
| 77 | // {
|
|---|
| 78 | // if (apd.GetTime()>=dtend)
|
|---|
| 79 | // continue;
|
|---|
| 80 | //
|
|---|
| 81 | // cout << "Amplitude: " << ap->GetAmplitude() << endl;
|
|---|
| 82 | // cout << "Arrival Time: " << ap->GetTime() << endl;
|
|---|
| 83 | // }
|
|---|
| 84 | // }
|
|---|
| 85 | //
|
|---|
| 86 | //
|
|---|
| 87 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 88 | #include "MAvalanchePhotoDiode.h"
|
|---|
| 89 |
|
|---|
| 90 | #include <TRandom.h>
|
|---|
| 91 |
|
|---|
| 92 | #include "MMath.h"
|
|---|
| 93 |
|
|---|
| 94 | #include "MLog.h"
|
|---|
| 95 | #include "MLogManip.h"
|
|---|
| 96 |
|
|---|
| 97 | ClassImp(APD);
|
|---|
| 98 |
|
|---|
| 99 | using namespace std;
|
|---|
| 100 |
|
|---|
| 101 | /*
|
|---|
| 102 | class MyProfile : public TProfile2D
|
|---|
| 103 | {
|
|---|
| 104 | public:
|
|---|
| 105 | void AddBinEntry(Int_t cell) { fBinEntries.fArray[cell]++; }
|
|---|
| 106 | };
|
|---|
| 107 | */
|
|---|
| 108 |
|
|---|
| 109 | // --------------------------------------------------------------------------
|
|---|
| 110 | //
|
|---|
| 111 | // Default Constructor.
|
|---|
| 112 | //
|
|---|
| 113 | // n is the number od cells in x or y. The APD is assumed to
|
|---|
| 114 | // be square.
|
|---|
| 115 | // prob is the crosstalk probability, i.e., the probability that a
|
|---|
| 116 | // photon which produced an avalanche will create another
|
|---|
| 117 | // photon in a neighboring cell
|
|---|
| 118 | // dt is the deadtime, i.e., the time in which the APD cell will show
|
|---|
| 119 | // no response to a photon after a hit
|
|---|
| 120 | // rt is the recovering tims, i.e. the exponential (e^(-dt/rt))
|
|---|
| 121 | // with which the cell is recovering after being dead
|
|---|
| 122 | //
|
|---|
| 123 | // prob, dt and ar can be set to 0 to switch the effect off.
|
|---|
| 124 | // 0 is also the dfeault for all three.
|
|---|
| 125 | //
|
|---|
| 126 | APD::APD(Int_t n, Float_t prob, Float_t dt, Float_t rt)
|
|---|
| 127 | : fHist("APD", "", n, 0.5, n+0.5, n, 0.5, n+0.5),
|
|---|
| 128 | fCrosstalkProb(prob), fDeadTime(dt), fRecoveryTime(rt),
|
|---|
| 129 | fTime(-1)
|
|---|
| 130 | {
|
|---|
| 131 | fHist.SetDirectory(0);
|
|---|
| 132 |
|
|---|
| 133 | fAfterpulses.SetOwner();
|
|---|
| 134 |
|
|---|
| 135 | fAfterpulseProb[0] = 0;
|
|---|
| 136 | fAfterpulseProb[1] = 0;
|
|---|
| 137 |
|
|---|
| 138 | fAfterpulseTau[0] = 15;
|
|---|
| 139 | fAfterpulseTau[1] = 85;
|
|---|
| 140 | }
|
|---|
| 141 |
|
|---|
| 142 | // --------------------------------------------------------------------------
|
|---|
| 143 | //
|
|---|
| 144 | // This is the time a chips needs after an external signal to relax to
|
|---|
| 145 | // a "virgin" state, i.e. without no influence of the external pulse
|
|---|
| 146 | // above the given threshold.
|
|---|
| 147 | //
|
|---|
| 148 | // It takes into account the dead time of the cell, the relaxation time
|
|---|
| 149 | // and the two afterpulse distributions. However, in most cases the
|
|---|
| 150 | // afterpulse distribution will dominate (except they are switched off by
|
|---|
| 151 | // a zero probability).
|
|---|
| 152 | //
|
|---|
| 153 | // FIXME: Maybe the calculation of the relaxation time could be optimized?
|
|---|
| 154 | //
|
|---|
| 155 | Float_t APD::GetRelaxationTime(Float_t threshold) const
|
|---|
| 156 | {
|
|---|
| 157 | // Calculate time until the probability of one of these
|
|---|
| 158 | // events falls below the threshold probability.
|
|---|
| 159 | const Double_t rt0 = - TMath::Log(threshold)*fRecoveryTime;
|
|---|
| 160 | const Double_t rt1 = fAfterpulseProb[0]>0 ? -TMath::Log(threshold/fAfterpulseProb[0])*fAfterpulseTau[0] : 0;
|
|---|
| 161 | const Double_t rt2 = fAfterpulseProb[1]>0 ? -TMath::Log(threshold/fAfterpulseProb[1])*fAfterpulseTau[1] : 0;
|
|---|
| 162 |
|
|---|
| 163 | // Probability not between t and inf, but between t and t+dt
|
|---|
| 164 | // -tau * log ( p / ( 1 - exp(- dt/tau) ) ) = t
|
|---|
| 165 |
|
|---|
| 166 | return fDeadTime + TMath::Max(rt0, TMath::Max(rt1, rt2));
|
|---|
| 167 | }
|
|---|
| 168 |
|
|---|
| 169 | // --------------------------------------------------------------------------
|
|---|
| 170 | //
|
|---|
| 171 | // This is the recursive implementation of a hit. If a photon hits a cell
|
|---|
| 172 | // at x and y (must be a valid cell!) at time t, at first we check if the
|
|---|
| 173 | // cell is still dead. If it is not dead we calculate the signal height
|
|---|
| 174 | // from the recovery time. Now we check with the crosstalk probability
|
|---|
| 175 | // whether another photon is created. If another photon is created we
|
|---|
| 176 | // calculate randomly which of the four neighbor cells are hit.
|
|---|
| 177 | // If the cell is outside the APD the photon is ignored. As many
|
|---|
| 178 | // new photons are created until our random number is below the crosstak-
|
|---|
| 179 | // probability.
|
|---|
| 180 | //
|
|---|
| 181 | // For each photon the possible afterpulses of two distributions are
|
|---|
| 182 | // created and added to the list of afterpulses. This is done by calling
|
|---|
| 183 | // GenerateAfterpulse for the two afterpulse-distributions.
|
|---|
| 184 | //
|
|---|
| 185 | // The total height of the signal (in units of photons) is returned.
|
|---|
| 186 | // Note, that this can be a fractional number.
|
|---|
| 187 | //
|
|---|
| 188 | // This function looks a bit fancy accessing the histogram and works around
|
|---|
| 189 | // a few histogram functions. This is a speed optimization which works
|
|---|
| 190 | // around a lot of sanity checks which are obsolete in our case.
|
|---|
| 191 | //
|
|---|
| 192 | // The default time is 0.
|
|---|
| 193 | //
|
|---|
| 194 | Float_t APD::HitCellImp(Int_t x, Int_t y, Float_t t)
|
|---|
| 195 | {
|
|---|
| 196 | // if (x<1 || x>fHist.GetNbinsX() ||
|
|---|
| 197 | // y<1 || y>fHist.GetNbinsY())
|
|---|
| 198 | // return 0;
|
|---|
| 199 | #ifdef DEBUG
|
|---|
| 200 | cout << "Hit: " << t << endl;
|
|---|
| 201 | #endif
|
|---|
| 202 |
|
|---|
| 203 | // Number of the x/y cell in the one dimensional array
|
|---|
| 204 | // const Int_t cell = fHist.GetBin(x, y);
|
|---|
| 205 | const Int_t cell = x + (fHist.GetNbinsX()+2)*y;
|
|---|
| 206 |
|
|---|
| 207 | // Getting a reference to the float is the fastes way to
|
|---|
| 208 | // access the bin-contents in fArray
|
|---|
| 209 | Float_t &cont = fHist.GetArray()[cell];
|
|---|
| 210 |
|
|---|
| 211 | // Calculate the time since the last breakdown
|
|---|
| 212 | // const Double_t dt = t-fHist.GetBinContent(x, y)-fDeadTime; //
|
|---|
| 213 | const Float_t dt = t-cont-fDeadTime;
|
|---|
| 214 |
|
|---|
| 215 | // Photons within the dead time are just ignored
|
|---|
| 216 | if (/*hx.GetBinContent(x,y)>0 &&*/ dt<=0)
|
|---|
| 217 | {
|
|---|
| 218 | #ifdef DEBUG
|
|---|
| 219 | cout << "Dead: " << t << " " << cont << " " << dt << endl;
|
|---|
| 220 | #endif
|
|---|
| 221 | return 0;
|
|---|
| 222 | }
|
|---|
| 223 | // The signal height (in units of one photon) produced after dead time
|
|---|
| 224 | // depends on the recovery of the cell - described by an exponential.
|
|---|
| 225 | const Float_t weight = fRecoveryTime<=0 ? 1. : 1-TMath::Exp(-dt/fRecoveryTime);
|
|---|
| 226 |
|
|---|
| 227 | // Now we know the charge in the cell and we can generate
|
|---|
| 228 | // the afterpulses with both time-constants
|
|---|
| 229 | GenerateAfterpulse(cell, 0, weight, t);
|
|---|
| 230 | GenerateAfterpulse(cell, 1, weight, t);
|
|---|
| 231 |
|
|---|
| 232 | // The probability that the cell emits a photon causing crosstalk
|
|---|
| 233 | // scales as the signal height.
|
|---|
| 234 | const Float_t prob = weight*fCrosstalkProb;
|
|---|
| 235 |
|
|---|
| 236 | // Set the contents to the time of the last breakdown (now)
|
|---|
| 237 | cont = t; // fHist.SetBinContent(x, y, t)
|
|---|
| 238 |
|
|---|
| 239 | // Counter for the numbers of produced photons
|
|---|
| 240 | Float_t n = weight;
|
|---|
| 241 |
|
|---|
| 242 | // Get random number of emitted and possible converted crosstalk photons
|
|---|
| 243 | const UInt_t rndm = gRandom->Poisson(prob);
|
|---|
| 244 |
|
|---|
| 245 | for (UInt_t i=0; i<rndm; i++)
|
|---|
| 246 | {
|
|---|
| 247 | // Get a random neighbor which is hit.
|
|---|
| 248 | switch (gRandom->Integer(4))
|
|---|
| 249 | {
|
|---|
| 250 | case 0: if (x<fHist.GetNbinsX()) n += HitCellImp(x+1, y, t); break;
|
|---|
| 251 | case 1: if (x>1) n += HitCellImp(x-1, y, t); break;
|
|---|
| 252 | case 2: if (y<fHist.GetNbinsY()) n += HitCellImp(x, y+1, t); break;
|
|---|
| 253 | case 3: if (y>1) n += HitCellImp(x, y-1, t); break;
|
|---|
| 254 | }
|
|---|
| 255 | }
|
|---|
| 256 |
|
|---|
| 257 | return n;
|
|---|
| 258 | }
|
|---|
| 259 |
|
|---|
| 260 | // --------------------------------------------------------------------------
|
|---|
| 261 | //
|
|---|
| 262 | // Check if x and y is a valid cell. If not return 0, otherwise
|
|---|
| 263 | // HitCelImp(x, y, t). HitCellImp generates Crosstalk and Afterpulses.
|
|---|
| 264 | //
|
|---|
| 265 | // The default time is 0.
|
|---|
| 266 | //
|
|---|
| 267 | Float_t APD::HitCell(Int_t x, Int_t y, Float_t t)
|
|---|
| 268 | {
|
|---|
| 269 | if (x<1 || x>fHist.GetNbinsX() ||
|
|---|
| 270 | y<1 || y>fHist.GetNbinsY())
|
|---|
| 271 | return 0;
|
|---|
| 272 |
|
|---|
| 273 | return HitCellImp(x, y, t);
|
|---|
| 274 | }
|
|---|
| 275 |
|
|---|
| 276 | // --------------------------------------------------------------------------
|
|---|
| 277 | //
|
|---|
| 278 | // Determine randomly (uniformly) a cell which was hit. Return
|
|---|
| 279 | // HitCellImp for this cell and the given time. HitCellImp
|
|---|
| 280 | // generates Crosstalk and Afterpulses
|
|---|
| 281 | //
|
|---|
| 282 | // The default time is 0.
|
|---|
| 283 | //
|
|---|
| 284 | // If you want t w.r.t. fTime use HitRandomCellRelative istead.
|
|---|
| 285 | //
|
|---|
| 286 | Float_t APD::HitRandomCell(Float_t t)
|
|---|
| 287 | {
|
|---|
| 288 | const UInt_t nx = fHist.GetNbinsX();
|
|---|
| 289 | const UInt_t ny = fHist.GetNbinsY();
|
|---|
| 290 |
|
|---|
| 291 | const UInt_t idx = gRandom->Integer(nx*ny);
|
|---|
| 292 |
|
|---|
| 293 | const UInt_t x = idx%nx;
|
|---|
| 294 | const UInt_t y = idx/nx;
|
|---|
| 295 |
|
|---|
| 296 | return HitCellImp(x+1, y+1, t);
|
|---|
| 297 | }
|
|---|
| 298 |
|
|---|
| 299 | // --------------------------------------------------------------------------
|
|---|
| 300 | //
|
|---|
| 301 | // Sets all cells with a contents which is well before the time t such that
|
|---|
| 302 | // the chip is "virgin". Therefore all cells are set to a time which
|
|---|
| 303 | // is twice the deadtime before the given time and 1000 times the recovery
|
|---|
| 304 | // time.
|
|---|
| 305 | //
|
|---|
| 306 | // The afterpulse list is deleted.
|
|---|
| 307 | //
|
|---|
| 308 | // If deadtime and recovery time are 0 then t-1 is set.
|
|---|
| 309 | //
|
|---|
| 310 | // Sets fTime to t
|
|---|
| 311 | //
|
|---|
| 312 | // The default time is 0.
|
|---|
| 313 | //
|
|---|
| 314 | void APD::FillEmpty(Float_t t)
|
|---|
| 315 | {
|
|---|
| 316 | const Int_t n = (fHist.GetNbinsX()+2)*(fHist.GetNbinsY()+2);
|
|---|
| 317 |
|
|---|
| 318 | const Double_t tm = fDeadTime<=0 && fRecoveryTime<=0 ? t-1 : t-2*fDeadTime-1000*fRecoveryTime;
|
|---|
| 319 |
|
|---|
| 320 | for (int i=0; i<n; i++)
|
|---|
| 321 | fHist.GetArray()[i] = tm;
|
|---|
| 322 |
|
|---|
| 323 | fHist.SetEntries(1);
|
|---|
| 324 |
|
|---|
| 325 | fAfterpulses.Delete();
|
|---|
| 326 |
|
|---|
| 327 | fTime = t;
|
|---|
| 328 | }
|
|---|
| 329 |
|
|---|
| 330 | // --------------------------------------------------------------------------
|
|---|
| 331 | //
|
|---|
| 332 | // First call FillEmpty for the given time t. Then fill each cell by
|
|---|
| 333 | // by calling HitCellImp with time t-gRandom->Exp(n/rate) with n being
|
|---|
| 334 | // the total number of cells. This the time at which the cell was last hit.
|
|---|
| 335 | //
|
|---|
| 336 | // Sets fTime to t
|
|---|
| 337 | //
|
|---|
| 338 | // If the argument t is omitted it defaults to 0.
|
|---|
| 339 | //
|
|---|
| 340 | // Since after calling this function the chip should reflect the
|
|---|
| 341 | // status at the new time fTime=t, all afterpulses are processed
|
|---|
| 342 | // until this time. However, the produced random pulses might have produced
|
|---|
| 343 | // new new afterpulses.
|
|---|
| 344 | //
|
|---|
| 345 | // All afterpulses before the new timestamp are deleted.
|
|---|
| 346 | //
|
|---|
| 347 | // WARNING: Note that this might not correctly reproduce afterpulses
|
|---|
| 348 | // produced by earlier pulese.
|
|---|
| 349 | //
|
|---|
| 350 | void APD::FillRandom(Float_t rate, Float_t t)
|
|---|
| 351 | {
|
|---|
| 352 | FillEmpty(t);
|
|---|
| 353 |
|
|---|
| 354 | // If the rate is 0, we don't need to initiatize the cells, because there
|
|---|
| 355 | // won't be any hitted cells.
|
|---|
| 356 | if (rate > 0.)
|
|---|
| 357 | {
|
|---|
| 358 |
|
|---|
| 359 | const Int_t nx = fHist.GetNbinsX();
|
|---|
| 360 | const Int_t ny = fHist.GetNbinsY();
|
|---|
| 361 |
|
|---|
| 362 | const Double_t f = (nx*ny)/rate;
|
|---|
| 363 |
|
|---|
| 364 | // FIXME: Dead time is not taken into account,
|
|---|
| 365 | // possible earlier afterpulses are not produced.
|
|---|
| 366 |
|
|---|
| 367 | for (int x=1; x<=nx; x++)
|
|---|
| 368 | for (int y=1; y<=ny; y++)
|
|---|
| 369 | HitCellImp(x, y, t-MMath::RndmExp(f));
|
|---|
| 370 |
|
|---|
| 371 | }
|
|---|
| 372 |
|
|---|
| 373 | // Deleting of the afterpulses before fHist.GetMinimum() won't
|
|---|
| 374 | // speed things because we have to loop over them once in any case
|
|---|
| 375 |
|
|---|
| 376 | ProcessAfterpulses(fHist.GetMinimum(), t);
|
|---|
| 377 | DeleteAfterpulses(t);
|
|---|
| 378 |
|
|---|
| 379 | fTime = t;
|
|---|
| 380 | }
|
|---|
| 381 |
|
|---|
| 382 | // --------------------------------------------------------------------------
|
|---|
| 383 | //
|
|---|
| 384 | // Shift all times including fTime to dt (ie. add -dt to all times)
|
|---|
| 385 | // This allows to set a user-defined T0 or shift T0 to fTime=0.
|
|---|
| 386 | //
|
|---|
| 387 | // However, T0<0 is not allowed (dt cannot be greater than fTime)
|
|---|
| 388 | //
|
|---|
| 389 | void APD::ShiftTime(Double_t dt)
|
|---|
| 390 | {
|
|---|
| 391 | if (dt>fTime)
|
|---|
| 392 | {
|
|---|
| 393 | gLog << warn << "APD::ShiftTime: WARNING - requested time shift results in fTime<0... ignored." << endl;
|
|---|
| 394 | return;
|
|---|
| 395 | }
|
|---|
| 396 |
|
|---|
| 397 | // If reset was requested shift all times by end backwards
|
|---|
| 398 | // so that fTime is now 0
|
|---|
| 399 | const Int_t n = (fHist.GetNbinsX()+2)*(fHist.GetNbinsY()+2);
|
|---|
| 400 | for (int i=0; i<n; i++)
|
|---|
| 401 | fHist.GetArray()[i] -= dt;
|
|---|
| 402 |
|
|---|
| 403 | fTime -= dt;
|
|---|
| 404 | }
|
|---|
| 405 |
|
|---|
| 406 | // --------------------------------------------------------------------------
|
|---|
| 407 | //
|
|---|
| 408 | // Evolve the chip from fTime to fTime+dt if it with a given frequency
|
|---|
| 409 | // freq. Returns the total signal "recorded".
|
|---|
| 410 | //
|
|---|
| 411 | // fTime is set to the fTime+dt.
|
|---|
| 412 | //
|
|---|
| 413 | // If you want to evolve over a default relaxation time (relax the chip
|
|---|
| 414 | // from a signal) use Relax instead.
|
|---|
| 415 | //
|
|---|
| 416 | // Since after calling this function the chip should reflect the
|
|---|
| 417 | // status at the new time fTime=fTime+dt, all afterpulses are processed
|
|---|
| 418 | // until this time. However, evolving the chip until this time might
|
|---|
| 419 | // have produced new afterpulses.
|
|---|
| 420 | //
|
|---|
| 421 | // All afterpulses before the new timestamp are deleted.
|
|---|
| 422 | //
|
|---|
| 423 | Float_t APD::Evolve(Double_t freq, Double_t dt)
|
|---|
| 424 | {
|
|---|
| 425 | const Double_t end = fTime+dt;
|
|---|
| 426 |
|
|---|
| 427 | Float_t hits = 0;
|
|---|
| 428 |
|
|---|
| 429 | if (freq>0)
|
|---|
| 430 | {
|
|---|
| 431 | const Double_t avglen = 1./freq;
|
|---|
| 432 |
|
|---|
| 433 | Double_t time = fTime;
|
|---|
| 434 | while (1)
|
|---|
| 435 | {
|
|---|
| 436 | const Double_t deltat = MMath::RndmExp(avglen);
|
|---|
| 437 | if (time+deltat>end)
|
|---|
| 438 | break;
|
|---|
| 439 |
|
|---|
| 440 | time += deltat;
|
|---|
| 441 |
|
|---|
| 442 | hits += HitRandomCell(time);
|
|---|
| 443 | }
|
|---|
| 444 | }
|
|---|
| 445 |
|
|---|
| 446 | // Deleting of the afterpulses before fTime won't speed things
|
|---|
| 447 | // because we have to loop over them once in any case
|
|---|
| 448 |
|
|---|
| 449 | ProcessAfterpulses(fTime, dt);
|
|---|
| 450 | DeleteAfterpulses(end);
|
|---|
| 451 |
|
|---|
| 452 | fTime = end;
|
|---|
| 453 |
|
|---|
| 454 | return hits;
|
|---|
| 455 | }
|
|---|
| 456 |
|
|---|
| 457 | // --------------------------------------------------------------------------
|
|---|
| 458 | //
|
|---|
| 459 | // Returns the number of cells which have a time t<=fDeadTime, i.e. which are
|
|---|
| 460 | // dead.
|
|---|
| 461 | // The default time is 0.
|
|---|
| 462 | //
|
|---|
| 463 | // Note that if you want to get a correct measure of the number of dead cells
|
|---|
| 464 | // at the time t, this function will only produce a valid count if the
|
|---|
| 465 | // afterpulses have been processed up to this time.
|
|---|
| 466 | //
|
|---|
| 467 | Int_t APD::CountDeadCells(Float_t t) const
|
|---|
| 468 | {
|
|---|
| 469 | const Int_t nx = fHist.GetNbinsX();
|
|---|
| 470 | const Int_t ny = fHist.GetNbinsY();
|
|---|
| 471 |
|
|---|
| 472 | Int_t n=0;
|
|---|
| 473 | for (int x=1; x<=nx; x++)
|
|---|
| 474 | for (int y=1; y<=ny; y++)
|
|---|
| 475 | if ((t-fHist.GetBinContent(x, y))<=fDeadTime)
|
|---|
| 476 | n++;
|
|---|
| 477 |
|
|---|
| 478 | return n;
|
|---|
| 479 | }
|
|---|
| 480 |
|
|---|
| 481 | // --------------------------------------------------------------------------
|
|---|
| 482 | //
|
|---|
| 483 | // Returns the number of cells which have a time t<=fDeadTime+fRecoveryTime.
|
|---|
| 484 | // The default time is 0.
|
|---|
| 485 | //
|
|---|
| 486 | // Note that if you want to get a correct measure of teh number of dead cells
|
|---|
| 487 | // at the time t, this function will only produce a valid count if the
|
|---|
| 488 | // afterpulses have been processed up to this time.
|
|---|
| 489 | //
|
|---|
| 490 | Int_t APD::CountRecoveringCells(Float_t t) const
|
|---|
| 491 | {
|
|---|
| 492 | const Int_t nx = fHist.GetNbinsX();
|
|---|
| 493 | const Int_t ny = fHist.GetNbinsY();
|
|---|
| 494 |
|
|---|
| 495 | Int_t n=0;
|
|---|
| 496 | for (int x=1; x<=nx; x++)
|
|---|
| 497 | for (int y=1; y<=ny; y++)
|
|---|
| 498 | {
|
|---|
| 499 | Float_t dt = t-fHist.GetBinContent(x, y);
|
|---|
| 500 | if (dt>fDeadTime && dt<=fDeadTime+fRecoveryTime)
|
|---|
| 501 | n++;
|
|---|
| 502 | }
|
|---|
| 503 | return n;
|
|---|
| 504 | }
|
|---|
| 505 |
|
|---|
| 506 | // --------------------------------------------------------------------------
|
|---|
| 507 | //
|
|---|
| 508 | // Returns the fraction of charge, the sensor can still release.
|
|---|
| 509 | // The default time is 0.
|
|---|
| 510 | //
|
|---|
| 511 | // Note that if you want to get a correct measure at the time t,
|
|---|
| 512 | // this function will only produce a valid count if the
|
|---|
| 513 | // afterpulses have been processed up to this time.
|
|---|
| 514 | //
|
|---|
| 515 | Float_t APD::GetChargeState(Float_t t) const
|
|---|
| 516 | {
|
|---|
| 517 | const Int_t nx = fHist.GetNbinsX();
|
|---|
| 518 | const Int_t ny = fHist.GetNbinsY();
|
|---|
| 519 |
|
|---|
| 520 | Double_t tot = 0;
|
|---|
| 521 |
|
|---|
| 522 | for (int x=1; x<=nx; x++)
|
|---|
| 523 | for (int y=1; y<=ny; y++)
|
|---|
| 524 | {
|
|---|
| 525 | // Number of the x/y cell in the one dimensional array
|
|---|
| 526 | // const Int_t cell = fHist.GetBin(x, y);
|
|---|
| 527 | const Int_t cell = x + (fHist.GetNbinsX()+2)*y;
|
|---|
| 528 |
|
|---|
| 529 | // Getting a reference to the float is the fastes way to
|
|---|
| 530 | // access the bin-contents in fArray
|
|---|
| 531 | const Float_t &cont = fHist.GetArray()[cell];
|
|---|
| 532 |
|
|---|
| 533 | // Calculate the time since the last breakdown
|
|---|
| 534 | const Float_t dt = t-cont-fDeadTime;
|
|---|
| 535 |
|
|---|
| 536 | // The signal height (in units of one photon) produced after dead time
|
|---|
| 537 | // depends on the recovery of the cell - described by an exponential.
|
|---|
| 538 | if (dt>0)
|
|---|
| 539 | tot += fRecoveryTime<=0 ? 1. : 1-TMath::Exp(-dt/fRecoveryTime);
|
|---|
| 540 | }
|
|---|
| 541 |
|
|---|
| 542 | return tot / (nx*ny);
|
|---|
| 543 | }
|
|---|
| 544 |
|
|---|
| 545 | // --------------------------------------------------------------------------
|
|---|
| 546 | //
|
|---|
| 547 | // Generate an afterpulse originating from the given cell and a pulse with
|
|---|
| 548 | // charge. The afterpulse distribution to use is specified by
|
|---|
| 549 | // the index. The "current" time to which the afterpulse delay refers must
|
|---|
| 550 | // be given by t.
|
|---|
| 551 | //
|
|---|
| 552 | // A generated Afterpulse is added to the list of afterpulses
|
|---|
| 553 | //
|
|---|
| 554 | void APD::GenerateAfterpulse(UInt_t cell, Int_t idx, Double_t charge, Double_t t)
|
|---|
| 555 | {
|
|---|
| 556 | // The cell had a single avalanche with signal height weight.
|
|---|
| 557 | // This cell now can produce an afterpulse photon/avalanche.
|
|---|
| 558 | const Double_t p = gRandom->Uniform();
|
|---|
| 559 |
|
|---|
| 560 | // It's probability scales with the charge of the pulse
|
|---|
| 561 | if (p>charge*fAfterpulseProb[idx])
|
|---|
| 562 | return;
|
|---|
| 563 |
|
|---|
| 564 | // Afterpulses come with a well defined time-constant
|
|---|
| 565 | // after the normal pulse
|
|---|
| 566 | const Double_t dt = MMath::RndmExp(fAfterpulseTau[idx]);
|
|---|
| 567 |
|
|---|
| 568 | fAfterpulses.Add(new Afterpulse(cell, t+dt));
|
|---|
| 569 |
|
|---|
| 570 | #ifdef DEBUG
|
|---|
| 571 | cout << "Add : " << t << " + " << dt << " = " << t+dt << endl;
|
|---|
| 572 | #endif
|
|---|
| 573 | }
|
|---|
| 574 |
|
|---|
| 575 | // --------------------------------------------------------------------------
|
|---|
| 576 | //
|
|---|
| 577 | // Process afterpulses between time and time+dt. All afterpulses in the list
|
|---|
| 578 | // before t=time are ignored. All afterpulses between t=time and
|
|---|
| 579 | // t=time+dt are processed through HitCellImp. Afterpulses after and
|
|---|
| 580 | // equal t=time+dt are skipped.
|
|---|
| 581 | //
|
|---|
| 582 | // Since the afterpulse list is a sorted list newly generated afterpulses
|
|---|
| 583 | // are always inserted into the list behind the current entry. Consequently,
|
|---|
| 584 | // afterpulses generated by afterpulses will also be processed correctly.
|
|---|
| 585 | //
|
|---|
| 586 | // Afterpulses with zero amplitude are deleted from the list. All other after
|
|---|
| 587 | // pulses remain in the list for later evaluation.
|
|---|
| 588 | //
|
|---|
| 589 | void APD::ProcessAfterpulses(Float_t time, Float_t dt)
|
|---|
| 590 | {
|
|---|
| 591 | #ifdef DEBUG
|
|---|
| 592 | cout << "Process afterpulses from " << time << " to " << time+dt << endl;
|
|---|
| 593 | #endif
|
|---|
| 594 |
|
|---|
| 595 | const Float_t end = time+dt;
|
|---|
| 596 |
|
|---|
| 597 | TObjLink *lnk = fAfterpulses.FirstLink();
|
|---|
| 598 | while (lnk)
|
|---|
| 599 | {
|
|---|
| 600 | Afterpulse &ap = *static_cast<Afterpulse*>(lnk->GetObject());
|
|---|
| 601 |
|
|---|
| 602 | // Skip afterpulses which have been processed already
|
|---|
| 603 | // or which we do not have to process anymore
|
|---|
| 604 | if (ap.GetTime()<time || ap.GetAmplitude()>0)
|
|---|
| 605 | {
|
|---|
| 606 | lnk = lnk->Next();
|
|---|
| 607 | continue;
|
|---|
| 608 | }
|
|---|
| 609 |
|
|---|
| 610 | // No afterpulses left in correct time window
|
|---|
| 611 | if (ap.GetTime()>=end)
|
|---|
| 612 | break;
|
|---|
| 613 |
|
|---|
| 614 | // Process afterpulse through HitCellImp
|
|---|
| 615 | const Float_t ampl = ap.Process(*this);
|
|---|
| 616 |
|
|---|
| 617 | // Step to the next entry already, the current one might get deleted
|
|---|
| 618 | lnk = lnk->Next();
|
|---|
| 619 |
|
|---|
| 620 | if (ampl!=0)
|
|---|
| 621 | continue;
|
|---|
| 622 |
|
|---|
| 623 | #ifdef DEBUG
|
|---|
| 624 | cout << "Del : " << ap.GetTime() << " (" << ampl << ")" << endl;
|
|---|
| 625 | #endif
|
|---|
| 626 |
|
|---|
| 627 | // The afterpulse "took place" within the dead time of the
|
|---|
| 628 | // pixel ==> No afterpulse, no crosstalk.
|
|---|
| 629 | delete fAfterpulses.Remove(&ap);
|
|---|
| 630 | }
|
|---|
| 631 | }
|
|---|
| 632 |
|
|---|
| 633 | // --------------------------------------------------------------------------
|
|---|
| 634 | //
|
|---|
| 635 | // Delete all afterpulses before and equal to t=time from the list
|
|---|
| 636 | //
|
|---|
| 637 | void APD::DeleteAfterpulses(Float_t time)
|
|---|
| 638 | {
|
|---|
| 639 | TIter Next(&fAfterpulses);
|
|---|
| 640 |
|
|---|
| 641 | Afterpulse *ap = 0;
|
|---|
| 642 |
|
|---|
| 643 | while ((ap = static_cast<Afterpulse*>(Next())))
|
|---|
| 644 | {
|
|---|
| 645 | if (ap->GetTime()>=time)
|
|---|
| 646 | break;
|
|---|
| 647 |
|
|---|
| 648 | delete fAfterpulses.Remove(ap);
|
|---|
| 649 | }
|
|---|
| 650 | }
|
|---|