/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz, 8/2002 ! Author(s): Wolfgang Wittek, 1/2002 ! ! Copyright: MAGIC Software Development, 2000-2008 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MHEffectiveOnTime // // Filling this you will get the effective on-time versus theta and // observation time. // // From this histogram the effective on-time is determined by a fit. // The result of the fit (see Fit()) and the fit-parameters (like chi^2) // are stored in corresponding histograms // // To determin the efective on time a poisson fit is done. For more details // please have a look into the source code of FitH() it should be simple // to understand. In this function a Delta-T distribution is fitted, while // Delta-T is the time between two consecutive events. // // The fit is done for projections of a 2D histogram in Theta and Delta T. // So you get the effective on time versus theta. // // To get the effective on-time versus time a histogram is filled with // the Delta-T distribution of a number of events set by SetNumEvents(). // The default is 12000 (roughly 1min at 200Hz) // // For each "time-bin" the histogram is fitted and the resulting effective // on-time is stored in the fHTimeEffOn histogram. Each entry in this // histogram is the effective observation time between the upper and // lower edges of the bins. // // In addition the calculated effective on time is stored in a // "MEffectiveOnTime [MParameterDerr]" and the corresponding time-stamp // (the upper edge of the bin) "MTimeEffectiveOnTime [MTime]" // // The class takes two binnings from the Parameter list; if these binnings // are not available the defaultbinning is used: // MBinning("BinningDeltaT"); // Units of seconds // MBinning("BinningTheta"); // Units of degrees // // // Usage: // ------ // MFillH fill("MHEffectiveOnTime", "MTime"); // tlist.AddToList(&fill); // // // Input Container: // MPointingPos // MRawRunHeader // MTime // // Output Container: // MEffectiveOnTime [MParameterDerr] // MTimeEffectiveOnTime [MTime] // // // Class version 2: // ---------------- // + UInt_t fFirstBin; // + UInt_t fNumEvents; // - Int_t fNumEvents; // // Class version 3: // ---------------- // + Double_t fTotalTime; // // Class version 4: // ---------------- // + Double_t fEffOnTime; //[s] On time as fitted from the DeltaT distribution // + Double_t fEffOnTimeErr; //[s] On time error as fitted from the DeltaT distribution // // ========================================================================== // Dear Colleagues, // // for the case that we are taking calibration events interleaved with // cosmics events the calculation of the effective observation time has to // be modified. I have summarized the proposed procedures in the note at the // end of this message. The formulas have been checked by a simulation. // // Comments are welcome. // // Regards, Wolfgang // -------------------------------------------------------------------------- // Wolfgang Wittek // 2 Dec. 2004 // // Calculation of the effective observation time when cosmics and calibration // events are taken simultaneously. // -------------------------------- // // I. Introduction // --------------- // It is planned to take light calibration events (at a certain fixed frequency // lambda_calib) interlaced with cosmics events. The advantages of this // procedure are : // // - the pedestals, which would be determined from the cosmics, could be // used for both the calibration and the cosmics events // // - because calibration and cosmics events are taken quasi simultaneously, // rapid variations (in the order of a few minutes) of base lines and of the // photon/ADC conversion factors could be recognized and taken into account // // The effective observation time T_eff is defined as that time range, within // which the recorded number of events N_cosmics would be obtained under ideal // conditions (only cosmics, no dead time, no calibration events, ...). // // In the absence of calibration events the effective observation time can // be determined from the distribution of time differences 'dt' between // successive cosmics events (see first figure in the attached ps file). // The exponential slope 'lambda' of this distribution is the ideal cosmics // event rate. If 'N_cosmics' is the total number of recorded cosmics events, // T_eff is obtained by // // T_eff = N_cosmics / lambda // // In the case of a finite dead time 'dead', the distribution (for dt > dead) is // still exponential with the same slope 'lambda'. 'lambda' should be determined // in a region of 'dt' which is not affected by the dead time, i.e. at not too // low 'dt'. // // // // II. Problems in the presence of calibration events // -------------------------------------------------- // If calibration events are taken interlaced with cosmics, and if the dead time // is negligible, the distribution of time differences 'dt' between cosmics can // be used for calculating the effective observation time, as if the calibration // events were not present. // // In the case of a non-negligible dead time 'dead', however, the distribution of // time differences between cosmics is distorted, because a cosmics event may be // lost due to the dead time after a calibration event. Even if the time // intervals are ignored which contain a calibration event, // // // ---|---------o--------|---------> t // // cosmics calib cosmics // // <----------------> <==== time interval to be ignored // // // the distribution of 'dt' is still distorted, because there would be no // 'dt' with dt > tau_calib = 1/lambda_calib. The distribution would also be // distorted in the region dt < tau_calib, due to calibration events occuring // shortly after cosmics events. As a result, the slope of the distribution of // 'dt' would not reflect the ideal cosmics event rate (see second figure; the // values assumed in the simulation are lambda = 200 Hz, lambda_calib = 50 // Hz, dead = 0.001 sec, total time = 500 sec, number of generated cosmics // events = 100 000). // // // Note also that some calibration events will not be recorded due to the dead // time after a cosmics event. // // // III. Proposed procedures // ------------------------ // // A) The ideal event rate 'lambda' may be calculated from the distribution of // the time difference 'dt_first' between a calibration event and the first // recorded cosmics event after the calibration event. In the region // // dead < dt_first < tau_calib // // the probability distribution of dt_first is given by // // p(dt_first) = c * exp(-lambda*dt_first) // // where c is a normalization constant. 'lambda' can be obtained by a simple // exponential fit to the experimental distribution of dt_first (see third // figure). The fit range should start well above the average value of the dead // time 'dead'. // // // B) One may consider those time intervals between recorded cosmics events, which // are completely contained in the region // // t_calib < t < t_calib + tau_calib // // where t_calib is the time of a recorded calibration event. // // // <--------------- tau_calib -----------> // // // 0 1 2 3 4 5 6 7 8 9 10 // --|-o---|-|---|--|-|----|--|---|---|-|----o-|---|-|---------> t // ^ ^ // | | // t_calib t_calib + tau_calib // // // In this example, of the time intervals 0 to 10 only the intervals 1 to 9 // should be retained and plotted. The distribution of the length 'dt' of these // intervals in the region // // dead < dt < tau_calib // // is given by // // p(dt) = c * (tau_calib-dt-dead) * exp(-lambda*dt) // // A fit of this expression to the experimental distribution of 'dt' yields // 'lambda' (see fourth figure). For 'dead' an average value of the dead time // should be chosen, and the fit range should end well before dt = tau_calib-dead. // // // Method A has the advantage that the p(dt_first) does not depend on 'dead'. // 'dead' has to be considered when defining the fit range, both in method A and // in method B. In method B the event statistics is larger leading to a smaller // fitted error of 'lambda' than method A (see the figures). // // // The effective observation time is again obtained by // // T_eff = N_cosmics / lambda // // where N_cosmics is the total number of recorded cosmics events. Note that // N_cosmics is equal to // // N_cosmics = N_tot - N_calib // // where N_tot is the total number of recorded events (including the calibration // events) and N_calib is the number of recorded calibration events. // // Note that if time intervals are discarded for the determination of lambda, // the corresponding cosmics events need not and should not be discarded. // // // IV. Procedure if the calibration events are taken in bunches // ------------------------------------------------------------ // In November 2004 the rate of calibration events is not constant. The events // are taken in 200 Hz bunches every second, such that the rate is 200 Hz for // 0.25 sec, followed by a gap of 0.75 sec. Then follows the next 200 Hz bunch. // // In this case it is proposed to consider for the calculation of 'lambda' only // the cosmics events within the gaps of 0.75 sec. For these cosmics events one // of the methods described in III. can be applied. // // // V. Alternative pocedure // ----------------------- // The effective observation time can also be determined from the total // observation time and the total dead time. The latter is written out by the DAQ. // In this case it has to be made sure that the dead time is available in Mars // when the effective observation time is calculated. // ////////////////////////////////////////////////////////////////////////////// #include "MHEffectiveOnTime.h" #include #include #include #include #include #include #include #include "MTime.h" #include "MString.h" #include "MParameters.h" #include "MPointingPos.h" #include "MRawRunHeader.h" #include "MBinning.h" #include "MParList.h" #include "MLog.h" #include "MLogManip.h" ClassImp(MHEffectiveOnTime); using namespace std; // -------------------------------------------------------------------------- // // Default Constructor. It initializes all histograms. // MHEffectiveOnTime::MHEffectiveOnTime(const char *name, const char *title) : fPointPos(0), fTime(0), fParam(0), fIsFinalized(kFALSE), fNumEvents(200*60), fFirstBin(3), fTotalTime(-1), fEffOnTime(-1), fEffOnTimeErr(0) //fNumEvents(2*60), fFirstBin(1) { // // set the name and title of this object // fName = name ? name : "MHEffectiveOnTime"; fTitle = title ? title : "Histogram to determin effective On-Time vs Time and Zenith Angle"; // Main histogram fH2DeltaT.SetName("DeltaT"); fH2DeltaT.SetXTitle("\\Delta t [s]"); fH2DeltaT.SetYTitle("\\Theta [#circ]"); fH2DeltaT.SetZTitle("Count"); fH2DeltaT.UseCurrentStyle(); fH2DeltaT.SetDirectory(NULL); // Main histogram fH1DeltaT.SetName("DeltaT"); fH1DeltaT.SetXTitle("\\Delta t [s]"); fH1DeltaT.SetYTitle("Counts"); fH1DeltaT.UseCurrentStyle(); fH1DeltaT.SetDirectory(NULL); // effective on time versus theta fHThetaEffOn.SetName("EffOnTheta"); fHThetaEffOn.SetTitle("Effective On Time T_{eff}"); fHThetaEffOn.SetXTitle("\\Theta [#circ]"); fHThetaEffOn.SetYTitle("T_{eff} [s]"); fHThetaEffOn.UseCurrentStyle(); fHThetaEffOn.SetDirectory(NULL); fHThetaEffOn.GetYaxis()->SetTitleOffset(1.2); fHThetaEffOn.GetYaxis()->SetTitleColor(kBlue); fHThetaEffOn.SetLineColor(kBlue); //fHEffOn.Sumw2(); // effective on time versus time fHTimeEffOn.SetName("EffOnTime"); fHTimeEffOn.SetTitle("Effective On Time T_{eff}"); fHTimeEffOn.SetXTitle("Time"); fHTimeEffOn.SetYTitle("T_{eff} [s]"); fHTimeEffOn.UseCurrentStyle(); fHTimeEffOn.SetDirectory(NULL); fHTimeEffOn.GetYaxis()->SetTitleOffset(1.2); fHTimeEffOn.GetXaxis()->SetLabelSize(0.033); fHTimeEffOn.GetXaxis()->SetTimeFormat("%H:%M:%S %F1995-01-01 00:00:00 GMT"); fHTimeEffOn.GetXaxis()->SetTimeDisplay(1); fHTimeEffOn.GetYaxis()->SetTitleColor(kBlue); fHTimeEffOn.SetLineColor(kBlue); // chi2 probability fHThetaProb.SetName("ProbTheta"); fHThetaProb.SetTitle("\\chi^{2} Probability of Fit"); fHThetaProb.SetXTitle("\\Theta [#circ]"); fHThetaProb.SetYTitle("p [%]"); fHThetaProb.UseCurrentStyle(); fHThetaProb.SetDirectory(NULL); fHThetaProb.GetYaxis()->SetTitleOffset(1.2); fHThetaProb.SetMaximum(101); fHThetaProb.GetYaxis()->SetTitleColor(kBlue); fHThetaProb.SetLineColor(kBlue); // chi2 probability fHTimeProb.SetName("ProbTime"); fHTimeProb.SetTitle("\\chi^{2} Probability of Fit"); fHTimeProb.SetXTitle("Time"); fHTimeProb.SetYTitle("p [%]"); fHTimeProb.UseCurrentStyle(); fHTimeProb.SetDirectory(NULL); fHTimeProb.GetYaxis()->SetTitleOffset(1.2); fHTimeProb.GetXaxis()->SetLabelSize(0.033); fHTimeProb.GetXaxis()->SetTimeFormat("%H:%M:%S %F1995-01-01 00:00:00 GMT"); fHTimeProb.GetXaxis()->SetTimeDisplay(1); fHTimeProb.SetMaximum(101); fHTimeProb.GetYaxis()->SetTitleColor(kBlue); fHTimeProb.SetLineColor(kBlue); // lambda versus theta fHThetaLambda.SetName("LambdaTheta"); fHThetaLambda.SetTitle("Slope (Rate) vs Theta"); fHThetaLambda.SetXTitle("\\Theta [#circ]"); fHThetaLambda.SetYTitle("\\lambda [s^{-1}]"); fHThetaLambda.UseCurrentStyle(); fHThetaLambda.SetDirectory(NULL); fHThetaLambda.SetLineColor(kGreen); // lambda versus time fHTimeLambda.SetName("LambdaTime"); fHTimeLambda.SetTitle("Slope (Rate) vs Time"); fHTimeLambda.SetXTitle("\\Time [#circ]"); fHTimeLambda.SetYTitle("\\lambda [s^{-1}]"); fHTimeLambda.UseCurrentStyle(); fHTimeLambda.SetDirectory(NULL); fHTimeLambda.GetYaxis()->SetTitleOffset(1.2); fHTimeLambda.GetXaxis()->SetLabelSize(0.033); fHTimeLambda.GetXaxis()->SetTimeFormat("%H:%M:%S %F1995-01-01 00:00:00 GMT"); fHTimeLambda.GetXaxis()->SetTimeDisplay(1); fHTimeLambda.SetLineColor(kGreen); // NDoF versus theta fHThetaNDF.SetName("NDofTheta"); fHThetaNDF.SetTitle("Number of Degrees of freedom vs Theta"); fHThetaNDF.SetXTitle("\\Theta [#circ]"); fHThetaNDF.SetYTitle("NDoF [#]"); fHThetaNDF.UseCurrentStyle(); fHThetaNDF.SetDirectory(NULL); fHThetaNDF.SetLineColor(kGreen); // NDoF versus time /* fHTimeNDF.SetName("NDofTime"); fHTimeNDF.SetTitle("Number of Degrees of freedom vs Time"); fHTimeNDF.SetXTitle("Time"); fHTimeNDF.SetYTitle("NDoF [#]"); fHTimeNDF.UseCurrentStyle(); fHTimeNDF.SetDirectory(NULL); fHTimeNDF.GetYaxis()->SetTitleOffset(1.2); fHTimeNDF.GetXaxis()->SetLabelSize(0.033); fHTimeNDF.GetXaxis()->SetTimeFormat("%H:%M:%S %F1995-01-01 00:00:00 GMT"); fHTimeNDF.GetXaxis()->SetTimeDisplay(1); fHTimeNDF.SetLineColor(kBlue); */ // setup binning MBinning btheta("BinningTheta"); btheta.SetEdgesASin(67, -0.005, 0.665); MBinning btime("BinningDeltaT"); btime.SetEdges(50, 0, 0.1); MH::SetBinning(fH2DeltaT, btime, btheta); btime.Apply(fH1DeltaT); btheta.Apply(fHThetaEffOn); btheta.Apply(fHThetaLambda); btheta.Apply(fHThetaNDF); btheta.Apply(fHThetaProb); //btheta.Apply(fHChi2); } // -------------------------------------------------------------------------- // // Set the binnings and prepare the filling of the histogram // Bool_t MHEffectiveOnTime::SetupFill(const MParList *plist) { fPointPos = (MPointingPos*)plist->FindObject("MPointingPos"); if (!fPointPos) { *fLog << err << dbginf << "MPointingPos not found... aborting." << endl; return kFALSE; } // FIXME: Remove const-qualifier from base-class! fTime = (MTime*)const_cast(plist)->FindCreateObj("MTime", "MTimeEffectiveOnTime"); if (!fTime) return kFALSE; fParam = (MParameterDerr*)const_cast(plist)->FindCreateObj("MParameterDerr", "MEffectiveOnTime"); if (!fParam) return kFALSE; const MBinning* binsdtime = (MBinning*)plist->FindObject("BinningDeltaT"); const MBinning* binstheta = (MBinning*)plist->FindObject("BinningTheta"); if (binsdtime) binsdtime->Apply(fH1DeltaT); if (binstheta) { binstheta->Apply(fHThetaEffOn); binstheta->Apply(fHThetaLambda); binstheta->Apply(fHThetaNDF); binstheta->Apply(fHThetaProb); //binstheta->Apply(fHChi2); } if (binstheta && binsdtime) SetBinning(fH2DeltaT, *binsdtime, *binstheta); fTotalTime = 0; fEffOnTime = -1; fEffOnTimeErr = 0; return kTRUE; } Bool_t MHEffectiveOnTime::ReInit(MParList *pList) { MRawRunHeader *header = (MRawRunHeader*)pList->FindObject("MRawRunHeader"); if (!header) { *fLog << err << "MRawRunHeader not found... aborting." << endl; return kFALSE; } fTotalTime += header->GetRunLength(); return kTRUE; } // -------------------------------------------------------------------------- // // Fit a single Delta-T distribution. See source code for more details // Bool_t MHEffectiveOnTime::FitH(TH1D *h, Double_t *res, Bool_t paint) const { // Count also events in under-/overflowbins const Double_t Nm = h->Integral(0, h->GetNbinsX()+1); // FIXME: Do fit only if contents of bin has changed if (Nm<=0 || h->GetBinContent(1)<=0) return kFALSE; // determine range (yq[0], yq[1]) of time differences // where fit should be performed; // require a fraction >=xq[0] of all entries to lie below yq[0] // and a fraction <=xq[1] of all entries to lie below yq[1]; // within the range (yq[0], yq[1]) there must be no empty bin; // choose pedestrian approach as long as GetQuantiles is not available Double_t xq[2] = { 0.6, 0.95 }; // previously 0.99 Double_t yq[2]; h->GetQuantiles(2, yq, xq); // // Determine a good starting value for the slope // const TAxis &axe = *h->GetXaxis(); const UInt_t ibin = axe.FindFixBin(yq[1]); const Double_t x1 = axe.GetBinCenter(ibin<=fFirstBin?fFirstBin+1:ibin); const Double_t x0 = axe.GetBinCenter(fFirstBin); const Double_t y1 = h->GetBinContent(ibin)>1 ? TMath::Log(h->GetBinContent(ibin)) : 0; const Double_t y0 = TMath::Log(h->GetBinContent(fFirstBin)); // Estimated slope const Float_t m = -(y1-y0)/(x1-x0); // // Setup exponential function for the fit: // // parameter 0 = rate [Hz] // parameter 1 = normalization // TF1 func("Exp", " exp([1]-[0]*x)"); func.SetParameter(0, m); // Hz func.SetParameter(1, log(h->GetBinContent(1))); // Hz // We set a limit to make sure that almost empty histograms which // are fitted dont't produce hang ups or crashes func.SetParLimits(0, 0, 15000); // Hz // options : N do not store the function, do not draw // I use integral of function in bin rather than value at bin center // R use the range specified in the function range // Q quiet mode // L Use log-likelihood (better for low statistics) h->Fit(&func, "NIQEL", "", h->GetBinLowEdge(fFirstBin)/*yq[0]*/, yq[1]); const Double_t chi2 = func.GetChisquare(); const Double_t prob = func.GetProb(); const Int_t NDF = func.GetNDF(); // was fit successful ? const Bool_t ok = prob>0.001; //NDF>0 && chi2<3*NDF; if (paint) { func.SetLineWidth(2); func.SetLineColor(ok ? kGreen : kRed); func.Paint("same"); } // The effective on time is the "real rate" (slope of the exponential) // divided by the total number of events (histogram integral including // under- and overflows) const Double_t lambda = func.GetParameter(0); const Double_t dldl = func.GetParError(0)*func.GetParError(0); const Double_t teff = lambda==0 ? 0 : Nm / lambda; const Double_t dteff = lambda==0 ? 0 : teff * TMath::Sqrt(dldl/(lambda*lambda) + 1.0/Nm); const Double_t dl = TMath::Sqrt(dldl); // the effective on time is Nm/lambda res[0] = teff; res[1] = dteff; // plot chi2-probability of fit res[2] = prob*100; // lambda of fit res[3] = lambda; res[4] = dl; // NDoF of fit res[5] = NDF; // Chi2 res[6] = chi2; return ok; } // -------------------------------------------------------------------------- // // Fit a all bins of the distribution in theta. Store the result in the // Theta-Histograms // void MHEffectiveOnTime::FitThetaBins() { fHThetaEffOn.Reset(); fHThetaProb.Reset(); fHThetaLambda.Reset(); fHThetaNDF.Reset(); // Use a random name to make sure the object is unique const TString name = MString::Format("CalcTheta%d", (UInt_t)gRandom->Uniform(999999999)); // nbins = number of Theta bins const Int_t nbins = fH2DeltaT.GetNbinsY(); TH1D *h=0; for (int i=1; i<=nbins; i++) { // TH1D &h = *hist->ProjectionX("Calc-theta", i, i); h = fH2DeltaT.ProjectionX(name, i, i, "E"); Double_t res[7] = {0, 0, 0, 0, 0, 0, 0}; //if (!FitH(h, res)) // continue; FitH(h, res); if (res[0]==0) continue; // the effective on time is Nm/lambda fHThetaEffOn.SetBinContent(i, res[0]); fHThetaEffOn.SetBinError (i, res[1]); // plot chi2-probability of fit fHThetaProb.SetBinContent(i, res[2]); // plot chi2/NDF of fit //fHChi2.SetBinContent(i, res[3]); // lambda of fit fHThetaLambda.SetBinContent(i, res[3]); fHThetaLambda.SetBinError (i, res[4]); // NDoF of fit fHThetaNDF.SetBinContent(i, res[5]); // Rdead (from fit) is the fraction from real time lost by the dead time //fHRdead.SetBinContent(i, Rdead); //fHRdead.SetBinError (i,dRdead); } // Histogram is reused via gROOT->FindObject() // Need to be deleted only once if (h) delete h; } // -------------------------------------------------------------------------- // // Fit the single-time-bin histogram. Store the result in the // Time-Histograms // void MHEffectiveOnTime::FitTimeBin() { // // Fit histogram // Double_t res[7]; if (!FitH(&fH1DeltaT, res)) return; // Reset Histogram fH1DeltaT.Reset(); // // Prepare Histogram // // Get number of bins const Int_t n = fHTimeEffOn.GetNbinsX(); // Enhance binning MBinning bins; bins.SetEdges(fHTimeEffOn, 'x'); bins.AddEdge(fLastTime.GetAxisTime()); bins.Apply(fHTimeEffOn); bins.Apply(fHTimeProb); bins.Apply(fHTimeLambda); //bins.Apply(fHTimeNDF); // // Fill histogram // fHTimeEffOn.SetBinContent(n, res[0]); fHTimeEffOn.SetBinError(n, res[1]); fHTimeProb.SetBinContent(n, res[2]); fHTimeLambda.SetBinContent(n, res[3]); fHTimeLambda.SetBinError(n, res[4]); //fHTimeNDF.SetBinContent(n, res[5]); // // Now prepare output // fParam->SetVal(res[0], res[1]); fParam->SetReadyToSave(); *fTime = fLastTime; // Include the current event fTime->Plus1ns(); *fLog << inf2 << fLastTime << ": Val=" << res[0] << " Err=" << res[1] << endl; } // -------------------------------------------------------------------------- // // Fill the histogram // Int_t MHEffectiveOnTime::Fill(const MParContainer *par, const Stat_t w) { const MTime *time = dynamic_cast(par); if (!time) { *fLog << err << "ERROR - MHEffectiveOnTime::Fill without argument or container doesn't inherit from MTime... abort." << endl; return kERROR; } // // If this is the first call we have to initialize the time-histogram // if (fLastTime==MTime()) { MBinning bins; bins.SetEdges(1, time->GetAxisTime()-fNumEvents/200, time->GetAxisTime()); bins.Apply(fHTimeEffOn); bins.Apply(fHTimeProb); bins.Apply(fHTimeLambda); //bins.Apply(fHTimeNDF); fParam->SetVal(0, 0); fParam->SetReadyToSave(); *fTime = *time; // Make this 1ns before the first event! fTime->Minus1ns(); } // // Fill time difference into the histograms // const Double_t dt = *time-fLastTime; fLastTime = *time; fH2DeltaT.Fill(dt, fPointPos->GetZd(), w); fH1DeltaT.Fill(dt, w); // // If we reached the event number limit for the time-bins fit the // histogram - if it fails try again when 1.6% more events available // const UInt_t n = (UInt_t)fH1DeltaT.GetEntries(); if (n>=fNumEvents && n%(fNumEvents/60)==0) FitTimeBin(); return kTRUE; } // -------------------------------------------------------------------------- // // Fit the theta projections of the 2D histogram and the 1D Delta-T // distribution // Bool_t MHEffectiveOnTime::Finalize() { FitThetaBins(); FitTimeBin(); TH1D *h = fH2DeltaT.ProjectionX("FinalizeProjDeltaT", -1, -1, "E"); Double_t res[7]; if (FitH(h, res)) { fEffOnTime = res[0]; fEffOnTimeErr = res[1]; } delete h; fIsFinalized = kTRUE; return kTRUE; } // -------------------------------------------------------------------------- // // Paint the integral and the error on top of the histogram // void MHEffectiveOnTime::PaintText(Double_t val, Double_t error, Double_t range) const { TLatex text; text.SetBit(TLatex::kTextNDC); text.SetTextSize(0.04); TString txt = MString::Format("T_{eff} = %.1fs \\pm %.1fs", val, error); if (range>0) txt += MString::Format(" T_{axe} = %.1fs", range); if (fTotalTime>0) txt += MString::Format(" T_{max} = %.1fs", fTotalTime); text.SetText(0.35, 0.94, txt); text.Paint(); } void MHEffectiveOnTime::PaintText(Double_t *res) const { TLatex text(0.27, 0.94, MString::Format("T_{eff}=%.1fs\\pm%.1fs \\lambda=%.1f\\pm%.1fHz p=%.1f%% \\chi^{2}/%d=%.1f", res[0], res[1], res[3], res[4], res[2], (int)res[5], res[6]/res[5])); text.SetBit(TLatex::kTextNDC); text.SetTextSize(0.04); text.Paint(); } void MHEffectiveOnTime::PaintProb(TH1 &h) const { Double_t sum = 0; Int_t n = 0; for (int i=0; i0) { sum += h.GetBinContent(i+1); n++; } if (n==0) return; TLatex text(0.47, 0.94, MString::Format("\\bar{p} = %.1f%%", sum/n)); text.SetBit(TLatex::kTextNDC); text.SetTextSize(0.04); text.Paint(); } void MHEffectiveOnTime::UpdateRightAxis(TH1 &h) { const Double_t max = h.GetMaximum()*1.1; if (max==0) return; h.SetNormFactor(h.Integral()*gPad->GetUymax()/max); TGaxis *axis = (TGaxis*)gPad->FindObject("RightAxis"); if (!axis) return; axis->SetX1(gPad->GetUxmax()); axis->SetX2(gPad->GetUxmax()); axis->SetY1(gPad->GetUymin()); axis->SetY2(gPad->GetUymax()); axis->SetWmax(max); } // -------------------------------------------------------------------------- // // Prepare painting the histograms // void MHEffectiveOnTime::Paint(Option_t *opt) { TH1D *h=0; TPaveStats *st=0; TString o(opt); if (o==(TString)"fit") { TVirtualPad *pad = gPad; for (int x=0; x<2; x++) for (int y=0; y<3; y++) { TVirtualPad *p=gPad->GetPad(x+1)->GetPad(y+1); if (!(st = dynamic_cast(p->GetPrimitive("stats")))) continue; if (st->GetOptStat()==11) continue; const Double_t y1 = st->GetY1NDC(); const Double_t y2 = st->GetY2NDC(); const Double_t x1 = st->GetX1NDC(); const Double_t x2 = st->GetX2NDC(); st->SetY1NDC((y2-y1)/3+y1); st->SetX1NDC((x2-x1)/3+x1); st->SetOptStat(11); } pad->GetPad(1)->cd(1); if ((h = (TH1D*)gPad->FindObject("ProjDeltaT"/*fNameProjDeltaT*/))) { h = fH2DeltaT.ProjectionX("ProjDeltaT"/*fNameProjDeltaT*/, -1, -1, "E"); if (h->GetEntries()>0) gPad->SetLogy(); } pad->GetPad(2)->cd(1); if ((h = (TH1D*)gPad->FindObject("ProjTheta"/*fNameProjTheta*/))) fH2DeltaT.ProjectionY("ProjTheta"/*fNameProjTheta*/, -1, -1, "E"); if (!fIsFinalized) FitThetaBins(); return; } if (o==(TString)"paint") { if ((h = (TH1D*)gPad->FindObject("ProjDeltaT"/*fNameProjDeltaT*/))) { Double_t res[7]; if (FitH(h, res, kTRUE)) PaintText(res); } return; } if (o==(TString)"timendf") { // UpdateRightAxis(fHTimeNDF); // FIXME: first bin? PaintProb(fHTimeProb); } if (o==(TString)"thetandf") { UpdateRightAxis(fHThetaNDF); // FIXME: first bin? PaintProb(fHThetaProb); } h=0; Double_t range=-1; if (o==(TString)"theta") { h = &fHThetaEffOn; UpdateRightAxis(fHThetaLambda); } if (o==(TString)"time") { h = &fHTimeEffOn; UpdateRightAxis(fHTimeLambda); range = h->GetXaxis()->GetXmax() - h->GetXaxis()->GetXmin(); } if (!h) return; Double_t error = 0; for (int i=0; iGetXaxis()->GetNbins(); i++) error += h->GetBinError(i); PaintText(h->Integral(), error, range); } void MHEffectiveOnTime::DrawRightAxis(const char *title) { TGaxis *axis = new TGaxis(gPad->GetUxmax(), gPad->GetUymin(), gPad->GetUxmax(), gPad->GetUymax(), 0, 1, 510, "+L"); axis->SetName("RightAxis"); axis->SetTitle(title); axis->SetTitleOffset(0.9); axis->SetTextColor(kGreen); axis->CenterTitle(); axis->SetBit(kCanDelete); axis->Draw(); } // -------------------------------------------------------------------------- // // Draw the histogram // void MHEffectiveOnTime::Draw(Option_t *opt) { TVirtualPad *pad = gPad ? gPad : MakeDefCanvas(this); pad->SetBorderMode(0); AppendPad("fit"); pad->Divide(2, 1, 1e-10, 1e-10); TH1 *h; pad->cd(1); gPad->SetBorderMode(0); gPad->Divide(1, 3, 1e-10, 1e-10); pad->GetPad(1)->cd(1); gPad->SetBorderMode(0); h = fH2DeltaT.ProjectionX("ProjDeltaT"/*fNameProjDeltaT*/, -1, -1, "E"); h->SetTitle("Distribution of \\Delta t [s]"); h->SetXTitle("\\Delta t [s]"); h->SetYTitle("Counts"); h->SetDirectory(NULL); h->SetMarkerStyle(kFullDotMedium); h->SetBit(kCanDelete); h->Draw(); AppendPad("paint"); pad->GetPad(1)->cd(2); gPad->SetBorderMode(0); fHTimeProb.Draw(); AppendPad("timendf"); //fHTimeNDF.Draw("same"); //DrawRightAxis("NDF"); pad->GetPad(1)->cd(3); gPad->SetBorderMode(0); fHTimeEffOn.Draw(); AppendPad("time"); fHTimeLambda.Draw("same"); DrawRightAxis("\\lambda [s^{-1}]"); pad->cd(2); gPad->SetBorderMode(0); gPad->Divide(1, 3, 1e-10, 1e-10); pad->GetPad(2)->cd(1); gPad->SetBorderMode(0); h = fH2DeltaT.ProjectionY("ProjTheta"/*fNameProjTheta*/, -1, -1, "E"); h->SetTitle("Distribution of \\Theta [#circ]"); h->SetXTitle("\\Theta [#circ]"); h->SetYTitle("Counts"); h->SetDirectory(NULL); h->SetMarkerStyle(kFullDotMedium); h->SetBit(kCanDelete); h->GetYaxis()->SetTitleOffset(1.1); h->Draw(); pad->GetPad(2)->cd(2); gPad->SetBorderMode(0); fHThetaProb.Draw(); AppendPad("thetandf"); fHThetaNDF.Draw("same"); DrawRightAxis("NDF"); pad->GetPad(2)->cd(3); gPad->SetBorderMode(0); fHThetaEffOn.Draw(); AppendPad("theta"); fHThetaLambda.Draw("same"); DrawRightAxis("\\lambda [s^{-1}]"); } // -------------------------------------------------------------------------- // // The following resources are available: // // MHEffectiveOnTime.FistBin: 3 // MHEffectiveOnTime.NumEvents: 12000 // Int_t MHEffectiveOnTime::ReadEnv(const TEnv &env, TString prefix, Bool_t print) { Bool_t rc = kFALSE; if (IsEnvDefined(env, prefix, "FirstBin", print)) { rc = kTRUE; SetFirstBin(GetEnvValue(env, prefix, "FirstBin", (Int_t)fFirstBin)); } if (IsEnvDefined(env, prefix, "NumEvents", print)) { rc = kTRUE; SetNumEvents(GetEnvValue(env, prefix, "NumEvents", (Int_t)fNumEvents)); } return rc; }