1 | #ifndef MARS_MAvalanchePhotoDiode
|
---|
2 | #define MARS_MAvalanchePhotoDiode
|
---|
3 |
|
---|
4 | #ifndef ROOT_TH2
|
---|
5 | #include <TH2.h>
|
---|
6 | #endif
|
---|
7 |
|
---|
8 | #ifndef ROOT_TSortedList
|
---|
9 | #include <TSortedList.h>
|
---|
10 | #endif
|
---|
11 |
|
---|
12 | class APD : public TObject // FIXME: Derive from TH2?
|
---|
13 | {
|
---|
14 | friend class Afterpulse;
|
---|
15 |
|
---|
16 | private:
|
---|
17 | TH2F fHist;
|
---|
18 |
|
---|
19 | TSortedList fAfterpulses; //! List of produced afterpulses
|
---|
20 |
|
---|
21 | Float_t fCrosstalkProb; // Probability that a converted photon creates another one in a neighboring cell
|
---|
22 | Float_t fDeadTime; // Deadtime of a single cell after a hit
|
---|
23 | Float_t fRecoveryTime; // Recoverytime after Deadtime (1-exp(-t/fRecoveryTime)
|
---|
24 | Float_t fAfterpulseProb[2]; // Afterpulse probabilities
|
---|
25 | Float_t fAfterpulseTau[2]; // Afterpulse time constants
|
---|
26 |
|
---|
27 | Float_t fTime; // A user settable time of the system
|
---|
28 |
|
---|
29 | // The implementation of the cell behaviour (crosstalk and afterpulses)
|
---|
30 | Float_t HitCellImp(Int_t x, Int_t y, Float_t t=0);
|
---|
31 |
|
---|
32 | // Processing of afterpulses
|
---|
33 | void GenerateAfterpulse(UInt_t cell, Int_t idx, Double_t charge, Double_t t);
|
---|
34 | void ProcessAfterpulses(Float_t time, Float_t dt);
|
---|
35 | void DeleteAfterpulses(Float_t time);
|
---|
36 |
|
---|
37 | public:
|
---|
38 | APD(Int_t n, Float_t prob=0, Float_t dt=0, Float_t rt=0);
|
---|
39 |
|
---|
40 | // --- Setter and Getter ----
|
---|
41 |
|
---|
42 | // Set the afterpulse probability and time-constant of distribution 1 and 2
|
---|
43 | void SetAfterpulse1(Double_t p, Double_t tau) { fAfterpulseProb[0]=p; fAfterpulseTau[0]=tau; }
|
---|
44 | void SetAfterpulse2(Double_t p, Double_t tau) { fAfterpulseProb[1]=p; fAfterpulseTau[1]=tau; }
|
---|
45 |
|
---|
46 | // Set the afterpulse probability for distribution 1 and 2
|
---|
47 | void SetAfterpulseProb(Double_t p1, Double_t p2) { fAfterpulseProb[0]=p1; fAfterpulseProb[1]=p2; }
|
---|
48 |
|
---|
49 | // Getter functions
|
---|
50 | Float_t GetCellContent(Int_t x, Int_t y) const { return fHist.GetBinContent(x, y); }
|
---|
51 | Int_t GetNumCellsX() const { return fHist.GetNbinsX(); }
|
---|
52 |
|
---|
53 | Float_t GetCrosstalkProb() const { return fCrosstalkProb; }
|
---|
54 | Float_t GetDeadTime() const { return fDeadTime; }
|
---|
55 | Float_t GetRecoveryTime() const { return fRecoveryTime; }
|
---|
56 | Float_t GetTime() const { return fTime; }
|
---|
57 |
|
---|
58 | Float_t GetRelaxationTime(Float_t threshold=0.001) const;
|
---|
59 |
|
---|
60 | Float_t GetLastHit() const { return fHist.GetMaximum(); }
|
---|
61 |
|
---|
62 | TSortedList &GetListOfAfterpulses() { return fAfterpulses; }
|
---|
63 |
|
---|
64 | // Functions for easy production of statistics about the cells
|
---|
65 | Int_t CountDeadCells(Float_t t=0) const;
|
---|
66 | Int_t CountRecoveringCells(Float_t t=0) const;
|
---|
67 | Float_t GetChargeState(Float_t t=0) const;
|
---|
68 |
|
---|
69 | // --- Lower level user interface ---
|
---|
70 |
|
---|
71 | // Implementation to hit a specified or random cell
|
---|
72 | Float_t HitCell(Int_t x, Int_t y, Float_t t=0);
|
---|
73 | Float_t HitRandomCell(Float_t t=0);
|
---|
74 |
|
---|
75 | // Functions to produce virgin chips or just effected by constant rates
|
---|
76 | void FillEmpty(Float_t t=0);
|
---|
77 | void FillRandom(Float_t rate, Float_t t=0);
|
---|
78 |
|
---|
79 | // Produce random pulses with the given rate over a time dt.
|
---|
80 | // Processes afterpulses until the new time and deletes previous
|
---|
81 | // afterpulses.
|
---|
82 | Float_t Evolve(Double_t freq, Double_t dt);
|
---|
83 |
|
---|
84 | // Delete Afterpulses before fTime. This might be wanted after
|
---|
85 | // a call to Evolve or Relax to maintain memeory usage.
|
---|
86 | void DeleteAfterpulses() { DeleteAfterpulses(fTime); }
|
---|
87 |
|
---|
88 | // --- High level user interface ---
|
---|
89 |
|
---|
90 | // This fills a G-APD with a rough estimated state at a given time
|
---|
91 | // T=0. It then evolves the time over the ralaxation time. If the
|
---|
92 | // chip is not virgin (i.e. fTime<0) the random filling is omitted
|
---|
93 | void Init(Float_t rate) { if (fTime<0) FillRandom(rate); Relax(rate); ShiftTime(); }
|
---|
94 |
|
---|
95 | // Shifts all times including fTime by dt backwards (adds -dt)
|
---|
96 | // This is convenient because you can set the current time (fTime) to 0
|
---|
97 | void ShiftTime(Double_t dt);
|
---|
98 | void ShiftTime() { ShiftTime(fTime); }
|
---|
99 |
|
---|
100 | // Functions producing photons hitting cells. It is meant to add
|
---|
101 | // many photons with an arrival time t after fTime. The photons
|
---|
102 | // must be sorted in time first to ensure proper treatment of the
|
---|
103 | // afterpulses.
|
---|
104 | Float_t HitRandomCellRelative(Float_t t=0) { ProcessAfterpulses(fTime, t); return HitRandomCell(fTime+t); }
|
---|
105 |
|
---|
106 | // Produce random pulses with a given frequency until the influence
|
---|
107 | // of the effects of the G-APD (relaxation time, afterpulses) are
|
---|
108 | // below the given threshold. (Calls Evolve())
|
---|
109 | // FIXME: Maybe the calculation of the relaxation time could be optimized?
|
---|
110 | Float_t Relax(Double_t freq, Float_t threshold=0.001) { return Evolve(freq, GetRelaxationTime(threshold)); }
|
---|
111 |
|
---|
112 | // Issue afterpulses until fTime+dt and set fTime to fTime+dt
|
---|
113 | // This is needed to create all afterpulses from external pulses
|
---|
114 | // and afterpulses until the time fTime+dt. This makes mainly
|
---|
115 | // the list of afterpulses complete until fTime+dt
|
---|
116 | void IncreaseTime(Float_t dt) { ProcessAfterpulses(fTime, dt); fTime += dt; }
|
---|
117 |
|
---|
118 | // TObject
|
---|
119 | void Draw(Option_t *o="") { fHist.Draw(o); }
|
---|
120 | void DrawCopy(Option_t *o="") { fHist.DrawCopy(o); }
|
---|
121 |
|
---|
122 | ClassDef(APD, 1) // An object representing a Geigermode APD
|
---|
123 | };
|
---|
124 |
|
---|
125 | class Afterpulse : public TObject
|
---|
126 | {
|
---|
127 | private:
|
---|
128 | UInt_t fCellIndex; // Index of G-APD cell the afterpulse belongs to
|
---|
129 |
|
---|
130 | Float_t fTime; // Time at which the afterpulse avalanch broke through
|
---|
131 | Float_t fAmplitude; // Amplitude (crosstalk!) the pulse produced
|
---|
132 |
|
---|
133 | Int_t Compare(const TObject *obj) const
|
---|
134 | {
|
---|
135 | return static_cast<const Afterpulse*>(obj)->fTime>fTime ? -1 : 1;
|
---|
136 | }
|
---|
137 |
|
---|
138 | Bool_t IsSortable() const { return kTRUE; }
|
---|
139 |
|
---|
140 | public:
|
---|
141 | Afterpulse(UInt_t idx, Float_t t) : fCellIndex(idx), fTime(t), fAmplitude(0) { }
|
---|
142 |
|
---|
143 | UInt_t GetCellIndex() const { return fCellIndex; }
|
---|
144 |
|
---|
145 | Float_t GetTime() const { return fTime; }
|
---|
146 | Float_t GetAmplitude() const { return fAmplitude; }
|
---|
147 |
|
---|
148 | Float_t Process(APD &apd)
|
---|
149 | {
|
---|
150 | // Do not process afterpulses twice (e.g. HitRelative + IncreaseTime)
|
---|
151 | // This should not happen anyway
|
---|
152 | // if (fAmplitude>0)
|
---|
153 | // return fAmplitude;
|
---|
154 |
|
---|
155 | const UInt_t nx = apd.GetNumCellsX()+2;
|
---|
156 |
|
---|
157 | const UInt_t x = fCellIndex%nx;
|
---|
158 | const UInt_t y = fCellIndex/nx;
|
---|
159 |
|
---|
160 | fAmplitude = apd.HitCellImp(x, y, fTime);
|
---|
161 |
|
---|
162 | return fAmplitude;
|
---|
163 | }
|
---|
164 | ClassDef(Afterpulse, 1) // An Afterpulse object
|
---|
165 | };
|
---|
166 |
|
---|
167 | #endif
|
---|