source: trunk/Mars/melectronics/MAvalanchePhotoDiode.h@ 10316

Last change on this file since 10316 was 10115, checked in by tbretz, 14 years ago
Reordered the classes in MAvalanchePhotoDiode.h to make it compile.
File size: 6.0 KB
Line 
1#ifndef MARS_MAvalanchePhotoDiode
2#define MARS_MAvalanchePhotoDiode
3
4#ifndef ROOT_TH2
5#include <TH2.h>
6#endif
7
8#ifndef ROOT_TSortedList
9#include <TSortedList.h>
10#endif
11
12class APD : public TObject // FIXME: Derive from TH2?
13{
14 friend class Afterpulse;
15
16private:
17 TH2F fHist;
18
19 TSortedList fAfterpulses; //! List of produced afterpulses
20
21 Float_t fCrosstalkProb; // Probability that a converted photon creates another one in a neighboring cell
22 Float_t fDeadTime; // Deadtime of a single cell after a hit
23 Float_t fRecoveryTime; // Recoverytime after Deadtime (1-exp(-t/fRecoveryTime)
24 Float_t fAfterpulseProb[2]; // Afterpulse probabilities
25 Float_t fAfterpulseTau[2]; // Afterpulse time constants
26
27 Float_t fTime; // A user settable time of the system
28
29 // The implementation of the cell behaviour (crosstalk and afterpulses)
30 Float_t HitCellImp(Int_t x, Int_t y, Float_t t=0);
31
32 // Processing of afterpulses
33 void GenerateAfterpulse(UInt_t cell, Int_t idx, Double_t charge, Double_t t);
34 void ProcessAfterpulses(Float_t time, Float_t dt);
35 void DeleteAfterpulses(Float_t time);
36
37public:
38 APD(Int_t n, Float_t prob=0, Float_t dt=0, Float_t rt=0);
39
40 // --- Setter and Getter ----
41
42 // Set the afterpulse probability and time-constant of distribution 1 and 2
43 void SetAfterpulse1(Double_t p, Double_t tau) { fAfterpulseProb[0]=p; fAfterpulseTau[0]=tau; }
44 void SetAfterpulse2(Double_t p, Double_t tau) { fAfterpulseProb[1]=p; fAfterpulseTau[1]=tau; }
45
46 // Set the afterpulse probability for distribution 1 and 2
47 void SetAfterpulseProb(Double_t p1, Double_t p2) { fAfterpulseProb[0]=p1; fAfterpulseProb[1]=p2; }
48
49 // Getter functions
50 Float_t GetCellContent(Int_t x, Int_t y) const { return fHist.GetBinContent(x, y); }
51 Int_t GetNumCellsX() const { return fHist.GetNbinsX(); }
52
53 Float_t GetCrosstalkProb() const { return fCrosstalkProb; }
54 Float_t GetDeadTime() const { return fDeadTime; }
55 Float_t GetRecoveryTime() const { return fRecoveryTime; }
56 Float_t GetTime() const { return fTime; }
57
58 Float_t GetRelaxationTime(Float_t threshold=0.001) const;
59
60 Float_t GetLastHit() const { return fHist.GetMaximum(); }
61
62 TSortedList &GetListOfAfterpulses() { return fAfterpulses; }
63
64 // Functions for easy production of statistics about the cells
65 Int_t CountDeadCells(Float_t t=0) const;
66 Int_t CountRecoveringCells(Float_t t=0) const;
67
68 // --- Lower level user interface ---
69
70 // Implementation to hit a specified or random cell
71 Float_t HitCell(Int_t x, Int_t y, Float_t t=0);
72 Float_t HitRandomCell(Float_t t=0);
73
74 // Functions to produce virgin chips or just effected by constant rates
75 void FillEmpty(Float_t t=0);
76 void FillRandom(Float_t rate, Float_t t=0);
77
78 // Produce random pulses with the given rate over a time dt.
79 // Processes afterpulses until the new time and deletes previous
80 // afterpulses.
81 Float_t Evolve(Double_t freq, Double_t dt);
82
83 // Delete Afterpulses before fTime. This might be wanted after
84 // a call to Evolve or Relax to maintain memeory usage.
85 void DeleteAfterpulses() { DeleteAfterpulses(fTime); }
86
87 // --- High level user interface ---
88
89 // This fills a G-APD with a rough estimated state at a given time
90 // T=0. It then evolves the time over the ralaxation time. If the
91 // chip is not virgin (i.e. fTime<0) the random filling is omitted
92 void Init(Float_t rate) { if (fTime<0) FillRandom(rate); Relax(rate); ShiftTime(); }
93
94 // Shifts all times including fTime by dt backwards (adds -dt)
95 // This is convenient because you can set the current time (fTime) to 0
96 void ShiftTime(Double_t dt);
97 void ShiftTime() { ShiftTime(fTime); }
98
99 // Functions producing photons hitting cells. It is meant to add
100 // many photons with an arrival time t after fTime. The photons
101 // must be sorted in time first to ensure proper treatment of the
102 // afterpulses.
103 Float_t HitRandomCellRelative(Float_t t=0) { ProcessAfterpulses(fTime, t); return HitRandomCell(fTime+t); }
104
105 // Produce random pulses with a given frequency until the influence
106 // of the effects of the G-APD (relaxation time, afterpulses) are
107 // below the given threshold. (Calls Evolve())
108 // FIXME: Maybe the calculation of the relaxation time could be optimized?
109 Float_t Relax(Double_t freq, Float_t threshold=0.001) { return Evolve(freq, GetRelaxationTime(threshold)); }
110
111 // Issue afterpulses until fTime+dt and set fTime to fTime+dt
112 // This is needed to create all afterpulses from external pulses
113 // and afterpulses until the time fTime+dt. This makes mainly
114 // the list of afterpulses complete until fTime+dt
115 void IncreaseTime(Float_t dt) { ProcessAfterpulses(fTime, dt); fTime += dt; }
116
117 // TObject
118 void Draw(Option_t *o="") { fHist.Draw(o); }
119 void DrawCopy(Option_t *o="") { fHist.DrawCopy(o); }
120
121 ClassDef(APD, 1) // An object representing a Geigermode APD
122};
123
124class Afterpulse : public TObject
125{
126private:
127 UInt_t fCellIndex; // Index of G-APD cell the afterpulse belongs to
128
129 Float_t fTime; // Time at which the afterpulse avalanch broke through
130 Float_t fAmplitude; // Amplitude (crosstalk!) the pulse produced
131
132 Int_t Compare(const TObject *obj) const
133 {
134 return static_cast<const Afterpulse*>(obj)->fTime>fTime ? -1 : 1;
135 }
136
137 Bool_t IsSortable() const { return kTRUE; }
138
139public:
140 Afterpulse(UInt_t idx, Float_t t) : fCellIndex(idx), fTime(t), fAmplitude(0) { }
141
142 UInt_t GetCellIndex() const { return fCellIndex; }
143
144 Float_t GetTime() const { return fTime; }
145 Float_t GetAmplitude() const { return fAmplitude; }
146
147 Float_t Process(APD &apd)
148 {
149 // Do not process afterpulses twice (e.g. HitRelative + IncreaseTime)
150 // This should not happen anyway
151 // if (fAmplitude>0)
152 // return fAmplitude;
153
154 const UInt_t nx = apd.GetNumCellsX()+2;
155
156 const UInt_t x = fCellIndex%nx;
157 const UInt_t y = fCellIndex/nx;
158
159 fAmplitude = apd.HitCellImp(x, y, fTime);
160
161 return fAmplitude;
162 }
163};
164
165#endif
Note: See TracBrowser for help on using the repository browser.