| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appear in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | !   Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzbrug.de> | 
|---|
| 18 | !   Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: MAGIC Software Development, 2002-2009 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | // | 
|---|
| 27 | //   MExtralgoSpline | 
|---|
| 28 | // | 
|---|
| 29 | //   Fast Spline extractor using a cubic spline algorithm, adapted from | 
|---|
| 30 | //   Numerical Recipes in C++, 2nd edition, pp. 116-119. | 
|---|
| 31 | // | 
|---|
| 32 | //   The coefficients "ya" are here denoted as "fVal" corresponding to | 
|---|
| 33 | //   the FADC value subtracted by the clock-noise corrected pedestal. | 
|---|
| 34 | // | 
|---|
| 35 | //   The coefficients "y2a" get immediately divided 6. and are called here | 
|---|
| 36 | //   fDer2 although they are now not exactly the second derivative | 
|---|
| 37 | //   coefficients any more. | 
|---|
| 38 | // | 
|---|
| 39 | //   The calculation of the cubic-spline interpolated value "y" on a point | 
|---|
| 40 | //   "x" along the FADC-slices axis becomes: EvalAt(x) | 
|---|
| 41 | // | 
|---|
| 42 | //   The coefficients fDer2 are calculated with the simplified | 
|---|
| 43 | //   algorithm in InitDerivatives. | 
|---|
| 44 | // | 
|---|
| 45 | //   This algorithm takes advantage of the fact that the x-values are all | 
|---|
| 46 | //   separated by exactly 1 which simplifies the Numerical Recipes algorithm. | 
|---|
| 47 | //   (Note that the variables fDer are not real first derivative coefficients.) | 
|---|
| 48 | // | 
|---|
| 49 | //   Note, this spline is not optimized to be evaluated many many times, but | 
|---|
| 50 | //   it is optimized to be initialized very fast with new values again and | 
|---|
| 51 | //   again. | 
|---|
| 52 | // | 
|---|
| 53 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 54 | #include "MExtralgoSpline.h" | 
|---|
| 55 |  | 
|---|
| 56 | #include <TRandom.h> | 
|---|
| 57 |  | 
|---|
| 58 | #include "../mbase/MMath.h" | 
|---|
| 59 | #include "../mbase/MArrayF.h" | 
|---|
| 60 |  | 
|---|
| 61 | using namespace std; | 
|---|
| 62 |  | 
|---|
| 63 | // -------------------------------------------------------------------------- | 
|---|
| 64 | // | 
|---|
| 65 | // Calculate the first and second derivative for the splie. | 
|---|
| 66 | // | 
|---|
| 67 | // The coefficients are calculated such that | 
|---|
| 68 | //   1) fVal[i] = Eval(i, 0) | 
|---|
| 69 | //   2) Eval(i-1, 1)==Eval(i, 0) | 
|---|
| 70 | // | 
|---|
| 71 | // In other words: The values with the index i describe the spline | 
|---|
| 72 | // between fVal[i] and fVal[i+1] | 
|---|
| 73 | // | 
|---|
| 74 | void MExtralgoSpline::InitDerivatives() const | 
|---|
| 75 | { | 
|---|
| 76 | if (fNum<2) | 
|---|
| 77 | return; | 
|---|
| 78 |  | 
|---|
| 79 | // Look up table for coefficients | 
|---|
| 80 | static MArrayF lut; | 
|---|
| 81 |  | 
|---|
| 82 | // If the lut is not yet large enough: resize and reclaculate | 
|---|
| 83 | if (fNum>(Int_t)lut.GetSize()) | 
|---|
| 84 | { | 
|---|
| 85 | lut.Set(fNum); | 
|---|
| 86 |  | 
|---|
| 87 | lut[0] = 0.; | 
|---|
| 88 | for (Int_t i=1; i<fNum-1; i++) | 
|---|
| 89 | lut[i] = -1.0/(lut[i-1] + 4); | 
|---|
| 90 | } | 
|---|
| 91 |  | 
|---|
| 92 | // Calculate the coefficients used to get reproduce the first and | 
|---|
| 93 | // second derivative. | 
|---|
| 94 | fDer1[0] = 0.; | 
|---|
| 95 | for (Int_t i=1; i<fNum-1; i++) | 
|---|
| 96 | { | 
|---|
| 97 | const Float_t d1 = fVal[i+1] - 2*fVal[i] + fVal[i-1]; | 
|---|
| 98 | fDer1[i] = (fDer1[i-1]-d1)*lut[i]; | 
|---|
| 99 | } | 
|---|
| 100 |  | 
|---|
| 101 | fDer2[fNum-1] = 0.; | 
|---|
| 102 | for (Int_t k=fNum-2; k>=0; k--) | 
|---|
| 103 | fDer2[k] = lut[k]*fDer2[k+1] + fDer1[k]; | 
|---|
| 104 | } | 
|---|
| 105 |  | 
|---|
| 106 | // -------------------------------------------------------------------------- | 
|---|
| 107 | // | 
|---|
| 108 | // Return the two results x1 and x2 of f'(x)=0 for the third order | 
|---|
| 109 | // polynomial (spline) in the interval i. Return the number of results. | 
|---|
| 110 | // (0 if the fist derivative does not have a null-point) | 
|---|
| 111 | // | 
|---|
| 112 | Int_t MExtralgoSpline::EvalDerivEq0(const Int_t i, Double_t &x1, Double_t &x2) const | 
|---|
| 113 | { | 
|---|
| 114 | const Double_t difder = fDer2[i+1]-fDer2[i]; | 
|---|
| 115 | const Double_t difval = fVal[i+1] -fVal[i]; | 
|---|
| 116 |  | 
|---|
| 117 | return MMath::SolvePol2(3*difder, 6*fDer2[i], difval-2*fDer2[i]-fDer2[i+1], x1, x2); | 
|---|
| 118 | } | 
|---|
| 119 |  | 
|---|
| 120 | // -------------------------------------------------------------------------- | 
|---|
| 121 | // | 
|---|
| 122 | // Solve the polynomial | 
|---|
| 123 | // | 
|---|
| 124 | //    y = a*x^3 + b*x^2 + c*x + d' | 
|---|
| 125 | //    0 = a*x^3 + b*x^2 + c*x + d' - y | 
|---|
| 126 | // | 
|---|
| 127 | // to find y in the i-th bin. Return the result as x1, x2, x3 and the return | 
|---|
| 128 | // code from MMath::SolvPol3. | 
|---|
| 129 | // | 
|---|
| 130 | Int_t MExtralgoSpline::SolvePol3(Int_t i, Double_t y, Double_t &x1, Double_t &x2, Double_t &x3) const | 
|---|
| 131 | { | 
|---|
| 132 | // y = a*x^3 + b*x^2 + c*x + d' | 
|---|
| 133 | // 0 = a*x^3 + b*x^2 + c*x + d' - y | 
|---|
| 134 |  | 
|---|
| 135 | // Calculate coefficients | 
|---|
| 136 | const Double_t a = fDer2[i+1]-fDer2[i]; | 
|---|
| 137 | const Double_t b = 3*fDer2[i]; | 
|---|
| 138 | const Double_t c = fVal[i+1]-fVal[i] -2*fDer2[i]-fDer2[i+1]; | 
|---|
| 139 | const Double_t d = fVal[i] - y; | 
|---|
| 140 |  | 
|---|
| 141 | // If the first derivative is nowhere==0 and it is increasing | 
|---|
| 142 | // in one point, and the value we search is outside of the | 
|---|
| 143 | // y-interval... it cannot be there | 
|---|
| 144 | // if (c>0 && (d>0 || fVal[i+1]<y) && b*b<3*c*a) | 
|---|
| 145 | //     return -2; | 
|---|
| 146 |  | 
|---|
| 147 | return MMath::SolvePol3(a, b, c, d, x1, x2, x3); | 
|---|
| 148 | } | 
|---|
| 149 |  | 
|---|
| 150 | // -------------------------------------------------------------------------- | 
|---|
| 151 | // | 
|---|
| 152 | // Returns the highest x value in [min;max[ at which the spline in | 
|---|
| 153 | // the bin i is equal to y | 
|---|
| 154 | // | 
|---|
| 155 | // min and max must be in the range [0;1] | 
|---|
| 156 | // | 
|---|
| 157 | // The default for min is 0, the default for max is 1 | 
|---|
| 158 | // The default for y is 0 | 
|---|
| 159 | // | 
|---|
| 160 | Double_t MExtralgoSpline::FindYdn(Int_t i, Double_t y, Double_t min, Double_t max) const | 
|---|
| 161 | { | 
|---|
| 162 | Double_t x1, x2, x3; | 
|---|
| 163 | const Int_t rc = SolvePol3(i, y, x1, x2, x3); | 
|---|
| 164 |  | 
|---|
| 165 | Double_t x = -1; | 
|---|
| 166 |  | 
|---|
| 167 | if (rc>0 && x1>=min && x1<max && x1>x) | 
|---|
| 168 | x = x1; | 
|---|
| 169 | if (rc>1 && x2>=min && x2<max && x2>x) | 
|---|
| 170 | x = x2; | 
|---|
| 171 | if (rc>2 && x3>=min && x3<max && x3>x) | 
|---|
| 172 | x = x3; | 
|---|
| 173 |  | 
|---|
| 174 | return x<0 ? -2 : x+i; | 
|---|
| 175 | } | 
|---|
| 176 |  | 
|---|
| 177 | // -------------------------------------------------------------------------- | 
|---|
| 178 | // | 
|---|
| 179 | // Returns the lowest x value in [min;max[ at which the spline in | 
|---|
| 180 | // the bin i is equal to y | 
|---|
| 181 | // | 
|---|
| 182 | // min and max must be in the range [0;1] | 
|---|
| 183 | // | 
|---|
| 184 | // The default for min is 0, the default for max is 1 | 
|---|
| 185 | // The default for y is 0 | 
|---|
| 186 | // | 
|---|
| 187 | Double_t MExtralgoSpline::FindYup(Int_t i, Double_t y, Double_t min, Double_t max) const | 
|---|
| 188 | { | 
|---|
| 189 | Double_t x1, x2, x3; | 
|---|
| 190 | const Int_t rc = SolvePol3(i, y, x1, x2, x3); | 
|---|
| 191 |  | 
|---|
| 192 | Double_t x = 2; | 
|---|
| 193 |  | 
|---|
| 194 | if (rc>0 && x1>min && x1<=max && x1<x) | 
|---|
| 195 | x = x1; | 
|---|
| 196 | if (rc>1 && x2>min && x2<=max && x2<x) | 
|---|
| 197 | x = x2; | 
|---|
| 198 | if (rc>2 && x3>min && x3<=max && x3<x) | 
|---|
| 199 | x = x3; | 
|---|
| 200 |  | 
|---|
| 201 | return x>1 ? -2 : x+i; | 
|---|
| 202 | } | 
|---|
| 203 |  | 
|---|
| 204 | // -------------------------------------------------------------------------- | 
|---|
| 205 | // | 
|---|
| 206 | // Search analytically downward for the value y of the spline, starting | 
|---|
| 207 | // at x, until x==0. If y is not found or out of range -2 is returned. | 
|---|
| 208 | // | 
|---|
| 209 | Double_t MExtralgoSpline::SearchYdn(Float_t x, Float_t y) const | 
|---|
| 210 | { | 
|---|
| 211 | if (x>=fNum-1) | 
|---|
| 212 | x = fNum-1.0001; | 
|---|
| 213 |  | 
|---|
| 214 | Int_t i = TMath::FloorNint(x); | 
|---|
| 215 | if (i<0) | 
|---|
| 216 | return -2; | 
|---|
| 217 |  | 
|---|
| 218 | Double_t rc = FindYdn(i, y, 0, x-i); | 
|---|
| 219 | while (--i>=0 && rc<0) | 
|---|
| 220 | rc = FindYdn(i, y); | 
|---|
| 221 |  | 
|---|
| 222 | return rc; | 
|---|
| 223 | } | 
|---|
| 224 |  | 
|---|
| 225 | // -------------------------------------------------------------------------- | 
|---|
| 226 | // | 
|---|
| 227 | // Search analytically upwards for the value y of the spline, starting | 
|---|
| 228 | // at x, until x==fNum-1. If y is not found or out of range -2 is returned. | 
|---|
| 229 | // | 
|---|
| 230 | Double_t MExtralgoSpline::SearchYup(Float_t x, Float_t y) const | 
|---|
| 231 | { | 
|---|
| 232 | if (x<0) | 
|---|
| 233 | x = 0.0001; | 
|---|
| 234 |  | 
|---|
| 235 | Int_t i = TMath::FloorNint(x); | 
|---|
| 236 | if (i>fNum-2) | 
|---|
| 237 | return -2; | 
|---|
| 238 |  | 
|---|
| 239 | Double_t rc = FindYup(i, y, x-i, 1.); | 
|---|
| 240 | while (++i<fNum-1 && rc<0) | 
|---|
| 241 | rc = FindYup(i, y); | 
|---|
| 242 |  | 
|---|
| 243 | return rc; | 
|---|
| 244 | } | 
|---|
| 245 |  | 
|---|
| 246 | // -------------------------------------------------------------------------- | 
|---|
| 247 | // | 
|---|
| 248 | // Do a range check an then calculate the integral from start-fRiseTime | 
|---|
| 249 | // to start+fFallTime. An extrapolation of 0.5 slices is allowed. | 
|---|
| 250 | // | 
|---|
| 251 | Float_t MExtralgoSpline::CalcIntegral(Float_t pos) const | 
|---|
| 252 | { | 
|---|
| 253 | // We allow extrapolation of 1/2 slice. | 
|---|
| 254 | const Float_t min = fRiseTime;        //-0.5+fRiseTime; | 
|---|
| 255 | const Float_t max = fNum-1-fFallTime; //fNum-0.5+fFallTime; | 
|---|
| 256 |  | 
|---|
| 257 | if (pos<min) | 
|---|
| 258 | pos = min; | 
|---|
| 259 | if (pos>max) | 
|---|
| 260 | pos = max; | 
|---|
| 261 |  | 
|---|
| 262 | return EvalInteg(pos-fRiseTime, pos+fFallTime); | 
|---|
| 263 | } | 
|---|
| 264 |  | 
|---|
| 265 | MArrayF MExtralgoSpline::GetIntegral(bool norm) const | 
|---|
| 266 | { | 
|---|
| 267 | MArrayF val(fNum); | 
|---|
| 268 |  | 
|---|
| 269 | //val[0] = 0; | 
|---|
| 270 |  | 
|---|
| 271 | Double_t integ = 0; | 
|---|
| 272 | for (int i=0; i<fNum-1; i++) | 
|---|
| 273 | { | 
|---|
| 274 | integ += EvalInteg(i); | 
|---|
| 275 |  | 
|---|
| 276 | val[i+1] = integ; | 
|---|
| 277 | } | 
|---|
| 278 |  | 
|---|
| 279 | if (norm) | 
|---|
| 280 | for (int i=0; i<fNum-1; i++) | 
|---|
| 281 | val[i+1] /= val[fNum-1]; | 
|---|
| 282 |  | 
|---|
| 283 | return val; | 
|---|
| 284 | } | 
|---|
| 285 |  | 
|---|
| 286 | Float_t MExtralgoSpline::ExtractNoise() | 
|---|
| 287 | { | 
|---|
| 288 | if (fNum<5) | 
|---|
| 289 | return 0; | 
|---|
| 290 |  | 
|---|
| 291 | if (!(fExtractionType&kIntegral)) | 
|---|
| 292 | { | 
|---|
| 293 | const Int_t   pos = gRandom->Integer(fNum-1); | 
|---|
| 294 | const Float_t nsx = gRandom->Uniform(); | 
|---|
| 295 | return Eval(pos, nsx); | 
|---|
| 296 | } | 
|---|
| 297 | else | 
|---|
| 298 | { | 
|---|
| 299 | const Float_t pos = gRandom->Uniform(fNum-1-fRiseTime-fFallTime)+fRiseTime; | 
|---|
| 300 | return CalcIntegral(pos); | 
|---|
| 301 | } | 
|---|
| 302 | } | 
|---|
| 303 |  | 
|---|
| 304 | void MExtralgoSpline::Extract(Int_t maxbin, Bool_t width) | 
|---|
| 305 | { | 
|---|
| 306 | fSignal    =  0; | 
|---|
| 307 | fTime      =  0; | 
|---|
| 308 | fWidth     =  0; | 
|---|
| 309 | fSignalDev = -1; | 
|---|
| 310 | fTimeDev   = -1; | 
|---|
| 311 | fWidthDev  = -1; | 
|---|
| 312 |  | 
|---|
| 313 | if (fNum<2) | 
|---|
| 314 | return; | 
|---|
| 315 |  | 
|---|
| 316 | Float_t maxpos; | 
|---|
| 317 | // FIXME: Check the default if no maximum found!!! | 
|---|
| 318 | GetMaxAroundI(maxbin, maxpos, fHeight); | 
|---|
| 319 |  | 
|---|
| 320 | // --- End NEW --- | 
|---|
| 321 |  | 
|---|
| 322 | if (fExtractionType&kIntegral) | 
|---|
| 323 | { | 
|---|
| 324 | fSignal    = CalcIntegral(maxpos); | 
|---|
| 325 | fSignalDev = 0;  // means: is valid | 
|---|
| 326 | } | 
|---|
| 327 | else | 
|---|
| 328 | { | 
|---|
| 329 | fSignal    = fHeight; | 
|---|
| 330 | fSignalDev = 0;  // means: is valid | 
|---|
| 331 | } | 
|---|
| 332 |  | 
|---|
| 333 | // Position of maximum | 
|---|
| 334 | if (((fExtractionType&kTimeRel) && fHeightTm<0) || (fExtractionType&kMaximum)) | 
|---|
| 335 | { | 
|---|
| 336 | fTime    = maxpos; | 
|---|
| 337 | fTimeDev = 0; | 
|---|
| 338 | return; | 
|---|
| 339 | } | 
|---|
| 340 |  | 
|---|
| 341 | // Position of fraction height or absolute height | 
|---|
| 342 | const Float_t h = (fExtractionType&kTimeRel) ? fHeight*fHeightTm : fHeightTm; | 
|---|
| 343 |  | 
|---|
| 344 | // Search downwards for fHeight/2 | 
|---|
| 345 | // By doing also a search upwards we could extract the pulse width | 
|---|
| 346 | fTime      = SearchYdn(maxpos, h); | 
|---|
| 347 | fTimeDev   = 0; | 
|---|
| 348 | if (width) | 
|---|
| 349 | { | 
|---|
| 350 | fWidth    = SearchYup(maxpos, h)-fTime; | 
|---|
| 351 | fWidthDev = 0; | 
|---|
| 352 | } | 
|---|
| 353 | } | 
|---|