source: trunk/Mars/mextralgo/MExtralgoSpline.cc@ 13371

Last change on this file since 13371 was 13003, checked in by tbretz, 13 years ago
Improved the possible combinations of how to extract the leading edge or position of maximum and the intgeral or amplitude.
File size: 9.8 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17! Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzbrug.de>
18! Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es>
19!
20! Copyright: MAGIC Software Development, 2002-2009
21!
22!
23\* ======================================================================== */
24
25//////////////////////////////////////////////////////////////////////////////
26//
27// MExtralgoSpline
28//
29// Fast Spline extractor using a cubic spline algorithm, adapted from
30// Numerical Recipes in C++, 2nd edition, pp. 116-119.
31//
32// The coefficients "ya" are here denoted as "fVal" corresponding to
33// the FADC value subtracted by the clock-noise corrected pedestal.
34//
35// The coefficients "y2a" get immediately divided 6. and are called here
36// fDer2 although they are now not exactly the second derivative
37// coefficients any more.
38//
39// The calculation of the cubic-spline interpolated value "y" on a point
40// "x" along the FADC-slices axis becomes: EvalAt(x)
41//
42// The coefficients fDer2 are calculated with the simplified
43// algorithm in InitDerivatives.
44//
45// This algorithm takes advantage of the fact that the x-values are all
46// separated by exactly 1 which simplifies the Numerical Recipes algorithm.
47// (Note that the variables fDer are not real first derivative coefficients.)
48//
49// Note, this spline is not optimized to be evaluated many many times, but
50// it is optimized to be initialized very fast with new values again and
51// again.
52//
53//////////////////////////////////////////////////////////////////////////////
54#include "MExtralgoSpline.h"
55
56#include <TRandom.h>
57
58#include "../mbase/MMath.h"
59#include "../mbase/MArrayF.h"
60
61using namespace std;
62
63// --------------------------------------------------------------------------
64//
65// Calculate the first and second derivative for the splie.
66//
67// The coefficients are calculated such that
68// 1) fVal[i] = Eval(i, 0)
69// 2) Eval(i-1, 1)==Eval(i, 0)
70//
71// In other words: The values with the index i describe the spline
72// between fVal[i] and fVal[i+1]
73//
74void MExtralgoSpline::InitDerivatives() const
75{
76 if (fNum<2)
77 return;
78
79 // Look up table for coefficients
80 static MArrayF lut;
81
82 // If the lut is not yet large enough: resize and reclaculate
83 if (fNum>(Int_t)lut.GetSize())
84 {
85 lut.Set(fNum);
86
87 lut[0] = 0.;
88 for (Int_t i=1; i<fNum-1; i++)
89 lut[i] = -1.0/(lut[i-1] + 4);
90 }
91
92 // Calculate the coefficients used to get reproduce the first and
93 // second derivative.
94 fDer1[0] = 0.;
95 for (Int_t i=1; i<fNum-1; i++)
96 {
97 const Float_t d1 = fVal[i+1] - 2*fVal[i] + fVal[i-1];
98 fDer1[i] = (fDer1[i-1]-d1)*lut[i];
99 }
100
101 fDer2[fNum-1] = 0.;
102 for (Int_t k=fNum-2; k>=0; k--)
103 fDer2[k] = lut[k]*fDer2[k+1] + fDer1[k];
104}
105
106// --------------------------------------------------------------------------
107//
108// Return the two results x1 and x2 of f'(x)=0 for the third order
109// polynomial (spline) in the interval i. Return the number of results.
110// (0 if the fist derivative does not have a null-point)
111//
112Int_t MExtralgoSpline::EvalDerivEq0(const Int_t i, Double_t &x1, Double_t &x2) const
113{
114 const Double_t difder = fDer2[i+1]-fDer2[i];
115 const Double_t difval = fVal[i+1] -fVal[i];
116
117 return MMath::SolvePol2(3*difder, 6*fDer2[i], difval-2*fDer2[i]-fDer2[i+1], x1, x2);
118}
119
120// --------------------------------------------------------------------------
121//
122// Solve the polynomial
123//
124// y = a*x^3 + b*x^2 + c*x + d'
125// 0 = a*x^3 + b*x^2 + c*x + d' - y
126//
127// to find y in the i-th bin. Return the result as x1, x2, x3 and the return
128// code from MMath::SolvPol3.
129//
130Int_t MExtralgoSpline::SolvePol3(Int_t i, Double_t y, Double_t &x1, Double_t &x2, Double_t &x3) const
131{
132 // y = a*x^3 + b*x^2 + c*x + d'
133 // 0 = a*x^3 + b*x^2 + c*x + d' - y
134
135 // Calculate coefficients
136 const Double_t a = fDer2[i+1]-fDer2[i];
137 const Double_t b = 3*fDer2[i];
138 const Double_t c = fVal[i+1]-fVal[i] -2*fDer2[i]-fDer2[i+1];
139 const Double_t d = fVal[i] - y;
140
141 // If the first derivative is nowhere==0 and it is increasing
142 // in one point, and the value we search is outside of the
143 // y-interval... it cannot be there
144 // if (c>0 && (d>0 || fVal[i+1]<y) && b*b<3*c*a)
145 // return -2;
146
147 return MMath::SolvePol3(a, b, c, d, x1, x2, x3);
148}
149
150// --------------------------------------------------------------------------
151//
152// Returns the highest x value in [min;max[ at which the spline in
153// the bin i is equal to y
154//
155// min and max must be in the range [0;1]
156//
157// The default for min is 0, the default for max is 1
158// The default for y is 0
159//
160Double_t MExtralgoSpline::FindYdn(Int_t i, Double_t y, Double_t min, Double_t max) const
161{
162 Double_t x1, x2, x3;
163 const Int_t rc = SolvePol3(i, y, x1, x2, x3);
164
165 Double_t x = -1;
166
167 if (rc>0 && x1>=min && x1<max && x1>x)
168 x = x1;
169 if (rc>1 && x2>=min && x2<max && x2>x)
170 x = x2;
171 if (rc>2 && x3>=min && x3<max && x3>x)
172 x = x3;
173
174 return x<0 ? -2 : x+i;
175}
176
177// --------------------------------------------------------------------------
178//
179// Returns the lowest x value in [min;max[ at which the spline in
180// the bin i is equal to y
181//
182// min and max must be in the range [0;1]
183//
184// The default for min is 0, the default for max is 1
185// The default for y is 0
186//
187Double_t MExtralgoSpline::FindYup(Int_t i, Double_t y, Double_t min, Double_t max) const
188{
189 Double_t x1, x2, x3;
190 const Int_t rc = SolvePol3(i, y, x1, x2, x3);
191
192 Double_t x = 2;
193
194 if (rc>0 && x1>min && x1<=max && x1<x)
195 x = x1;
196 if (rc>1 && x2>min && x2<=max && x2<x)
197 x = x2;
198 if (rc>2 && x3>min && x3<=max && x3<x)
199 x = x3;
200
201 return x>1 ? -2 : x+i;
202}
203
204// --------------------------------------------------------------------------
205//
206// Search analytically downward for the value y of the spline, starting
207// at x, until x==0. If y is not found or out of range -2 is returned.
208//
209Double_t MExtralgoSpline::SearchYdn(Float_t x, Float_t y) const
210{
211 if (x>=fNum-1)
212 x = fNum-1.0001;
213
214 Int_t i = TMath::FloorNint(x);
215 if (i<0)
216 return -2;
217
218 Double_t rc = FindYdn(i, y, 0, x-i);
219 while (--i>=0 && rc<0)
220 rc = FindYdn(i, y);
221
222 return rc;
223}
224
225// --------------------------------------------------------------------------
226//
227// Search analytically upwards for the value y of the spline, starting
228// at x, until x==fNum-1. If y is not found or out of range -2 is returned.
229//
230Double_t MExtralgoSpline::SearchYup(Float_t x, Float_t y) const
231{
232 if (x<0)
233 x = 0.0001;
234
235 Int_t i = TMath::FloorNint(x);
236 if (i>fNum-2)
237 return -2;
238
239 Double_t rc = FindYup(i, y, x-i, 1.);
240 while (++i<fNum-1 && rc<0)
241 rc = FindYup(i, y);
242
243 return rc;
244}
245
246// --------------------------------------------------------------------------
247//
248// Do a range check an then calculate the integral from start-fRiseTime
249// to start+fFallTime. An extrapolation of 0.5 slices is allowed.
250//
251Float_t MExtralgoSpline::CalcIntegral(Float_t pos) const
252{
253 // We allow extrapolation of 1/2 slice.
254 const Float_t min = fRiseTime; //-0.5+fRiseTime;
255 const Float_t max = fNum-1-fFallTime; //fNum-0.5+fFallTime;
256
257 if (pos<min)
258 pos = min;
259 if (pos>max)
260 pos = max;
261
262 return EvalInteg(pos-fRiseTime, pos+fFallTime);
263}
264
265MArrayF MExtralgoSpline::GetIntegral(bool norm) const
266{
267 MArrayF val(fNum);
268
269 //val[0] = 0;
270
271 Double_t integ = 0;
272 for (int i=0; i<fNum-1; i++)
273 {
274 integ += EvalInteg(i);
275
276 val[i+1] = integ;
277 }
278
279 if (norm)
280 for (int i=0; i<fNum-1; i++)
281 val[i+1] /= val[fNum-1];
282
283 return val;
284}
285
286Float_t MExtralgoSpline::ExtractNoise()
287{
288 if (fNum<5)
289 return 0;
290
291 if (!(fExtractionType&kIntegral))
292 {
293 const Int_t pos = gRandom->Integer(fNum-1);
294 const Float_t nsx = gRandom->Uniform();
295 return Eval(pos, nsx);
296 }
297 else
298 {
299 const Float_t pos = gRandom->Uniform(fNum-1-fRiseTime-fFallTime)+fRiseTime;
300 return CalcIntegral(pos);
301 }
302}
303
304void MExtralgoSpline::Extract(Int_t maxbin, Bool_t width)
305{
306 fSignal = 0;
307 fTime = 0;
308 fWidth = 0;
309 fSignalDev = -1;
310 fTimeDev = -1;
311 fWidthDev = -1;
312
313 if (fNum<2)
314 return;
315
316 Float_t maxpos;
317 // FIXME: Check the default if no maximum found!!!
318 GetMaxAroundI(maxbin, maxpos, fHeight);
319
320 // --- End NEW ---
321
322 if (fExtractionType&kIntegral)
323 {
324 fSignal = CalcIntegral(maxpos);
325 fSignalDev = 0; // means: is valid
326 }
327 else
328 {
329 fSignal = fHeight;
330 fSignalDev = 0; // means: is valid
331 }
332
333 // Position of maximum
334 if (((fExtractionType&kTimeRel) && fHeightTm<0) || (fExtractionType&kMaximum))
335 {
336 fTime = maxpos;
337 fTimeDev = 0;
338 return;
339 }
340
341 // Position of fraction height or absolute height
342 const Float_t h = (fExtractionType&kTimeRel) ? fHeight*fHeightTm : fHeightTm;
343
344 // Search downwards for fHeight/2
345 // By doing also a search upwards we could extract the pulse width
346 fTime = SearchYdn(maxpos, h);
347 fTimeDev = 0;
348 if (width)
349 {
350 fWidth = SearchYup(maxpos, h)-fTime;
351 fWidthDev = 0;
352 }
353}
Note: See TracBrowser for help on using the repository browser.