/* ======================================================================== *\ ! ! * ! * This file is part of MARS, the MAGIC Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appear in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Keiichi Mase, 10/2004 ! Author(s): Markus Meyer, 02/2005 ! Author(s): Thomas Bretz, 04/2005 ! ! Copyright: MAGIC Software Development, 2000-2005 ! ! \* ======================================================================== */ ///////////////////////////////////////////////////////////////////////////// // // MHSingleMuon // // This class is a histogram class for displaying the radial (fHistWidth) // and the azimuthal (fHistPhi) intensity distribution for one muon. // You can retrieve the histogram (TH1F) using the function GetHistPhi() // or GetHistWidth(). // From these histograms the fraction of the ring segment (ArcPhi) and the // Width of the muon ring (ArcWidth) is calculated. // // First, the radius and center of the ring has to be calculted by // MMuonSearchParCalc // After that the histograms has to be filled in the following way: // // MFillH fillmuon("MHSingleMuon", "", "FillMuon"); // // The allowed region to estimate ArcPhi is a certain margin around the // radius. The default value is 0.2 deg (60mm). If the estimated radius // of the arc is 1.0 deg, the pixel contents in the radius range from // 0.8 deg to 1.2 deg are fill in the histogram. // // For ArcPhi only bins over a certain threshold are supposed to be part // of the ring. // For ArcWidth, the same algorithm is used to determine the fit region // for a gaussian fit to the radial intensity distribution. The ArcWidth // is defined as the sigma value of the gaussian fit. // // The binning of the histograms can be changed in the following way: // // MBinning bins1("BinningMuonWidth"); // MBinning bins2("BinningArcPhi"); // bins1.SetEdges(28, 0.3, 1.7); // bins2.SetEdges(20, -180,180); // plist.AddToList(&bins1); // plist.AddToList(&bins2); // // The values for the thresholds and the margin are saved in MMuonSetup. // They can be easily changed in star.rc. // // Please have in mind, that changes in this basic parameters will change // your results!! // // InputContainer: // - MGeomCam // - MMuonSearchPar // // // Class Version 2: // ---------------- // + Double_t fRelTimeMean; // Result of the gaus fit to the arrival time // + Double_t fRelTimeSigma; // Result of the gaus fit to the arrival time // //////////////////////////////////////////////////////////////////////////// #include "MHSingleMuon.h" #include #include #include #include "MLog.h" #include "MLogManip.h" #include "MBinning.h" #include "MParList.h" #include "MGeomCam.h" #include "MGeomPix.h" #include "MSignalCam.h" #include "MSignalPix.h" #include "MMuonSetup.h" #include "MMuonCalibPar.h" #include "MMuonSearchPar.h" ClassImp(MHSingleMuon); using namespace std; // -------------------------------------------------------------------------- // // Setup histograms // MHSingleMuon::MHSingleMuon(const char *name, const char *title) : fSignalCam(0), fMuonSearchPar(0), fGeomCam(0), fMargin(0) { fName = name ? name : "MHSingleMuon"; fTitle = title ? title : "Histograms of muon parameters"; fHistPhi.SetName("HistPhi"); fHistPhi.SetTitle("HistPhi"); fHistPhi.SetXTitle("\\phi [#circ]"); fHistPhi.SetYTitle("sum of ADC"); fHistPhi.SetDirectory(NULL); fHistPhi.SetFillStyle(4000); fHistPhi.UseCurrentStyle(); fHistWidth.SetName("HistWidth"); fHistWidth.SetTitle("HistWidth"); fHistWidth.SetXTitle("distance from the ring center [#circ]"); fHistWidth.SetYTitle("sum of ADC"); fHistWidth.SetDirectory(NULL); fHistWidth.SetFillStyle(4000); fHistWidth.UseCurrentStyle(); fHistTime.SetName("HistTime"); fHistTime.SetTitle("HistTime"); fHistTime.SetXTitle("timing difference"); fHistTime.SetYTitle("Counts"); fHistTime.SetDirectory(NULL); fHistTime.SetFillStyle(4000); fHistTime.UseCurrentStyle(); MBinning bins; bins.SetEdges(20, -180, 180); bins.Apply(fHistPhi); bins.SetEdges(28, 0.3, 1.7); bins.Apply(fHistWidth); bins.SetEdges(101, -33, 33); // +/- 33ns bins.Apply(fHistTime); } // -------------------------------------------------------------------------- // // Setup the Binning for the histograms automatically if the correct // instances of MBinning // Bool_t MHSingleMuon::SetupFill(const MParList *plist) { fGeomCam = (MGeomCam*)plist->FindObject("MGeomCam"); if (!fGeomCam) { *fLog << warn << "MGeomCam not found... abort." << endl; return kFALSE; } fMuonSearchPar = (MMuonSearchPar*)plist->FindObject("MMuonSearchPar"); if (!fMuonSearchPar) { *fLog << warn << "MMuonSearchPar not found... abort." << endl; return kFALSE; } fSignalCam = (MSignalCam*)plist->FindObject("MSignalCam"); if (!fSignalCam) { *fLog << warn << "MSignalCam not found... abort." << endl; return kFALSE; } MMuonSetup *setup = (MMuonSetup*)const_cast(plist)->FindCreateObj("MMuonSetup"); if (!setup) return kFALSE; fMargin = setup->GetMargin()/fGeomCam->GetConvMm2Deg(); ApplyBinning(*plist, "ArcPhi", fHistPhi); ApplyBinning(*plist, "MuonWidth", fHistWidth); ApplyBinning(*plist, "MuonTime", fHistTime); return kTRUE; } // -------------------------------------------------------------------------- // // Fill the histograms with data from a MMuonCalibPar and // MMuonSearchPar container. // Int_t MHSingleMuon::Fill(const MParContainer *par, const Stat_t w) { fRelTimeMean = 0; fRelTimeSigma = -1; fHistPhi.Reset(); fHistWidth.Reset(); fHistTime.Reset(); const Int_t entries = fSignalCam->GetNumPixels(); // the position of the center of a muon ring const Float_t cenx = fMuonSearchPar->GetCenterX(); const Float_t ceny = fMuonSearchPar->GetCenterY(); for (Int_t i=0; iGetRadius())GetTime()); } // use only the inner pixles. FIXME: This is geometry dependent if (gpix.GetAidx()>0) continue; fHistWidth.Fill(dist*fGeomCam->GetConvMm2Deg(), pix.GetNumPhotons()); } // Setup the function and perform the fit TF1 g1("g1", "gaus");//, -fHistTime.GetXmin(), fHistTime.GetXmax()); // Choose starting values as accurate as possible g1.SetParameter(0, fHistTime.GetMaximum()); g1.SetParameter(1, 0); g1.SetParameter(2, 0.7); // FIXME! GetRMS instead??? // According to fMuonSearchPar->GetTimeRMS() identified muons // do not have an arrival time rms>3 g1.SetParLimits(1, -1.7, 1.7); g1.SetParLimits(2, 0, 3.4); // options : N do not store the function, do not draw // I use integral of function in bin rather than value at bin center // R use the range specified in the function range // Q quiet mode if (fHistTime.Fit(&g1, "QNB")) return kTRUE; fRelTimeMean = g1.GetParameter(1); fRelTimeSigma = g1.GetParameter(2); // The mean arrival time which was subtracted before will // be added again, now const Double_t tm0 = fMuonSearchPar->GetTime()+fRelTimeMean; for (Int_t i=0; iGetRadius())=edge; i--) { const Float_t val = h.GetBinContent(i%n + 1); if (val=0 && last>=0; } // -------------------------------------------------------------------------- // // Photon distribution along the estimated circle is fitted with theoritical // function in order to get some more information such as Arc Phi and Arc // Length. // Bool_t MHSingleMuon::CalcPhi(Double_t thres, Double_t &peakphi, Double_t &arcphi) const { if (fHistPhi.GetMaximum()last) { if (m>n) // If maximum is on the right side of histogram last = n; else first = 0; // If maximum is on the left side of histogram } if (last-first<=3) return kFALSE; // Now get the fit range const Float_t startfitval = fHistWidth.GetBinLowEdge(first+1); const Float_t endfitval = fHistWidth.GetBinLowEdge(last); // Setup the function and perform the fit TF1 f1("f1", "gaus + [3]", startfitval, endfitval); f1.SetLineColor(kBlue); // Choose starting values as accurate as possible f1.SetParameter(0, fHistWidth.GetMaximum()); f1.SetParameter(1, fHistWidth.GetBinCenter(m)); // f1.SetParameter(2, (endfitval-startfitval)/2); f1.SetParameter(2, 0.1); f1.SetParameter(3, 1.8); // options : N do not store the function, do not draw // I use integral of function in bin rather than value at bin center // R use the range specified in the function range // Q quiet mode // fHistWidth.Fit(&f1, "QRO"); if (fHistWidth.Fit(&f1, "QRN")) return kFALSE; chi = f1.GetChisquare()/f1.GetNDF(); width = f1.GetParameter(2); return kTRUE; } /* // -------------------------------------------------------------------------- // // An impact parameter is calculated by fitting the histogram of photon // distribution along the circle with a theoritical model. // (See G. Vacanti et. al., Astroparticle Physics 2, 1994, 1-11. // The function (6) is used here.) // // By default this calculation is suppressed because this calculation is // very time consuming. If you want to calculate an impact parameter, // you can call the function of EnableImpactCalc(). // void MMuonCalibParCalc::CalcImpact(Int_t effbinnum, Float_t startfitval, Float_t endfitval) { // Fit the distribution with Vacanti function. The function is different // for the impact parameter of inside or outside of our reflector. // Then two different functions are applied to the photon distribution, // and the one which give us smaller chisquare value is taken as a // proper one. Double_t val1,err1,val2,err2; // impact parameter inside mirror radius (8.5m) TString func1; Float_t tmpval = (*fMuonSearchPar).GetRadius()*(*fGeomCam).GetConvMm2Deg()*TMath::DegToRad(); tmpval = sin(2.*tmpval)*8.5; func1 += "[0]*"; func1 += tmpval; func1 += "*(sqrt(1.-([1]/8.5)**2*sin((x-[2])*3.1415926/180.)**2)+([1]/8.5)*cos((x-[2])*3.1415926/180.))"; TF1 f1("f1",func1,startfitval,endfitval); f1.SetParameters(2000,3,0); f1.SetParLimits(1,0,8.5); f1.SetParLimits(2,-180.,180.); fMuonCalibPar->fHistPhi->Fit("f1","RQEM"); Float_t chi1 = -1; Float_t chi2 = -1; if(effbinnum>3) chi1 = f1.GetChisquare()/((Float_t)(effbinnum-3)); gMinuit->GetParameter(1,val1,err1); // get the estimated IP Float_t estip1 = val1; // impact parameter beyond mirror area (8.5m) TString func2; Float_t tmpval2 = (*fMuonSearchPar).GetRadius()*(*fGeomCam).GetConvMm2Deg()*TMath::DegToRad(); tmpval2 = sin(2.*tmpval2)*8.5*2.; func2 += "[0]*"; func2 += tmpval2; func2 += "*sqrt(1.-(([1]/8.5)*sin((x-[2])*3.1415926/180.))**2)"; TF1 f2("f2",func2,startfitval,endfitval); f2.SetParameters(2000,20,0); f2.SetParLimits(1,8.5,300.); f2.SetParLimits(2,-180.,180.); fMuonCalibPar->fHistPhi->Fit("f2","RQEM+"); if(effbinnum>3) chi2 = f2.GetChisquare()/((Float_t)(effbinnum-3)); gMinuit->GetParameter(1,val2,err2); // get the estimated IP Float_t estip2 = val2; if(effbinnum<=3) { fMuonCalibPar->SetEstImpact(-1.); } if(chi2 > chi1) { fMuonCalibPar->SetEstImpact(estip1); fMuonCalibPar->SetChiArcPhi(chi1); } else { fMuonCalibPar->SetEstImpact(estip2); fMuonCalibPar->SetChiArcPhi(chi2); } } */ Float_t MHSingleMuon::CalcSize() const { const Int_t n = fHistPhi.GetNbinsX(); Double_t sz=0; for (Int_t i=1; i<=n; i++) sz += fHistPhi.GetBinContent(i)*fHistPhi.GetBinEntries(i); return sz; } void MHSingleMuon::Paint(Option_t *o) { TF1 *f = fHistWidth.GetFunction("f1"); if (f) f->ResetBit(1<<9); } void MHSingleMuon::Draw(Option_t *o) { TVirtualPad *pad = gPad ? gPad : MakeDefCanvas(this); pad->SetBorderMode(0); AppendPad(""); pad->Divide(1,2); pad->cd(1); gPad->SetBorderMode(0); fHistPhi.Draw(); pad->cd(2); gPad->SetBorderMode(0); fHistWidth.Draw(); }