1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz 08/2010 <mailto:thomas.bretz@epfl.ch>
|
---|
19 | !
|
---|
20 | ! Copyright: MAGIC Software Development, 2010
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | /////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MJTrainCuts
|
---|
28 | // =========
|
---|
29 | //
|
---|
30 | // This class is meant as a tool to understand better what a trained
|
---|
31 | // random forest is doing in the multi-dimensional phase space.
|
---|
32 | // Consequently, it can also be used to deduce good one or two dimensional
|
---|
33 | // cuts from the results by mimicing the behaviour of the random forest.
|
---|
34 | //
|
---|
35 | //
|
---|
36 | // Usage
|
---|
37 | // -----
|
---|
38 | //
|
---|
39 | // The instance is created by its default constructor
|
---|
40 | //
|
---|
41 | // MJTrainCuts opt;
|
---|
42 | //
|
---|
43 | // In a first step a random forest must be trained and in a second step its
|
---|
44 | // performance can be evaluated with an independent test sample. The used
|
---|
45 | // samples are defined by two MDataSet objects, one for the on-data (e.g.
|
---|
46 | // gammas) and the other one for the off-data (e.g. protons). SequencesOn
|
---|
47 | // and SequencesOff are used for testing and training respectively.
|
---|
48 | //
|
---|
49 | // MDataSet seton ("myondata.txt");
|
---|
50 | // MDataSet setoff("myoffdata.txt");
|
---|
51 | //
|
---|
52 | // // If you want to use all available events
|
---|
53 | // opt.SetDataSetOn(seton);
|
---|
54 | // opt.SetDataSetOff(setoff);
|
---|
55 | //
|
---|
56 | // // Try to select 10000 and 30000 events for training and testing resp.
|
---|
57 | // // opt.SetDataSetOn(seton, 10000, 30000);
|
---|
58 | // // opt.SetDataSetOff(setoff, 10000, 30000);
|
---|
59 | //
|
---|
60 | // Note that by using several data set in one file (see MDataSet) you can
|
---|
61 | // have everything in a single file.
|
---|
62 | //
|
---|
63 | // The variables which are used for training are now setup as usual
|
---|
64 | //
|
---|
65 | // Int_t p1 = opt.AddParameter("MHillas.fSize");
|
---|
66 | // Int_t p2 = opt.AddParameter("MHillas.GetArea*MGeomCam.fConvMm2Deg^2");
|
---|
67 | // Int_t p3 = opt.AddParameter("MHillasSrc.fDist*MGeomCam.fConvMm2Deg");
|
---|
68 | //
|
---|
69 | // In addition you can now setup a binning for the display of each train
|
---|
70 | // parameter as follows (for details see MBinning)
|
---|
71 | //
|
---|
72 | // opt.AddBinning(p1, MBinning(40, 10, 10000, "", "log"));
|
---|
73 | // opt.AddBinning(p2, MBinning(50, 0, 0.25));
|
---|
74 | // opt.AddBinning(p3, MBinning(50, 0, 2.5));
|
---|
75 | //
|
---|
76 | // Since with increasing number of variables the possibly combinations
|
---|
77 | // increase to fast you have to define which plots you are interested in,
|
---|
78 | // for example:
|
---|
79 | //
|
---|
80 | // opt.AddHist(p3); // A 1D plot dist
|
---|
81 | // opt.AddHist(p1, p2); // A 2D plot area vs. size
|
---|
82 | // opt.AddHist(p3, p2); // A 2D plot dist vs. size
|
---|
83 | //
|
---|
84 | // Also 3D plots are avaiable but they are most probably difficult to
|
---|
85 | // interprete.
|
---|
86 | //
|
---|
87 | // In addition to this you have the usual user interface, i.e. that
|
---|
88 | // - PreCuts
|
---|
89 | // - TrainCuts
|
---|
90 | // - TestCuts
|
---|
91 | // - PreTasks
|
---|
92 | // - PostTasks
|
---|
93 | // - TestTasks
|
---|
94 | // are available. For details see MJOptimizeBase
|
---|
95 | //
|
---|
96 | // void EnableRegression() / void EnableClassification()
|
---|
97 | // Defines whether to use the random forest's regression of
|
---|
98 | // classification method. Classification is the default.
|
---|
99 | //
|
---|
100 | //
|
---|
101 | // The produced plots
|
---|
102 | // ------------------
|
---|
103 | //
|
---|
104 | // The tab with the plots filled will always look like this:
|
---|
105 | //
|
---|
106 | // +--------+--------+
|
---|
107 | // |1 |2 |
|
---|
108 | // +--------+--------|
|
---|
109 | // |3 |4 |
|
---|
110 | // +--------+ |
|
---|
111 | // |5 | |
|
---|
112 | // +--------+--------+
|
---|
113 | //
|
---|
114 | // Pad1 and Pad2 contain the weighted event distribution of the test-sample.
|
---|
115 | //
|
---|
116 | // Pad2 and Pad5 conatin a profile of the hadronness distribution of the
|
---|
117 | // test-sample.
|
---|
118 | //
|
---|
119 | // Pad4 contains a profile of the hadronness distribution of on-data and
|
---|
120 | // off-data together of the test-data.
|
---|
121 | //
|
---|
122 | // If the profiles for on-data and off-data are identical the displayed
|
---|
123 | // hadronness is obviously independant of the other (non shown) trainings
|
---|
124 | // variables. Therefore the difference between the two plots show how much
|
---|
125 | // the variables are correlated. The same is true if the prfiles in
|
---|
126 | // pad3 and pad5 don't differe from the profile in pad4.
|
---|
127 | //
|
---|
128 | // In the most simple case - the random forest is only trained with the
|
---|
129 | // variables displayed - all three plots should be identical (apart from the
|
---|
130 | // difference in the distrubution of the three sets).
|
---|
131 | //
|
---|
132 | // The plot in pad4 can now be used to deduce a good classical cut in the
|
---|
133 | // displayed variables.
|
---|
134 | //
|
---|
135 | ////////////////////////////////////////////////////////////////////////////
|
---|
136 | #include "MJTrainCuts.h"
|
---|
137 |
|
---|
138 | #include <TGraph.h>
|
---|
139 | #include <TMarker.h>
|
---|
140 | #include <TCanvas.h>
|
---|
141 | #include <TPRegexp.h>
|
---|
142 | #include <TStopwatch.h>
|
---|
143 |
|
---|
144 | #include "MHMatrix.h"
|
---|
145 |
|
---|
146 | #include "MLog.h"
|
---|
147 | #include "MLogManip.h"
|
---|
148 |
|
---|
149 | // tools
|
---|
150 | #include "MMath.h"
|
---|
151 | #include "MBinning.h"
|
---|
152 | #include "MTFillMatrix.h"
|
---|
153 | #include "MStatusDisplay.h"
|
---|
154 |
|
---|
155 | // eventloop
|
---|
156 | #include "MParList.h"
|
---|
157 | #include "MTaskList.h"
|
---|
158 | #include "MEvtLoop.h"
|
---|
159 |
|
---|
160 | // tasks
|
---|
161 | #include "MReadMarsFile.h"
|
---|
162 | #include "MContinue.h"
|
---|
163 | #include "MFillH.h"
|
---|
164 | #include "MRanForestCalc.h"
|
---|
165 |
|
---|
166 | // container
|
---|
167 | #include "MParameters.h"
|
---|
168 |
|
---|
169 | // histograms
|
---|
170 | #include "MHn.h"
|
---|
171 | #include "MHHadronness.h"
|
---|
172 |
|
---|
173 | // filter
|
---|
174 | #include "MFEventSelector.h"
|
---|
175 | #include "MFilterList.h"
|
---|
176 |
|
---|
177 | using namespace std;
|
---|
178 |
|
---|
179 | class HistSet1D : public TObject
|
---|
180 | {
|
---|
181 | protected:
|
---|
182 | UInt_t fNx;
|
---|
183 |
|
---|
184 | virtual void AddHist(MHn &h, const char *rx, const char *, const char *) const
|
---|
185 | {
|
---|
186 | h.AddHist(rx);
|
---|
187 | }
|
---|
188 | virtual void AddProf(MHn &h, const char *rx, const char *, const char *) const
|
---|
189 | {
|
---|
190 | h.AddHist(rx, "MHadronness.fVal", MH3::kProfileSpread);
|
---|
191 | }
|
---|
192 | virtual void SetupName(MHn &h, const char *name) const
|
---|
193 | {
|
---|
194 | h.InitName(Form("%s%d;%d", name, fNx, fNx));
|
---|
195 | }
|
---|
196 | void SetupHist(MHn &h, const char *name, const char *title) const
|
---|
197 | {
|
---|
198 | SetupName(h, name);
|
---|
199 |
|
---|
200 | h.SetAutoRange(kFALSE, kFALSE, kFALSE);
|
---|
201 | h.InitTitle(title);
|
---|
202 | h.SetDrawOption("colz");
|
---|
203 | }
|
---|
204 |
|
---|
205 | void CreateHist(MHn &h, const char *rx, const char *ry=0, const char *rz=0) const
|
---|
206 | {
|
---|
207 | h.SetLayout(MHn::kComplex);
|
---|
208 | h.SetBit(MHn::kDoNotReset);
|
---|
209 |
|
---|
210 | AddHist(h, rx, ry, rz);
|
---|
211 | SetupHist(h, "DistOn", "Distribution of on-data");
|
---|
212 | h.SetWeight("Type.fVal");
|
---|
213 |
|
---|
214 | AddHist(h, rx, ry, rz);
|
---|
215 | SetupHist(h, "DistOff", "Distribution of off-data");
|
---|
216 | h.SetWeight("1-Type.fVal");
|
---|
217 |
|
---|
218 | AddProf(h, rx, ry, rz);
|
---|
219 | SetupHist(h, "HadOn", "Hadronness profile for on-data");
|
---|
220 | h.SetWeight("Type.fVal");
|
---|
221 |
|
---|
222 | AddProf(h, rx, ry, rz);
|
---|
223 | SetupHist(h, "Had", "Hadronness profile for all events");
|
---|
224 |
|
---|
225 | AddProf(h, rx, ry, rz);
|
---|
226 | SetupHist(h, "HadOff", "Hadronness profile for off-data");
|
---|
227 | h.SetWeight("1-Type.fVal");
|
---|
228 | }
|
---|
229 |
|
---|
230 |
|
---|
231 | public:
|
---|
232 | HistSet1D(UInt_t nx) : fNx(nx) { }
|
---|
233 |
|
---|
234 | virtual MHn *GetHistN(const TList &rules) const
|
---|
235 | {
|
---|
236 | if (!rules.At(fNx))
|
---|
237 | return 0;
|
---|
238 |
|
---|
239 | MHn *h = new MHn(Form("%d", fNx));
|
---|
240 |
|
---|
241 | CreateHist(*h, rules.At(fNx)->GetName());
|
---|
242 |
|
---|
243 | return h;
|
---|
244 | }
|
---|
245 |
|
---|
246 | virtual Bool_t CheckBinning(const TObjArray &binnings) const
|
---|
247 | {
|
---|
248 | return binnings.FindObject(Form("Binning%d", fNx));
|
---|
249 | }
|
---|
250 | };
|
---|
251 |
|
---|
252 | class HistSet2D : public HistSet1D
|
---|
253 | {
|
---|
254 | protected:
|
---|
255 | UInt_t fNy;
|
---|
256 |
|
---|
257 | void AddHist(MHn &h, const char *rx, const char *ry, const char *) const
|
---|
258 | {
|
---|
259 | h.AddHist(rx, ry);
|
---|
260 | }
|
---|
261 | void AddProf(MHn &h, const char *rx, const char *ry, const char *) const
|
---|
262 | {
|
---|
263 | h.AddHist(rx, ry, "MHadronness.fVal", MH3::kProfileSpread);
|
---|
264 | }
|
---|
265 | void SetupName(MHn &h, const char *name) const
|
---|
266 | {
|
---|
267 | h.InitName(Form("%s%d:%d;%d;%d", name, fNx, fNy, fNx, fNy));
|
---|
268 | }
|
---|
269 |
|
---|
270 | public:
|
---|
271 | HistSet2D(UInt_t nx, UInt_t ny) : HistSet1D(nx), fNy(ny) { }
|
---|
272 |
|
---|
273 | MHn *GetHistN(const TList &rules) const
|
---|
274 | {
|
---|
275 | if (!rules.At(fNx) || !rules.At(fNy))
|
---|
276 | return 0;
|
---|
277 |
|
---|
278 | MHn *h = new MHn(Form("%d:%d", fNx, fNy));
|
---|
279 |
|
---|
280 | CreateHist(*h, rules.At(fNx)->GetName(), rules.At(fNy)->GetName());
|
---|
281 |
|
---|
282 | return h;
|
---|
283 | }
|
---|
284 | Bool_t CheckBinning(const TObjArray &binnings) const
|
---|
285 | {
|
---|
286 | return HistSet1D::CheckBinning(binnings) && binnings.FindObject(Form("Binning%d", fNy));
|
---|
287 | }
|
---|
288 | };
|
---|
289 |
|
---|
290 |
|
---|
291 | class HistSet3D : public HistSet2D
|
---|
292 | {
|
---|
293 | private:
|
---|
294 | UInt_t fNz;
|
---|
295 |
|
---|
296 | void AddHist(MHn &h, const char *rx, const char *ry, const char *rz) const
|
---|
297 | {
|
---|
298 | h.AddHist(rx, ry, rz);
|
---|
299 | }
|
---|
300 | void AddProf(MHn &h, const char *rx, const char *ry, const char *rz) const
|
---|
301 | {
|
---|
302 | h.AddHist(rx, ry, rz, "MHadronness.fVal");
|
---|
303 | }
|
---|
304 | void SetupName(MHn &h, const char *name) const
|
---|
305 | {
|
---|
306 | h.InitName(Form("%s%d:%d:%d;%d;%d;%d", name, fNx, fNy, fNz, fNx, fNy, fNz));
|
---|
307 | }
|
---|
308 |
|
---|
309 | public:
|
---|
310 | HistSet3D(UInt_t nx, UInt_t ny, UInt_t nz) : HistSet2D(nx, ny), fNz(nz) { }
|
---|
311 |
|
---|
312 | MHn *GetHistN(const TList &rules) const
|
---|
313 | {
|
---|
314 | if (!rules.At(fNx) || !rules.At(fNy) || !rules.At(fNz))
|
---|
315 | return 0;
|
---|
316 |
|
---|
317 | MHn *h = new MHn(Form("%d:%d:%d", fNx, fNy, fNz));
|
---|
318 |
|
---|
319 | CreateHist(*h,
|
---|
320 | rules.At(fNx)->GetName(),
|
---|
321 | rules.At(fNy)->GetName(),
|
---|
322 | rules.At(fNy)->GetName());
|
---|
323 |
|
---|
324 | return h;
|
---|
325 | }
|
---|
326 | Bool_t CheckBinning(const TObjArray &binnings) const
|
---|
327 | {
|
---|
328 | return HistSet2D::CheckBinning(binnings) && binnings.FindObject(Form("Binning%d", fNz));
|
---|
329 | }
|
---|
330 | };
|
---|
331 |
|
---|
332 | // ---------------------------------------------------------------------------------------
|
---|
333 |
|
---|
334 | void MJTrainCuts::AddHist(UInt_t nx)
|
---|
335 | {
|
---|
336 | fHists.Add(new HistSet1D(nx));
|
---|
337 | }
|
---|
338 |
|
---|
339 | void MJTrainCuts::AddHist(UInt_t nx, UInt_t ny)
|
---|
340 | {
|
---|
341 | fHists.Add(new HistSet2D(nx, ny));
|
---|
342 | }
|
---|
343 |
|
---|
344 | void MJTrainCuts::AddHist(UInt_t nx, UInt_t ny, UInt_t nz)
|
---|
345 | {
|
---|
346 | fHists.Add(new HistSet3D(nx, ny, nz));
|
---|
347 | }
|
---|
348 |
|
---|
349 | void MJTrainCuts::AddBinning(UInt_t n, const MBinning &bins)
|
---|
350 | {
|
---|
351 | const char *name = Form("Binning%d", n);
|
---|
352 |
|
---|
353 | TObject *o = fBinnings.FindObject(name);
|
---|
354 | if (o)
|
---|
355 | {
|
---|
356 | delete fBinnings.Remove(o);
|
---|
357 | *fLog << warn << "WARNING - Binning for parameter " << n << " (" << name << ") already exists... replaced." << endl;
|
---|
358 | }
|
---|
359 |
|
---|
360 | // FIXME: Check for existence
|
---|
361 | fBinnings.Add(new MBinning(bins, name, bins.GetTitle()));
|
---|
362 | }
|
---|
363 |
|
---|
364 | /*
|
---|
365 | void MJTrainCuts::AddBinning(const MBinning &bins)
|
---|
366 | {
|
---|
367 | // FIXME: Check for existence
|
---|
368 | fBinnings.Add(new MBinning(bins, bins.GetName(), bins.GetTitle()));
|
---|
369 | }
|
---|
370 | */
|
---|
371 |
|
---|
372 | // ---------------------------------------------------------------------------------------
|
---|
373 |
|
---|
374 | // --------------------------------------------------------------------------
|
---|
375 | //
|
---|
376 | void MJTrainCuts::DisplayResult(MH3 &h31, MH3 &h32, Float_t ontime)
|
---|
377 | {
|
---|
378 | TH2D &g = (TH2D&)h32.GetHist();
|
---|
379 | TH2D &h = (TH2D&)h31.GetHist();
|
---|
380 |
|
---|
381 | h.SetMarkerColor(kRed);
|
---|
382 | g.SetMarkerColor(kBlue);
|
---|
383 |
|
---|
384 | TH2D res1(g);
|
---|
385 | TH2D res2(g);
|
---|
386 |
|
---|
387 | h.SetTitle("Hadronness-Distribution vs. Size");
|
---|
388 | res1.SetTitle("Significance Li/Ma");
|
---|
389 | res1.SetXTitle("Size [phe]");
|
---|
390 | res1.SetYTitle("Hadronness");
|
---|
391 | res2.SetTitle("Significance-Distribution");
|
---|
392 | res2.SetXTitle("Size-Cut [phe]");
|
---|
393 | res2.SetYTitle("Hadronness-Cut");
|
---|
394 | res1.SetContour(50);
|
---|
395 | res2.SetContour(50);
|
---|
396 |
|
---|
397 | const Int_t nx = h.GetNbinsX();
|
---|
398 | const Int_t ny = h.GetNbinsY();
|
---|
399 |
|
---|
400 | gROOT->SetSelectedPad(NULL);
|
---|
401 |
|
---|
402 |
|
---|
403 | Double_t Stot = 0;
|
---|
404 | Double_t Btot = 0;
|
---|
405 |
|
---|
406 | Double_t max2 = -1;
|
---|
407 |
|
---|
408 | TGraph gr1;
|
---|
409 | TGraph gr2;
|
---|
410 | for (int x=nx-1; x>=0; x--)
|
---|
411 | {
|
---|
412 | TH1 *hx = h.ProjectionY("H_py", x+1, x+1);
|
---|
413 | TH1 *gx = g.ProjectionY("G_py", x+1, x+1);
|
---|
414 |
|
---|
415 | Double_t S = 0;
|
---|
416 | Double_t B = 0;
|
---|
417 |
|
---|
418 | Double_t max1 = -1;
|
---|
419 | Int_t maxy1 = 0;
|
---|
420 | Int_t maxy2 = 0;
|
---|
421 | for (int y=ny-1; y>=0; y--)
|
---|
422 | {
|
---|
423 | const Float_t s = gx->Integral(1, y+1);
|
---|
424 | const Float_t b = hx->Integral(1, y+1);
|
---|
425 | const Float_t sig1 = MMath::SignificanceLiMa(s+b, b);
|
---|
426 | const Float_t sig2 = MMath::SignificanceLiMa(s+Stot+b+Btot, b+Btot)*TMath::Log10(s+Stot+1);
|
---|
427 | if (sig1>max1)
|
---|
428 | {
|
---|
429 | maxy1 = y;
|
---|
430 | max1 = sig1;
|
---|
431 | }
|
---|
432 | if (sig2>max2)
|
---|
433 | {
|
---|
434 | maxy2 = y;
|
---|
435 | max2 = sig2;
|
---|
436 |
|
---|
437 | S=s;
|
---|
438 | B=b;
|
---|
439 | }
|
---|
440 |
|
---|
441 | res1.SetBinContent(x+1, y+1, sig1);
|
---|
442 | }
|
---|
443 |
|
---|
444 | Stot += S;
|
---|
445 | Btot += B;
|
---|
446 |
|
---|
447 | gr1.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy1+1));
|
---|
448 | gr2.SetPoint(x, h.GetXaxis()->GetBinCenter(x+1), h.GetYaxis()->GetBinCenter(maxy2+1));
|
---|
449 |
|
---|
450 | delete hx;
|
---|
451 | delete gx;
|
---|
452 | }
|
---|
453 |
|
---|
454 | //cout << "--> " << MMath::SignificanceLiMa(Stot+Btot, Btot) << " ";
|
---|
455 | //cout << Stot << " " << Btot << endl;
|
---|
456 |
|
---|
457 |
|
---|
458 | Int_t mx1=0;
|
---|
459 | Int_t my1=0;
|
---|
460 | Int_t mx2=0;
|
---|
461 | Int_t my2=0;
|
---|
462 | Int_t s1=0;
|
---|
463 | Int_t b1=0;
|
---|
464 | Int_t s2=0;
|
---|
465 | Int_t b2=0;
|
---|
466 | Double_t sig1=-1;
|
---|
467 | Double_t sig2=-1;
|
---|
468 | for (int x=0; x<nx; x++)
|
---|
469 | {
|
---|
470 | TH1 *hx = h.ProjectionY("H_py", x+1);
|
---|
471 | TH1 *gx = g.ProjectionY("G_py", x+1);
|
---|
472 | for (int y=0; y<ny; y++)
|
---|
473 | {
|
---|
474 | const Float_t s = gx->Integral(1, y+1);
|
---|
475 | const Float_t b = hx->Integral(1, y+1);
|
---|
476 | const Float_t sig = MMath::SignificanceLiMa(s+b, b);
|
---|
477 | res2.SetBinContent(x+1, y+1, sig);
|
---|
478 |
|
---|
479 | // Search for top-rightmost maximum
|
---|
480 | if (sig>=sig1)
|
---|
481 | {
|
---|
482 | mx1=x+1;
|
---|
483 | my1=y+1;
|
---|
484 | s1 = TMath::Nint(s);
|
---|
485 | b1 = TMath::Nint(b);
|
---|
486 | sig1=sig;
|
---|
487 | }
|
---|
488 | if (TMath::Log10(s)*sig>=sig2)
|
---|
489 | {
|
---|
490 | mx2=x+1;
|
---|
491 | my2=y+1;
|
---|
492 | s2 = TMath::Nint(s);
|
---|
493 | b2 = TMath::Nint(b);
|
---|
494 | sig2=TMath::Log10(s)*sig;
|
---|
495 | }
|
---|
496 | }
|
---|
497 | delete hx;
|
---|
498 | delete gx;
|
---|
499 | }
|
---|
500 |
|
---|
501 | TGraph gr3;
|
---|
502 | TGraph gr4;
|
---|
503 | gr4.SetTitle("Significance Li/Ma vs. Hadronness-cut");
|
---|
504 |
|
---|
505 | TH1 *hx = h.ProjectionY("H_py");
|
---|
506 | TH1 *gx = g.ProjectionY("G_py");
|
---|
507 | for (int y=0; y<ny; y++)
|
---|
508 | {
|
---|
509 | const Float_t s = gx->Integral(1, y+1);
|
---|
510 | const Float_t b = hx->Integral(1, y+1);
|
---|
511 | const Float_t sg1 = MMath::SignificanceLiMa(s+b, b);
|
---|
512 | const Float_t sg2 = s<1 ? 0 : MMath::SignificanceLiMa(s+b, b)*TMath::Log10(s);
|
---|
513 |
|
---|
514 | gr3.SetPoint(y, h.GetYaxis()->GetBinLowEdge(y+2), sg1);
|
---|
515 | gr4.SetPoint(y, h.GetYaxis()->GetBinLowEdge(y+2), sg2);
|
---|
516 | }
|
---|
517 | delete hx;
|
---|
518 | delete gx;
|
---|
519 |
|
---|
520 | if (fDisplay)
|
---|
521 | {
|
---|
522 | TCanvas &c = fDisplay->AddTab("OptCut");
|
---|
523 | c.SetBorderMode(0);
|
---|
524 | c.Divide(2,2);
|
---|
525 |
|
---|
526 | gROOT->SetSelectedPad(0);
|
---|
527 | c.cd(1);
|
---|
528 | gPad->SetBorderMode(0);
|
---|
529 | gPad->SetFrameBorderMode(0);
|
---|
530 | gPad->SetLogx();
|
---|
531 | gPad->SetGridx();
|
---|
532 | gPad->SetGridy();
|
---|
533 | h.DrawCopy();
|
---|
534 | g.DrawCopy("same");
|
---|
535 | gr1.SetMarkerStyle(kFullDotMedium);
|
---|
536 | gr1.DrawClone("LP")->SetBit(kCanDelete);
|
---|
537 | gr2.SetLineColor(kBlue);
|
---|
538 | gr2.SetMarkerStyle(kFullDotMedium);
|
---|
539 | gr2.DrawClone("LP")->SetBit(kCanDelete);
|
---|
540 |
|
---|
541 | gROOT->SetSelectedPad(0);
|
---|
542 | c.cd(3);
|
---|
543 | gPad->SetBorderMode(0);
|
---|
544 | gPad->SetFrameBorderMode(0);
|
---|
545 | gPad->SetGridx();
|
---|
546 | gPad->SetGridy();
|
---|
547 | gr4.SetMinimum(0);
|
---|
548 | gr4.SetMarkerStyle(kFullDotMedium);
|
---|
549 | gr4.DrawClone("ALP")->SetBit(kCanDelete);
|
---|
550 | gr3.SetLineColor(kBlue);
|
---|
551 | gr3.SetMarkerStyle(kFullDotMedium);
|
---|
552 | gr3.DrawClone("LP")->SetBit(kCanDelete);
|
---|
553 |
|
---|
554 | c.cd(2);
|
---|
555 | gPad->SetBorderMode(0);
|
---|
556 | gPad->SetFrameBorderMode(0);
|
---|
557 | gPad->SetLogx();
|
---|
558 | gPad->SetGridx();
|
---|
559 | gPad->SetGridy();
|
---|
560 | gPad->AddExec("color", "gStyle->SetPalette(1, 0);");
|
---|
561 | res1.SetMaximum(7);
|
---|
562 | res1.DrawCopy("colz");
|
---|
563 |
|
---|
564 | c.cd(4);
|
---|
565 | gPad->SetBorderMode(0);
|
---|
566 | gPad->SetFrameBorderMode(0);
|
---|
567 | gPad->SetLogx();
|
---|
568 | gPad->SetGridx();
|
---|
569 | gPad->SetGridy();
|
---|
570 | gPad->AddExec("color", "gStyle->SetPalette(1, 0);");
|
---|
571 | res2.SetMaximum(res2.GetMaximum()*1.05);
|
---|
572 | res2.DrawCopy("colz");
|
---|
573 |
|
---|
574 | // Int_t mx, my, mz;
|
---|
575 | // res2.GetMaximumBin(mx, my, mz);
|
---|
576 |
|
---|
577 | TMarker m;
|
---|
578 | m.SetMarkerStyle(kStar);
|
---|
579 | m.DrawMarker(res2.GetXaxis()->GetBinCenter(mx1), res2.GetYaxis()->GetBinCenter(my1));
|
---|
580 | m.SetMarkerStyle(kPlus);
|
---|
581 | m.DrawMarker(res2.GetXaxis()->GetBinCenter(mx2), res2.GetYaxis()->GetBinCenter(my2));
|
---|
582 | }
|
---|
583 |
|
---|
584 | if (ontime>0)
|
---|
585 | *fLog << all << "Observation Time: " << TMath::Nint(ontime/60) << "min" << endl;
|
---|
586 | *fLog << "Maximum Significance: " << Form("%.1f", sig1);
|
---|
587 | if (ontime>0)
|
---|
588 | *fLog << Form(" [%.1f/sqrt(h)]", sig1/TMath::Sqrt(ontime/3600));
|
---|
589 | *fLog << endl;
|
---|
590 |
|
---|
591 | *fLog << "Significance: S=" << Form("%.1f", sig1) << " E=" << s1 << " B=" << b1 << " h<";
|
---|
592 | *fLog << Form("%.2f", res2.GetYaxis()->GetBinCenter(my1)) << " s>";
|
---|
593 | *fLog << Form("%3d", TMath::Nint(res2.GetXaxis()->GetBinCenter(mx1))) << endl;
|
---|
594 | *fLog << "Significance*LogE: S=" << Form("%.1f", sig2/TMath::Log10(s2)) << " E=" << s2 << " B=" << b2 << " h<";
|
---|
595 | *fLog << Form("%.2f", res2.GetYaxis()->GetBinCenter(my2)) << " s>";
|
---|
596 | *fLog << Form("%3d", TMath::Nint(res2.GetXaxis()->GetBinCenter(mx2))) << endl;
|
---|
597 | *fLog << endl;
|
---|
598 | }
|
---|
599 |
|
---|
600 | // --------------------------------------------------------------------------
|
---|
601 | //
|
---|
602 | Bool_t MJTrainCuts::Process(const char *out)
|
---|
603 | {
|
---|
604 | // =========================== Consistency checks ==================================
|
---|
605 | if (!fDataSetOn.IsValid())
|
---|
606 | {
|
---|
607 | *fLog << err << "ERROR - DataSet for on-data invalid!" << endl;
|
---|
608 | return kFALSE;
|
---|
609 | }
|
---|
610 | if (!fDataSetOff.IsValid())
|
---|
611 | {
|
---|
612 | *fLog << err << "ERROR - DataSet for off-data invalid!" << endl;
|
---|
613 | return kFALSE;
|
---|
614 | }
|
---|
615 |
|
---|
616 | if (fDataSetOn.IsWobbleMode()!=fDataSetOff.IsWobbleMode())
|
---|
617 | {
|
---|
618 | *fLog << err << "ERROR - On- and Off-DataSet have different observation modes!" << endl;
|
---|
619 | return kFALSE;
|
---|
620 | }
|
---|
621 |
|
---|
622 | if (fDataSetOn.IsMonteCarlo()!=fDataSetOff.IsMonteCarlo())
|
---|
623 | {
|
---|
624 | *fLog << err << "ERROR - On- and Off-DataSet have different monte carlo modes!" << endl;
|
---|
625 | return kFALSE;
|
---|
626 | }
|
---|
627 |
|
---|
628 | if (!HasWritePermission(out))
|
---|
629 | return kFALSE;
|
---|
630 |
|
---|
631 | // Check if needed binning exists
|
---|
632 | TIter NextH(&fHists);
|
---|
633 | TObject *o = 0;
|
---|
634 | while ((o=NextH()))
|
---|
635 | {
|
---|
636 | const HistSet1D *hs = static_cast<HistSet1D*>(o);
|
---|
637 | if (hs->CheckBinning(fBinnings))
|
---|
638 | continue;
|
---|
639 |
|
---|
640 | *fLog << err << "ERROR - Not all needed binnning exist." << endl;
|
---|
641 | return kFALSE;
|
---|
642 | }
|
---|
643 |
|
---|
644 | // =========================== Preparation ==================================
|
---|
645 |
|
---|
646 | if (fDisplay)
|
---|
647 | fDisplay->SetTitle(out);
|
---|
648 |
|
---|
649 | TStopwatch clock;
|
---|
650 | clock.Start();
|
---|
651 |
|
---|
652 | // ------------------ Setup reading --------------------
|
---|
653 | MReadMarsFile read1("Events");
|
---|
654 | MReadMarsFile read2("Events");
|
---|
655 | MReadMarsFile read3("Events");
|
---|
656 | MReadMarsFile read4("Events");
|
---|
657 | read1.DisableAutoScheme();
|
---|
658 | read2.DisableAutoScheme();
|
---|
659 | read3.DisableAutoScheme();
|
---|
660 | read4.DisableAutoScheme();
|
---|
661 |
|
---|
662 | // Setup four reading tasks with the on- and off-data of the two datasets
|
---|
663 | // Training -- On
|
---|
664 | if (!fDataSetOn.AddFilesOn(read1))
|
---|
665 | return kFALSE;
|
---|
666 | // Testing -- On
|
---|
667 | if (!fDataSetOn.AddFilesOff(read4))
|
---|
668 | return kFALSE;
|
---|
669 | // Training -- Off
|
---|
670 | if (!fDataSetOff.AddFilesOn(read3))
|
---|
671 | return kFALSE;
|
---|
672 | // Testing -- Off
|
---|
673 | if (!fDataSetOff.AddFilesOff(read2))
|
---|
674 | return kFALSE;
|
---|
675 |
|
---|
676 | // ===============================================================================
|
---|
677 | // ====================== Training =========================
|
---|
678 | // ===============================================================================
|
---|
679 |
|
---|
680 | // ---------------- Setup RF Matrix ----------------
|
---|
681 | MHMatrix train("Train");
|
---|
682 | train.AddColumns(fRules);
|
---|
683 | // if (fEnableWeights[kTrainOn] || fEnableWeights[kTrainOff])
|
---|
684 | // train.AddColumn("MWeight.fVal");
|
---|
685 | train.AddColumn("MHadronness.fVal");
|
---|
686 |
|
---|
687 | // ----------------- Prepare filling Matrix RF ------------------
|
---|
688 |
|
---|
689 | // Setup the hadronness container identifying gammas and off-data
|
---|
690 | // and setup a container for the weights
|
---|
691 | MParameterD had("MHadronness");
|
---|
692 | MParameterD wgt("MWeight");
|
---|
693 | MParameterD typ("Type");
|
---|
694 |
|
---|
695 | // Add them to the parameter list
|
---|
696 | MParList plistx;
|
---|
697 | plistx.AddToList(this); // take care of fDisplay!
|
---|
698 | plistx.AddToList(&had);
|
---|
699 | plistx.AddToList(&wgt);
|
---|
700 | plistx.AddToList(&typ);
|
---|
701 |
|
---|
702 | // Setup the tool class to fill the matrix
|
---|
703 | MTFillMatrix fill;
|
---|
704 | fill.SetLogStream(fLog);
|
---|
705 | fill.SetDisplay(fDisplay);
|
---|
706 | fill.AddPreCuts(fPreCuts);
|
---|
707 | fill.AddPreCuts(fTrainCuts);
|
---|
708 |
|
---|
709 | // ----------------- Fill on data into matrix ------------------
|
---|
710 |
|
---|
711 | // Setup the tool class to read the gammas and read them
|
---|
712 | fill.SetName("FillOn");
|
---|
713 | fill.SetDestMatrix1(&train, fNum[kTrainOn]);
|
---|
714 | fill.SetReader(&read1);
|
---|
715 | // fill.AddPreTasks(fPreTasksSet[kTrainOn]);
|
---|
716 | fill.AddPreTasks(fPreTasks);
|
---|
717 | // fill.AddPostTasks(fPostTasksSet[kTrainOn]);
|
---|
718 | fill.AddPostTasks(fPostTasks);
|
---|
719 |
|
---|
720 | // Set classifier for gammas
|
---|
721 | had.SetVal(0);
|
---|
722 | wgt.SetVal(1);
|
---|
723 | typ.SetVal(0);
|
---|
724 |
|
---|
725 | // Fill matrix
|
---|
726 | if (!fill.Process(plistx))
|
---|
727 | return kFALSE;
|
---|
728 |
|
---|
729 | // Check the number or read events
|
---|
730 | const Int_t numontrn = train.GetNumRows();
|
---|
731 | if (numontrn==0)
|
---|
732 | {
|
---|
733 | *fLog << err << "ERROR - No on-data events available for training... aborting." << endl;
|
---|
734 | return kFALSE;
|
---|
735 | }
|
---|
736 |
|
---|
737 | // Remove possible post tasks
|
---|
738 | fill.ClearPreTasks();
|
---|
739 | fill.ClearPostTasks();
|
---|
740 |
|
---|
741 | // ----------------- Fill off data into matrix ------------------
|
---|
742 |
|
---|
743 | // In case of wobble mode we have to do something special
|
---|
744 | // Setup the tool class to read the background and read them
|
---|
745 | fill.SetName("FillOff");
|
---|
746 | fill.SetDestMatrix1(&train, fNum[kTrainOff]);
|
---|
747 | fill.SetReader(&read3);
|
---|
748 | // fill.AddPreTasks(fPreTasksSet[kTrainOff]);
|
---|
749 | fill.AddPreTasks(fPreTasks);
|
---|
750 | // fill.AddPostTasks(fPostTasksSet[kTrainOff]);
|
---|
751 | fill.AddPostTasks(fPostTasks);
|
---|
752 |
|
---|
753 | // Set classifier for background
|
---|
754 | had.SetVal(1);
|
---|
755 | wgt.SetVal(1);
|
---|
756 | typ.SetVal(1);
|
---|
757 |
|
---|
758 | // Fiull matrix
|
---|
759 | if (!fill.Process(plistx))
|
---|
760 | return kFALSE;
|
---|
761 |
|
---|
762 | // Check the number or read events
|
---|
763 | const Int_t numofftrn = train.GetNumRows()-numontrn;
|
---|
764 | if (numofftrn==0)
|
---|
765 | {
|
---|
766 | *fLog << err << "ERROR - No off-data available for training... aborting." << endl;
|
---|
767 | return kFALSE;
|
---|
768 | }
|
---|
769 |
|
---|
770 | // ------------------------ Train RF --------------------------
|
---|
771 |
|
---|
772 | MRanForestCalc rf("TrainSeparation", fTitle);
|
---|
773 | rf.SetNumTrees(fNumTrees);
|
---|
774 | rf.SetNdSize(fNdSize);
|
---|
775 | rf.SetNumTry(fNumTry);
|
---|
776 | rf.SetNumObsoleteVariables(1);
|
---|
777 | // rf.SetLastDataColumnHasWeights(fEnableWeights[kTrainOn] || fEnableWeights[kTrainOff]);
|
---|
778 | rf.SetDebug(fDebug>1);
|
---|
779 | rf.SetDisplay(fDisplay);
|
---|
780 | rf.SetLogStream(fLog);
|
---|
781 | rf.SetFileName(out);
|
---|
782 | rf.SetNameOutput("MHadronness");
|
---|
783 |
|
---|
784 | // Train the random forest either by classification or regression
|
---|
785 | if (!rf.Train(train, fUseRegression))
|
---|
786 | return kFALSE;
|
---|
787 |
|
---|
788 | // ----------------- Print result of training ------------------
|
---|
789 |
|
---|
790 | // Output information about what was going on so far.
|
---|
791 | *fLog << all;
|
---|
792 | fLog->Separator("The forest was trained with...");
|
---|
793 |
|
---|
794 | *fLog << "Training method:" << endl;
|
---|
795 | *fLog << " * " << (fUseRegression?"regression":"classification") << endl;
|
---|
796 | /*
|
---|
797 | if (fEnableWeights[kTrainOn])
|
---|
798 | *fLog << " * weights for on-data" << endl;
|
---|
799 | if (fEnableWeights[kTrainOff])
|
---|
800 | *fLog << " * weights for off-data" << endl;
|
---|
801 | */
|
---|
802 | *fLog << endl;
|
---|
803 | *fLog << "Events used for training:" << endl;
|
---|
804 | *fLog << " * Gammas: " << numontrn << endl;
|
---|
805 | *fLog << " * Background: " << numofftrn << endl;
|
---|
806 | *fLog << endl;
|
---|
807 | *fLog << "Gamma/Background ratio:" << endl;
|
---|
808 | *fLog << " * Requested: " << (float)fNum[kTrainOn]/fNum[kTrainOff] << endl;
|
---|
809 | *fLog << " * Result: " << (float)numontrn/numofftrn << endl;
|
---|
810 | *fLog << endl;
|
---|
811 | *fLog << "Run-Time: " << Form("%.1f", clock.RealTime()/60) << "min (CPU: ";
|
---|
812 | *fLog << Form("%.1f", clock.CpuTime()/60) << "min)" << endl;
|
---|
813 | *fLog << endl;
|
---|
814 | *fLog << "Output file name: " << out << endl;
|
---|
815 |
|
---|
816 | // ===============================================================================
|
---|
817 | // ====================== Testing =========================
|
---|
818 | // ===============================================================================
|
---|
819 | fLog->Separator("Test");
|
---|
820 |
|
---|
821 | clock.Continue();
|
---|
822 |
|
---|
823 | // ---------------------- Prepare eventloop off-data ---------------------
|
---|
824 |
|
---|
825 | // Setup parlist and tasklist for testing
|
---|
826 | MParList plist;
|
---|
827 | MTaskList tlist;
|
---|
828 | plist.AddToList(this); // Take care of display
|
---|
829 | plist.AddToList(&tlist);
|
---|
830 |
|
---|
831 | // MMcEvt mcevt;
|
---|
832 | // plist.AddToList(&mcevt);
|
---|
833 |
|
---|
834 | plist.AddToList(&wgt);
|
---|
835 | plist.AddToList(&typ);
|
---|
836 |
|
---|
837 | // ----- Setup histograms -----
|
---|
838 | MBinning binsy(50, 0 , 1, "BinningMH3Y", "lin");
|
---|
839 | MBinning binsx(40, 10, 100000, "BinningMH3X", "log");
|
---|
840 |
|
---|
841 | plist.AddToList(&binsx);
|
---|
842 | plist.AddToList(&binsy);
|
---|
843 |
|
---|
844 | MH3 h31("MHillas.fSize", "MHadronness.fVal");
|
---|
845 | MH3 h32("MHillas.fSize", "MHadronness.fVal");
|
---|
846 | MH3 h40("MMcEvt.fEnergy", "MHadronness.fVal");
|
---|
847 | h31.SetTitle("Background probability vs. Size:Size [phe]:Hadronness h");
|
---|
848 | h32.SetTitle("Background probability vs. Size:Size [phe]:Hadronness h");
|
---|
849 | h40.SetTitle("Background probability vs. Energy:Energy [GeV]:Hadronness h");
|
---|
850 |
|
---|
851 | plist.AddToList(&fBinnings);
|
---|
852 |
|
---|
853 | MHHadronness hist;
|
---|
854 |
|
---|
855 | // ----- Setup tasks -----
|
---|
856 | MFillH fillh0(&hist, "", "FillHadronness");
|
---|
857 | MFillH fillh1(&h31, "", "FillHadVsSize");
|
---|
858 | MFillH fillh2(&h32, "", "FillHadVsSize");
|
---|
859 | MFillH fillh4(&h40, "", "FillHadVsEnergy");
|
---|
860 | fillh0.SetWeight("MWeight");
|
---|
861 | fillh1.SetWeight("MWeight");
|
---|
862 | fillh2.SetWeight("MWeight");
|
---|
863 | fillh4.SetWeight("MWeight");
|
---|
864 | fillh1.SetDrawOption("colz profy");
|
---|
865 | fillh2.SetDrawOption("colz profy");
|
---|
866 | fillh4.SetDrawOption("colz profy");
|
---|
867 | fillh1.SetNameTab("HadSzOff");
|
---|
868 | fillh2.SetNameTab("HadSzOn");
|
---|
869 | fillh4.SetNameTab("HadEnOn");
|
---|
870 | fillh0.SetBit(MFillH::kDoNotDisplay);
|
---|
871 |
|
---|
872 | // ----- Setup filter -----
|
---|
873 | MFilterList precuts;
|
---|
874 | precuts.AddToList(fPreCuts);
|
---|
875 | precuts.AddToList(fTestCuts);
|
---|
876 |
|
---|
877 | MContinue cont0(&precuts);
|
---|
878 | cont0.SetName("PreCuts");
|
---|
879 | cont0.SetInverted();
|
---|
880 |
|
---|
881 | MFEventSelector sel; // FIXME: USING IT (WITH PROB?) in READ will by much faster!!!
|
---|
882 | sel.SetNumSelectEvts(fNum[kTestOff]);
|
---|
883 |
|
---|
884 | MContinue contsel(&sel);
|
---|
885 | contsel.SetInverted();
|
---|
886 |
|
---|
887 | // ----- Setup tasklist -----
|
---|
888 | tlist.AddToList(&read2); // Reading task
|
---|
889 | tlist.AddToList(&contsel); // event selector
|
---|
890 | // tlist.AddToList(fPreTasksSet[kTestOff]);
|
---|
891 | tlist.AddToList(fPreTasks); // list of pre tasks
|
---|
892 | tlist.AddToList(&cont0); // list of pre cuts and test cuts
|
---|
893 | tlist.AddToList(&rf); // evaluate random forest
|
---|
894 | // tlist.AddToList(fPostTasksSet[kTestOff]);
|
---|
895 | tlist.AddToList(fPostTasks); // list of post tasks
|
---|
896 | tlist.AddToList(&fillh1); // Fill HadSzOff
|
---|
897 |
|
---|
898 | TList autodel;
|
---|
899 | autodel.SetOwner();
|
---|
900 |
|
---|
901 | TPRegexp regexp("([0-9]:*)+");
|
---|
902 |
|
---|
903 | NextH.Reset();
|
---|
904 | while ((o=NextH()))
|
---|
905 | {
|
---|
906 | HistSet1D *hs = static_cast<HistSet1D*>(o);
|
---|
907 |
|
---|
908 | // FIXME: Move to beginning of function
|
---|
909 | // Check if needed binning exists
|
---|
910 | if (!hs->CheckBinning(fBinnings))
|
---|
911 | return kFALSE;
|
---|
912 |
|
---|
913 | MHn *hist = hs->GetHistN(fRules);
|
---|
914 | MFillH *fill = new MFillH(hist, "", Form("Fill%s", hist->GetName()));
|
---|
915 |
|
---|
916 | fill->SetWeight("MWeight");
|
---|
917 | fill->SetDrawOption("colz");
|
---|
918 | fill->SetNameTab(hist->GetName());
|
---|
919 | fill->SetBit(MFillH::kDoNotDisplay);
|
---|
920 |
|
---|
921 | tlist.AddToList(fill);
|
---|
922 |
|
---|
923 | autodel.Add(fill);
|
---|
924 | autodel.Add(hist);
|
---|
925 | }
|
---|
926 | tlist.AddToList(&fillh0); // Fill MHHadronness (not displayed in first loop)
|
---|
927 | tlist.AddToList(&fTestTasks); // list of test tasks
|
---|
928 |
|
---|
929 | // Enable Acceleration
|
---|
930 | tlist.SetAccelerator(MTask::kAccDontReset|MTask::kAccDontTime);
|
---|
931 |
|
---|
932 | // ---------------------- Run eventloop on background ---------------------
|
---|
933 | MEvtLoop loop;
|
---|
934 | loop.SetDisplay(fDisplay);
|
---|
935 | loop.SetLogStream(fLog);
|
---|
936 | loop.SetParList(&plist);
|
---|
937 | //if (!SetupEnv(loop))
|
---|
938 | // return kFALSE;
|
---|
939 |
|
---|
940 | wgt.SetVal(1);
|
---|
941 | typ.SetVal(0);
|
---|
942 | if (!loop.Eventloop())
|
---|
943 | return kFALSE;
|
---|
944 |
|
---|
945 | // ---------------------- Prepare eventloop on-data ---------------------
|
---|
946 |
|
---|
947 | sel.SetNumSelectEvts(fNum[kTestOn]); // set number of target events
|
---|
948 |
|
---|
949 | fillh0.ResetBit(MFillH::kDoNotDisplay); // Switch on display MHHadronness
|
---|
950 |
|
---|
951 | TIter NextF(&autodel);
|
---|
952 | while ((o=NextF()))
|
---|
953 | {
|
---|
954 | MFillH *fill = dynamic_cast<MFillH*>(o);
|
---|
955 | if (fill)
|
---|
956 | fill->ResetBit(MFillH::kDoNotDisplay);
|
---|
957 | }
|
---|
958 |
|
---|
959 | // Remove PreTasksOff and PostTasksOff from the list
|
---|
960 | // tlist.RemoveFromList(fPreTasksSet[kTestOff]);
|
---|
961 | // tlist.RemoveFromList(fPostTasksSet[kTestOff]);
|
---|
962 |
|
---|
963 | tlist.Replace(&read4); // replace reading off-data by on-data
|
---|
964 |
|
---|
965 | // Add the PreTasksOn directly after the reading task
|
---|
966 | // tlist.AddToListAfter(fPreTasksSet[kTestOn], &c1);
|
---|
967 |
|
---|
968 | // Add the PostTasksOn after rf
|
---|
969 | // tlist.AddToListAfter(fPostTasksSet[kTestOn], &rf);
|
---|
970 |
|
---|
971 | tlist.Replace(&fillh2); // Fill HadSzOn instead of HadSzOff
|
---|
972 | tlist.AddToListAfter(&fillh4, &fillh0); // Filling of HadEnOn
|
---|
973 |
|
---|
974 | // Enable Acceleration
|
---|
975 | tlist.SetAccelerator(MTask::kAccDontReset|MTask::kAccDontTime);
|
---|
976 |
|
---|
977 | // ---------------------- Run eventloop on-data ---------------------
|
---|
978 |
|
---|
979 | wgt.SetVal(1);
|
---|
980 | typ.SetVal(1);
|
---|
981 | if (!loop.Eventloop())
|
---|
982 | return kFALSE;
|
---|
983 |
|
---|
984 | // ---------------------- Print/Display result ---------------------
|
---|
985 |
|
---|
986 | // Show what was going on in the testing
|
---|
987 | const Double_t numontst = h32.GetHist().GetEntries();
|
---|
988 | const Double_t numofftst = h31.GetHist().GetEntries();
|
---|
989 |
|
---|
990 | *fLog << all;
|
---|
991 | fLog->Separator("The forest was tested with...");
|
---|
992 | *fLog << "Test method:" << endl;
|
---|
993 | *fLog << " * Random Forest: " << out << endl;
|
---|
994 | /*
|
---|
995 | if (fEnableWeights[kTestOn])
|
---|
996 | *fLog << " * weights for on-data" << endl;
|
---|
997 | if (fEnableWeights[kTestOff])
|
---|
998 | *fLog << " * weights for off-data" << endl;
|
---|
999 | */
|
---|
1000 | *fLog << endl;
|
---|
1001 | *fLog << "Events used for test:" << endl;
|
---|
1002 | *fLog << " * Gammas: " << numontst << endl;
|
---|
1003 | *fLog << " * Background: " << numofftst << endl;
|
---|
1004 | *fLog << endl;
|
---|
1005 | *fLog << "Gamma/Background ratio:" << endl;
|
---|
1006 | *fLog << " * Requested: " << (float)fNum[kTestOn]/fNum[kTestOff] << endl;
|
---|
1007 | *fLog << " * Result: " << (float)numontst/numofftst << endl;
|
---|
1008 | *fLog << endl;
|
---|
1009 |
|
---|
1010 | // Display the result plots
|
---|
1011 | DisplayResult(h31, h32, -1);
|
---|
1012 | //DisplayResult(h31, h32, ontime);
|
---|
1013 |
|
---|
1014 | *fLog << "Total Run-Time: " << Form("%.1f", clock.RealTime()/60) << "min (CPU: ";
|
---|
1015 | *fLog << Form("%.1f", clock.CpuTime()/60) << "min)" << endl;
|
---|
1016 | fLog->Separator();
|
---|
1017 |
|
---|
1018 | // ----------------- Write result ------------------
|
---|
1019 |
|
---|
1020 | fDataSetOn.SetName("DataSetOn");
|
---|
1021 | fDataSetOff.SetName("DataSetOff");
|
---|
1022 |
|
---|
1023 | // Write the display
|
---|
1024 | TObjArray arr;
|
---|
1025 | arr.Add(const_cast<MDataSet*>(&fDataSetOn));
|
---|
1026 | arr.Add(const_cast<MDataSet*>(&fDataSetOff));
|
---|
1027 | if (fDisplay)
|
---|
1028 | arr.Add(fDisplay);
|
---|
1029 |
|
---|
1030 | SetPathOut(out);
|
---|
1031 | return WriteContainer(arr, 0, "UPDATE");
|
---|
1032 | }
|
---|
1033 |
|
---|