source: trunk/Mars/melectronics/MAvalanchePhotoDiode.h@ 10113

Last change on this file since 10113 was 10111, checked in by tbretz, 14 years ago
Forgot it in my commit 2011/01/07.
File size: 6.0 KB
Line 
1#ifndef MARS_MAvalanchePhotoDiode
2#define MARS_MAvalanchePhotoDiode
3
4#ifndef ROOT_TH2
5#include <TH2.h>
6#endif
7
8#ifndef ROOT_TSortedList
9#include <TSortedList.h>
10#endif
11
12class Afterpulse : public TObject
13{
14private:
15 UInt_t fCellIndex; // Index of G-APD cell the afterpulse belongs to
16
17 Float_t fTime; // Time at which the afterpulse avalanch broke through
18 Float_t fAmplitude; // Amplitude (crosstalk!) the pulse produced
19
20 Int_t Compare(const TObject *obj) const
21 {
22 return static_cast<const Afterpulse*>(obj)->fTime>fTime ? -1 : 1;
23 }
24
25 Bool_t IsSortable() const { return kTRUE; }
26
27public:
28 Afterpulse(UInt_t idx, Float_t t) : fCellIndex(idx), fTime(t), fAmplitude(0) { }
29
30 UInt_t GetCellIndex() const { return fCellIndex; }
31
32 Float_t GetTime() const { return fTime; }
33 Float_t GetAmplitude() const { return fAmplitude; }
34
35 Float_t Process(APD &apd)
36 {
37 // Do not process afterpulses twice (e.g. HitRelative + IncreaseTime)
38 // This should not happen anyway
39 // if (fAmplitude>0)
40 // return fAmplitude;
41
42 const UInt_t nx = apd.GetNumCellsX()+2;
43
44 const UInt_t x = fCellIndex%nx;
45 const UInt_t y = fCellIndex/nx;
46
47 fAmplitude = apd.HitCellImp(x, y, fTime);
48
49 return fAmplitude;
50 }
51};
52
53class APD : public TObject // FIXME: Derive from TH2?
54{
55 friend class Afterpulse;
56
57private:
58 TH2F fHist;
59
60 TSortedList fAfterpulses; //! List of produced afterpulses
61
62 Float_t fCrosstalkProb; // Probability that a converted photon creates another one in a neighboring cell
63 Float_t fDeadTime; // Deadtime of a single cell after a hit
64 Float_t fRecoveryTime; // Recoverytime after Deadtime (1-exp(-t/fRecoveryTime)
65 Float_t fAfterpulseProb[2]; // Afterpulse probabilities
66 Float_t fAfterpulseTau[2]; // Afterpulse time constants
67
68 Float_t fTime; // A user settable time of the system
69
70 // The implementation of the cell behaviour (crosstalk and afterpulses)
71 Float_t HitCellImp(Int_t x, Int_t y, Float_t t=0);
72
73 // Processing of afterpulses
74 void GenerateAfterpulse(UInt_t cell, Int_t idx, Double_t charge, Double_t t);
75 void ProcessAfterpulses(Float_t time, Float_t dt);
76 void DeleteAfterpulses(Float_t time);
77
78public:
79 APD(Int_t n, Float_t prob=0, Float_t dt=0, Float_t rt=0);
80
81 // --- Setter and Getter ----
82
83 // Set the afterpulse probability and time-constant of distribution 1 and 2
84 void SetAfterpulse1(Double_t p, Double_t tau) { fAfterpulseProb[0]=p; fAfterpulseTau[0]=tau; }
85 void SetAfterpulse2(Double_t p, Double_t tau) { fAfterpulseProb[1]=p; fAfterpulseTau[1]=tau; }
86
87 // Set the afterpulse probability for distribution 1 and 2
88 void SetAfterpulseProb(Double_t p1, Double_t p2) { fAfterpulseProb[0]=p1; fAfterpulseProb[1]=p2; }
89
90 // Getter functions
91 Float_t GetCellContent(Int_t x, Int_t y) const { return fHist.GetBinContent(x, y); }
92 Int_t GetNumCellsX() const { return fHist.GetNbinsX(); }
93
94 Float_t GetCrosstalkProb() const { return fCrosstalkProb; }
95 Float_t GetDeadTime() const { return fDeadTime; }
96 Float_t GetRecoveryTime() const { return fRecoveryTime; }
97 Float_t GetTime() const { return fTime; }
98
99 Float_t GetRelaxationTime(Float_t threshold=0.001) const;
100
101 Float_t GetLastHit() const { return fHist.GetMaximum(); }
102
103 TSortedList &GetListOfAfterpulses() { return fAfterpulses; }
104
105 // Functions for easy production of statistics about the cells
106 Int_t CountDeadCells(Float_t t=0) const;
107 Int_t CountRecoveringCells(Float_t t=0) const;
108
109 // --- Lower level user interface ---
110
111 // Implementation to hit a specified or random cell
112 Float_t HitCell(Int_t x, Int_t y, Float_t t=0);
113 Float_t HitRandomCell(Float_t t=0);
114
115 // Functions to produce virgin chips or just effected by constant rates
116 void FillEmpty(Float_t t=0);
117 void FillRandom(Float_t rate, Float_t t=0);
118
119 // Produce random pulses with the given rate over a time dt.
120 // Processes afterpulses until the new time and deletes previous
121 // afterpulses.
122 Float_t Evolve(Double_t freq, Double_t dt);
123
124 // Delete Afterpulses before fTime. This might be wanted after
125 // a call to Evolve or Relax to maintain memeory usage.
126 void DeleteAfterpulses() { DeleteAfterpulses(fTime); }
127
128 // --- High level user interface ---
129
130 // This fills a G-APD with a rough estimated state at a given time
131 // T=0. It then evolves the time over the ralaxation time. If the
132 // chip is not virgin (i.e. fTime<0) the random filling is omitted
133 void Init(Float_t rate) { if (fTime<0) FillRandom(rate); Relax(rate); ShiftTime(); }
134
135 // Shifts all times including fTime by dt backwards (adds -dt)
136 // This is convenient because you can set the current time (fTime) to 0
137 void ShiftTime(Double_t dt);
138 void ShiftTime() { ShiftTime(fTime); }
139
140 // Functions producing photons hitting cells. It is meant to add
141 // many photons with an arrival time t after fTime. The photons
142 // must be sorted in time first to ensure proper treatment of the
143 // afterpulses.
144 Float_t HitRandomCellRelative(Float_t t=0) { ProcessAfterpulses(fTime, t); return HitRandomCell(fTime+t); }
145
146 // Produce random pulses with a given frequency until the influence
147 // of the effects of the G-APD (relaxation time, afterpulses) are
148 // below the given threshold. (Calls Evolve())
149 // FIXME: Maybe the calculation of the relaxation time could be optimized?
150 Float_t Relax(Double_t freq, Float_t threshold=0.001) { return Evolve(freq, GetRelaxationTime(threshold)); }
151
152 // Issue afterpulses until fTime+dt and set fTime to fTime+dt
153 // This is needed to create all afterpulses from external pulses
154 // and afterpulses until the time fTime+dt. This makes mainly
155 // the list of afterpulses complete until fTime+dt
156 void IncreaseTime(Float_t dt) { ProcessAfterpulses(fTime, dt); fTime += dt; }
157
158 // TObject
159 void Draw(Option_t *o="") { fHist.Draw(o); }
160 void DrawCopy(Option_t *o="") { fHist.DrawCopy(o); }
161
162 ClassDef(APD, 1) // An object representing a Geigermode APD
163};
164
165#endif
Note: See TracBrowser for help on using the repository browser.