/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! Author(s): Thomas Bretz ! Author(s): Markus Gaug 09/2004 ! ! Copyright: MAGIC Software Development, 2002-2009 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MExtralgoSpline // // Fast Spline extractor using a cubic spline algorithm, adapted from // Numerical Recipes in C++, 2nd edition, pp. 116-119. // // The coefficients "ya" are here denoted as "fVal" corresponding to // the FADC value subtracted by the clock-noise corrected pedestal. // // The coefficients "y2a" get immediately divided 6. and are called here // fDer2 although they are now not exactly the second derivative // coefficients any more. // // The calculation of the cubic-spline interpolated value "y" on a point // "x" along the FADC-slices axis becomes: EvalAt(x) // // The coefficients fDer2 are calculated with the simplified // algorithm in InitDerivatives. // // This algorithm takes advantage of the fact that the x-values are all // separated by exactly 1 which simplifies the Numerical Recipes algorithm. // (Note that the variables fDer are not real first derivative coefficients.) // // Note, this spline is not optimized to be evaluated many many times, but // it is optimized to be initialized very fast with new values again and // again. // ////////////////////////////////////////////////////////////////////////////// #include "MExtralgoSpline.h" #include #include "../mbase/MMath.h" #include "../mbase/MArrayF.h" using namespace std; // -------------------------------------------------------------------------- // // Calculate the first and second derivative for the splie. // // The coefficients are calculated such that // 1) fVal[i] = Eval(i, 0) // 2) Eval(i-1, 1)==Eval(i, 0) // // In other words: The values with the index i describe the spline // between fVal[i] and fVal[i+1] // void MExtralgoSpline::InitDerivatives() const { if (fNum<2) return; // Look up table for coefficients static MArrayF lut; // If the lut is not yet large enough: resize and reclaculate if (fNum>(Int_t)lut.GetSize()) { lut.Set(fNum); lut[0] = 0.; for (Int_t i=1; i=0; k--) fDer2[k] = lut[k]*fDer2[k+1] + fDer1[k]; } // -------------------------------------------------------------------------- // // Return the two results x1 and x2 of f'(x)=0 for the third order // polynomial (spline) in the interval i. Return the number of results. // (0 if the fist derivative does not have a null-point) // Int_t MExtralgoSpline::EvalDerivEq0(const Int_t i, Double_t &x1, Double_t &x2) const { const Double_t difder = fDer2[i+1]-fDer2[i]; const Double_t difval = fVal[i+1] -fVal[i]; return MMath::SolvePol2(3*difder, 6*fDer2[i], difval-2*fDer2[i]-fDer2[i+1], x1, x2); } // -------------------------------------------------------------------------- // // Solve the polynomial // // y = a*x^3 + b*x^2 + c*x + d' // 0 = a*x^3 + b*x^2 + c*x + d' - y // // to find y in the i-th bin. Return the result as x1, x2, x3 and the return // code from MMath::SolvPol3. // Int_t MExtralgoSpline::SolvePol3(Int_t i, Double_t y, Double_t &x1, Double_t &x2, Double_t &x3) const { // y = a*x^3 + b*x^2 + c*x + d' // 0 = a*x^3 + b*x^2 + c*x + d' - y // Calculate coefficients const Double_t a = fDer2[i+1]-fDer2[i]; const Double_t b = 3*fDer2[i]; const Double_t c = fVal[i+1]-fVal[i] -2*fDer2[i]-fDer2[i+1]; const Double_t d = fVal[i] - y; // If the first derivative is nowhere==0 and it is increasing // in one point, and the value we search is outside of the // y-interval... it cannot be there // if (c>0 && (d>0 || fVal[i+1]0 && x1>=min && x1x) x = x1; if (rc>1 && x2>=min && x2x) x = x2; if (rc>2 && x3>=min && x3x) x = x3; return x<0 ? -2 : x+i; } // -------------------------------------------------------------------------- // // Returns the lowest x value in [min;max[ at which the spline in // the bin i is equal to y // // min and max must be in the range [0;1] // // The default for min is 0, the default for max is 1 // The default for y is 0 // Double_t MExtralgoSpline::FindYup(Int_t i, Double_t y, Double_t min, Double_t max) const { Double_t x1, x2, x3; const Int_t rc = SolvePol3(i, y, x1, x2, x3); Double_t x = 2; if (rc>0 && x1>min && x1<=max && x11 && x2>min && x2<=max && x22 && x3>min && x3<=max && x31 ? -2 : x+i; } // -------------------------------------------------------------------------- // // Search analytically downward for the value y of the spline, starting // at x, until x==0. If y is not found or out of range -2 is returned. // Double_t MExtralgoSpline::SearchYdn(Float_t x, Float_t y) const { if (x>=fNum-1) x = fNum-1.0001; Int_t i = TMath::FloorNint(x); if (i<0) return -2; Double_t rc = FindYdn(i, y, 0, x-i); while (--i>=0 && rc<0) rc = FindYdn(i, y); return rc; } // -------------------------------------------------------------------------- // // Search analytically upwards for the value y of the spline, starting // at x, until x==fNum-1. If y is not found or out of range -2 is returned. // Double_t MExtralgoSpline::SearchYup(Float_t x, Float_t y) const { if (x<0) x = 0.0001; Int_t i = TMath::FloorNint(x); if (i>fNum-2) return -2; Double_t rc = FindYup(i, y, x-i, 1.); while (++imax) pos = max; return EvalInteg(pos-fRiseTime, pos+fFallTime); } Float_t MExtralgoSpline::CalcIntegral(Float_t beg, Float_t width) const { Float_t end = beg + width; if (beg<0) { end -= beg; beg = 0; } if (end>fNum-1) { beg -= (end-fNum-1); end = fNum-1; } return EvalInteg(beg, end); } MArrayF MExtralgoSpline::GetIntegral(bool norm) const { MArrayF val(fNum); //val[0] = 0; Double_t integ = 0; for (int i=0; iInteger(fNum-1); const Float_t nsx = gRandom->Uniform(); return Eval(pos, nsx); } else { const Float_t pos = gRandom->Uniform(fNum-1-fRiseTime-fFallTime)+fRiseTime; return CalcIntegral(pos); } } void MExtralgoSpline::Extract(Int_t maxbin, Bool_t width) { fSignal = 0; fTime = 0; fWidth = 0; fSignalDev = -1; fTimeDev = -1; fWidthDev = -1; if (fNum<2) return; Float_t maxpos; // FIXME: Check the default if no maximum found!!! GetMaxAroundI(maxbin, maxpos, fHeight); // --- End NEW --- //kDynWidth = kTimeRel|kDynWidth, // Integrate between leading edge and falling edge // kFixedWidth = kTimeRel|kFixedWidth, // Integrate between leading edge and edge plus fRiseTime+fFallTime if (fExtractionType&kIntegral) { fSignal = CalcIntegral(maxpos); fSignalDev = 0; // means: is valid } if (!(fExtractionType&kIntegralDyn) && !(fExtractionType&kIntegralFixed)) { fSignal = fHeight; fSignalDev = 0; // means: is valid } // Position of maximum if (((fExtractionType&kTimeRel) && fHeightTm<0) || (fExtractionType&kMaximum)) { fTime = maxpos; fTimeDev = 0; return; } // Position of fraction height or absolute height const Float_t h = (fExtractionType&kTimeRel) ? fHeight*fHeightTm : fHeightTm; // Search downwards for fHeight/2 // By doing also a search upwards we could extract the pulse width fTime = SearchYdn(maxpos, h); fTimeDev = 0; if (width || fExtractionType&kIntegralDyn) { fWidth = SearchYup(maxpos, h)-fTime; fWidthDev = 0; } if (fExtractionType&kIntegralDyn) { fSignal = CalcIntegral(fTime, fWidth); fSignalDev = 0; } if (fExtractionType&kIntegralFixed) { fSignal = CalcIntegral(fTime-fRiseTime, fRiseTime+fFallTime); fSignalDev = 0; } }