| 1 | /* ======================================================================== *\
 | 
|---|
| 2 | ! $Name: not supported by cvs2svn $:$Id: MRanForestCalc.cc,v 1.32 2010-06-03 11:20:47 tbretz Exp $
 | 
|---|
| 3 | ! --------------------------------------------------------------------------
 | 
|---|
| 4 | !
 | 
|---|
| 5 | ! *
 | 
|---|
| 6 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
 | 
|---|
| 7 | ! * Software. It is distributed to you in the hope that it can be a useful
 | 
|---|
| 8 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
 | 
|---|
| 9 | ! * It is distributed WITHOUT ANY WARRANTY.
 | 
|---|
| 10 | ! *
 | 
|---|
| 11 | ! * Permission to use, copy, modify and distribute this software and its
 | 
|---|
| 12 | ! * documentation for any purpose is hereby granted without fee,
 | 
|---|
| 13 | ! * provided that the above copyright notice appear in all copies and
 | 
|---|
| 14 | ! * that both that copyright notice and this permission notice appear
 | 
|---|
| 15 | ! * in supporting documentation. It is provided "as is" without express
 | 
|---|
| 16 | ! * or implied warranty.
 | 
|---|
| 17 | ! *
 | 
|---|
| 18 | !
 | 
|---|
| 19 | !
 | 
|---|
| 20 | !   Author(s): Thomas Hengstebeck 2/2005 <mailto:hengsteb@physik.hu-berlin.de>
 | 
|---|
| 21 | !   Author(s): Thomas Bretz 8/2005 <mailto:tbretz@astro.uni-wuerzburg.de>
 | 
|---|
| 22 | !
 | 
|---|
| 23 | !   Copyright: MAGIC Software Development, 2000-2008
 | 
|---|
| 24 | !
 | 
|---|
| 25 | !
 | 
|---|
| 26 | \* ======================================================================== */
 | 
|---|
| 27 | 
 | 
|---|
| 28 | /////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 29 | //
 | 
|---|
| 30 | //  MRanForestCalc
 | 
|---|
| 31 | //
 | 
|---|
| 32 | //
 | 
|---|
| 33 | ////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 34 | #include "MRanForestCalc.h"
 | 
|---|
| 35 | 
 | 
|---|
| 36 | #include <stdlib.h> // Needed for atof in some cases
 | 
|---|
| 37 | 
 | 
|---|
| 38 | #include <TMath.h>
 | 
|---|
| 39 | 
 | 
|---|
| 40 | #include <TF1.h>
 | 
|---|
| 41 | #include <TFile.h>
 | 
|---|
| 42 | #include <TGraph.h>
 | 
|---|
| 43 | #include <TVector.h>
 | 
|---|
| 44 | 
 | 
|---|
| 45 | #include "MHMatrix.h"
 | 
|---|
| 46 | 
 | 
|---|
| 47 | #include "MLog.h"
 | 
|---|
| 48 | #include "MLogManip.h"
 | 
|---|
| 49 | 
 | 
|---|
| 50 | #include "MData.h"
 | 
|---|
| 51 | #include "MDataArray.h"
 | 
|---|
| 52 | 
 | 
|---|
| 53 | #include "MRanForest.h"
 | 
|---|
| 54 | #include "MParameters.h"
 | 
|---|
| 55 | 
 | 
|---|
| 56 | #include "MParList.h"
 | 
|---|
| 57 | #include "MTaskList.h"
 | 
|---|
| 58 | #include "MEvtLoop.h"
 | 
|---|
| 59 | #include "MRanForestGrow.h"
 | 
|---|
| 60 | #include "MFillH.h"
 | 
|---|
| 61 | 
 | 
|---|
| 62 | ClassImp(MRanForestCalc);
 | 
|---|
| 63 | 
 | 
|---|
| 64 | using namespace std;
 | 
|---|
| 65 | 
 | 
|---|
| 66 | const TString MRanForestCalc::gsDefName    = "MRanForestCalc";
 | 
|---|
| 67 | const TString MRanForestCalc::gsDefTitle   = "RF for energy estimation";
 | 
|---|
| 68 | 
 | 
|---|
| 69 | const TString MRanForestCalc::gsNameOutput   = "RanForestOut";
 | 
|---|
| 70 | const TString MRanForestCalc::gsNameEvalFunc = "EvalFunction";
 | 
|---|
| 71 | 
 | 
|---|
| 72 | MRanForestCalc::MRanForestCalc(const char *name, const char *title)
 | 
|---|
| 73 |     : fData(0), fRFOut(0), fTestMatrix(0), fFunc("x"),
 | 
|---|
| 74 |     fNumTrees(-1), fNumTry(-1), fNdSize(-1), fNumObsoleteVariables(1),
 | 
|---|
| 75 |     fLastDataColumnHasWeights(kFALSE),
 | 
|---|
| 76 |     fNameOutput(gsNameOutput), fDebug(kFALSE), fEstimationMode(kMean)
 | 
|---|
| 77 | {
 | 
|---|
| 78 |     fName  = name  ? name  : gsDefName.Data();
 | 
|---|
| 79 |     fTitle = title ? title : gsDefTitle.Data();
 | 
|---|
| 80 | 
 | 
|---|
| 81 |     // FIXME:
 | 
|---|
| 82 |     fNumTrees = 100; //100
 | 
|---|
| 83 |     fNumTry   = 0;   //3   0 means: in MRanForest estimated best value will be calculated
 | 
|---|
| 84 |     fNdSize   = 1;   //1   
 | 
|---|
| 85 | }
 | 
|---|
| 86 | 
 | 
|---|
| 87 | MRanForestCalc::~MRanForestCalc()
 | 
|---|
| 88 | {
 | 
|---|
| 89 |     fEForests.Delete();
 | 
|---|
| 90 | }
 | 
|---|
| 91 | 
 | 
|---|
| 92 | // --------------------------------------------------------------------------
 | 
|---|
| 93 | //
 | 
|---|
| 94 | // Set a function which is applied to the output of the random forest
 | 
|---|
| 95 | //
 | 
|---|
| 96 | Bool_t MRanForestCalc::SetFunction(const char *func)
 | 
|---|
| 97 | {
 | 
|---|
| 98 |     return !fFunc.SetRule(func);
 | 
|---|
| 99 | }
 | 
|---|
| 100 | 
 | 
|---|
| 101 | // --------------------------------------------------------------------------
 | 
|---|
| 102 | //
 | 
|---|
| 103 | // ver=0: One yes/no-classification forest is trained for each bin.
 | 
|---|
| 104 | //        the yes/no classification is done using the grid
 | 
|---|
| 105 | // ver=1: One classification forest is trained. The last column contains a
 | 
|---|
| 106 | //        value which is turned into a classifier by rf itself using the grid
 | 
|---|
| 107 | // ver=2: One classification forest is trained. The last column already contains
 | 
|---|
| 108 | //        the classifier
 | 
|---|
| 109 | // ver=3: A regression forest is trained. The last column contains the
 | 
|---|
| 110 | //        classifier
 | 
|---|
| 111 | //
 | 
|---|
| 112 | Int_t MRanForestCalc::Train(const MHMatrix &matrixtrain, const TArrayD &grid, Int_t ver)
 | 
|---|
| 113 | {
 | 
|---|
| 114 |     gLog.Separator("MRanForestCalc - Train");
 | 
|---|
| 115 | 
 | 
|---|
| 116 |     if (!matrixtrain.GetColumns())
 | 
|---|
| 117 |     {
 | 
|---|
| 118 |         *fLog << err << "ERROR - MHMatrix does not contain rules... abort." << endl;
 | 
|---|
| 119 |         return kFALSE;
 | 
|---|
| 120 |     }
 | 
|---|
| 121 | 
 | 
|---|
| 122 |     const Int_t ncols = matrixtrain.GetM().GetNcols();
 | 
|---|
| 123 |     const Int_t nrows = matrixtrain.GetM().GetNrows();
 | 
|---|
| 124 |     if (ncols<=0 || nrows <=0)
 | 
|---|
| 125 |     {
 | 
|---|
| 126 |         *fLog << err << "ERROR - No. of columns or no. of rows of matrixtrain equal 0 ... abort." << endl;
 | 
|---|
| 127 |         return kFALSE;
 | 
|---|
| 128 |     }
 | 
|---|
| 129 | 
 | 
|---|
| 130 |     // rules (= combination of image par) to be used for energy estimation
 | 
|---|
| 131 |     TFile fileRF(fFileName, "recreate");
 | 
|---|
| 132 |     if (!fileRF.IsOpen())
 | 
|---|
| 133 |     {
 | 
|---|
| 134 |         *fLog << err << "ERROR - File to store RFs could not be opened... abort." << endl;
 | 
|---|
| 135 |         return kFALSE;
 | 
|---|
| 136 |     }
 | 
|---|
| 137 | 
 | 
|---|
| 138 |     // The number of columns which have to be removed for the training
 | 
|---|
| 139 |     // The last data column may contain weight which also have to be removed
 | 
|---|
| 140 |     const Int_t nobs = fNumObsoleteVariables + (fLastDataColumnHasWeights?1:0); // Number of obsolete columns
 | 
|---|
| 141 | 
 | 
|---|
| 142 |     const MDataArray &dcol = *matrixtrain.GetColumns();
 | 
|---|
| 143 | 
 | 
|---|
| 144 |     // Make a copy of the rules for accessing the train-data
 | 
|---|
| 145 |     MDataArray usedrules;
 | 
|---|
| 146 |     for (Int_t i=0; i<ncols; i++)
 | 
|---|
| 147 |         if (i<ncols-nobs)  // -3 is important!!!
 | 
|---|
| 148 |             usedrules.AddEntry(dcol[i].GetRule());
 | 
|---|
| 149 |         else
 | 
|---|
| 150 |             *fLog << inf << "Skipping " << dcol[i].GetRule() << " for training" << endl;
 | 
|---|
| 151 | 
 | 
|---|
| 152 |     // In the case of regression store the rule to be regessed in the
 | 
|---|
| 153 |     // last entry of your rules
 | 
|---|
| 154 |     MDataArray rules(usedrules);
 | 
|---|
| 155 |     rules.AddEntry(ver<3?"Classification.fVal":dcol[ncols-1].GetRule().Data());
 | 
|---|
| 156 | 
 | 
|---|
| 157 |     // prepare train-matrix finally used
 | 
|---|
| 158 |     TMatrix mat(matrixtrain.GetM());
 | 
|---|
| 159 | 
 | 
|---|
| 160 |     // Resize it such that the obsolete columns are removed
 | 
|---|
| 161 |     mat.ResizeTo(nrows, ncols-nobs+1);
 | 
|---|
| 162 | 
 | 
|---|
| 163 |     if (fDebug)
 | 
|---|
| 164 |         gLog.SetNullOutput(kTRUE);
 | 
|---|
| 165 | 
 | 
|---|
| 166 |     // In the case one independant RF is trained for each bin (e.g.
 | 
|---|
| 167 |     // energy-bin) train all of them
 | 
|---|
| 168 |     const Int_t nbins = ver>0 ? 1 : grid.GetSize()-1;
 | 
|---|
| 169 |     for (Int_t ie=0; ie<nbins; ie++)
 | 
|---|
| 170 |     {
 | 
|---|
| 171 |         // In the case weights should be used initialize the
 | 
|---|
| 172 |         // corresponding array
 | 
|---|
| 173 |         Double_t sum = 0;
 | 
|---|
| 174 | 
 | 
|---|
| 175 |         TArrayF weights(nrows);
 | 
|---|
| 176 |         if (fLastDataColumnHasWeights)
 | 
|---|
| 177 |         {
 | 
|---|
| 178 |             for (Int_t j=0; j<nrows; j++)
 | 
|---|
| 179 |             {
 | 
|---|
| 180 |                 weights[j] = matrixtrain.GetM()(j, ncols-nobs);
 | 
|---|
| 181 |                 sum += weights[j];
 | 
|---|
| 182 |             }
 | 
|---|
| 183 |         }
 | 
|---|
| 184 | 
 | 
|---|
| 185 |         *fLog << inf << "MRanForestCalc::Train: Sum of weights " << sum << endl;
 | 
|---|
| 186 | 
 | 
|---|
| 187 |         // Setup the matrix such that the last comlumn contains
 | 
|---|
| 188 |         // the classifier or the regeression target value
 | 
|---|
| 189 |         switch (ver)
 | 
|---|
| 190 |         {
 | 
|---|
| 191 |         case 0: // Replace last column by a classification which is 1 in
 | 
|---|
| 192 |                 // the case the event belongs to this bin, 0 otherwise
 | 
|---|
| 193 |             {
 | 
|---|
| 194 |                 Int_t irows=0;
 | 
|---|
| 195 |                 for (Int_t j=0; j<nrows; j++)
 | 
|---|
| 196 |                 {
 | 
|---|
| 197 |                     const Double_t value  = matrixtrain.GetM()(j,ncols-1);
 | 
|---|
| 198 |                     const Bool_t   inside = value>grid[ie] && value<=grid[ie+1];
 | 
|---|
| 199 | 
 | 
|---|
| 200 |                     mat(j, ncols-nobs) = inside ? 1 : 0;
 | 
|---|
| 201 | 
 | 
|---|
| 202 |                     if (inside)
 | 
|---|
| 203 |                         irows++;
 | 
|---|
| 204 |                 }
 | 
|---|
| 205 |                 if (irows==0)
 | 
|---|
| 206 |                     *fLog << warn << "WARNING - Skipping";
 | 
|---|
| 207 |                 else
 | 
|---|
| 208 |                     *fLog << inf << "Training RF for";
 | 
|---|
| 209 | 
 | 
|---|
| 210 |                 *fLog << " bin " << ie << " (" << grid[ie] << ", " << grid[ie+1] << ") " << irows << "/" << nrows << endl;
 | 
|---|
| 211 | 
 | 
|---|
| 212 |                 if (irows==0)
 | 
|---|
| 213 |                     continue;
 | 
|---|
| 214 |             }
 | 
|---|
| 215 |             break;
 | 
|---|
| 216 | 
 | 
|---|
| 217 |         case 1: // Use last column as classifier or for regression
 | 
|---|
| 218 |         case 2:
 | 
|---|
| 219 |         case 3:
 | 
|---|
| 220 |             for (Int_t j=0; j<nrows; j++)
 | 
|---|
| 221 |                 mat(j, ncols-nobs) = matrixtrain.GetM()(j,ncols-1);
 | 
|---|
| 222 |             break;
 | 
|---|
| 223 |         }
 | 
|---|
| 224 | 
 | 
|---|
| 225 |         MHMatrix matrix(mat, &rules, "MatrixTrain");
 | 
|---|
| 226 | 
 | 
|---|
| 227 |         MParList plist;
 | 
|---|
| 228 |         MTaskList tlist;
 | 
|---|
| 229 |         plist.AddToList(&tlist);
 | 
|---|
| 230 |         plist.AddToList(&matrix);
 | 
|---|
| 231 | 
 | 
|---|
| 232 |         MRanForest rf;
 | 
|---|
| 233 |         rf.SetNumTrees(fNumTrees);
 | 
|---|
| 234 |         rf.SetNumTry(fNumTry);
 | 
|---|
| 235 |         rf.SetNdSize(fNdSize);
 | 
|---|
| 236 |         rf.SetClassify(ver<3 ? kTRUE : kFALSE);
 | 
|---|
| 237 |         if (ver==1)
 | 
|---|
| 238 |             rf.SetGrid(grid);
 | 
|---|
| 239 |         if (fLastDataColumnHasWeights)
 | 
|---|
| 240 |             rf.SetWeights(weights);
 | 
|---|
| 241 | 
 | 
|---|
| 242 |         plist.AddToList(&rf);
 | 
|---|
| 243 | 
 | 
|---|
| 244 |         MRanForestGrow rfgrow;
 | 
|---|
| 245 |         tlist.AddToList(&rfgrow);
 | 
|---|
| 246 | 
 | 
|---|
| 247 |         MFillH fillh("MHRanForestGini");
 | 
|---|
| 248 |         tlist.AddToList(&fillh);
 | 
|---|
| 249 | 
 | 
|---|
| 250 |         MEvtLoop evtloop(fTitle);
 | 
|---|
| 251 |         evtloop.SetParList(&plist);
 | 
|---|
| 252 |         evtloop.SetDisplay(fDisplay);
 | 
|---|
| 253 |         evtloop.SetLogStream(fLog);
 | 
|---|
| 254 | 
 | 
|---|
| 255 |         if (!evtloop.Eventloop())
 | 
|---|
| 256 |             return kFALSE;
 | 
|---|
| 257 | 
 | 
|---|
| 258 |         if (fDebug)
 | 
|---|
| 259 |             gLog.SetNullOutput(kFALSE);
 | 
|---|
| 260 | 
 | 
|---|
| 261 |         if (ver==0)
 | 
|---|
| 262 |         {
 | 
|---|
| 263 |             // Calculate bin center
 | 
|---|
| 264 |             const Double_t E = (TMath::Log10(grid[ie])+TMath::Log10(grid[ie+1]))/2;
 | 
|---|
| 265 | 
 | 
|---|
| 266 |             // save whole forest
 | 
|---|
| 267 |             rf.SetUserVal(E);
 | 
|---|
| 268 |             rf.SetName(Form("%.10f", E));
 | 
|---|
| 269 |         }
 | 
|---|
| 270 | 
 | 
|---|
| 271 |         rf.Write();
 | 
|---|
| 272 |     }
 | 
|---|
| 273 | 
 | 
|---|
| 274 |     // save rules
 | 
|---|
| 275 |     usedrules.Write("rules");
 | 
|---|
| 276 | 
 | 
|---|
| 277 |     fFunc.Write(gsNameEvalFunc);
 | 
|---|
| 278 | 
 | 
|---|
| 279 |     return kTRUE;
 | 
|---|
| 280 | }
 | 
|---|
| 281 | 
 | 
|---|
| 282 | Int_t MRanForestCalc::ReadForests(MParList &plist)
 | 
|---|
| 283 | {
 | 
|---|
| 284 |     TFile fileRF(fFileName, "read");
 | 
|---|
| 285 |     if (!fileRF.IsOpen())
 | 
|---|
| 286 |     {
 | 
|---|
| 287 |         *fLog << err << dbginf << "File containing RFs could not be opened... aborting." << endl;
 | 
|---|
| 288 |         return kFALSE;
 | 
|---|
| 289 |     }
 | 
|---|
| 290 | 
 | 
|---|
| 291 |     fEForests.Delete();
 | 
|---|
| 292 | 
 | 
|---|
| 293 |     TIter Next(fileRF.GetListOfKeys());
 | 
|---|
| 294 |     TObject *o=0;
 | 
|---|
| 295 |     while ((o=Next()))
 | 
|---|
| 296 |     {
 | 
|---|
| 297 |         MRanForest *forest=0;
 | 
|---|
| 298 |         fileRF.GetObject(o->GetName(), forest);
 | 
|---|
| 299 |         if (!forest)
 | 
|---|
| 300 |             continue;
 | 
|---|
| 301 | 
 | 
|---|
| 302 |         forest->SetUserVal(atof(o->GetName()));
 | 
|---|
| 303 | 
 | 
|---|
| 304 |         fEForests.Add(forest);
 | 
|---|
| 305 |     }
 | 
|---|
| 306 | 
 | 
|---|
| 307 |     // Maybe fEForests[0].fRules could be used instead?
 | 
|---|
| 308 |     if (fData->Read("rules")<=0)
 | 
|---|
| 309 |     {
 | 
|---|
| 310 |         *fLog << err << "ERROR - Reading 'rules' from file " << fFileName << endl;
 | 
|---|
| 311 |         return kFALSE;
 | 
|---|
| 312 |     }
 | 
|---|
| 313 | 
 | 
|---|
| 314 |     if (fileRF.GetListOfKeys()->FindObject(gsNameEvalFunc))
 | 
|---|
| 315 |     {
 | 
|---|
| 316 |         if (fFunc.Read(gsNameEvalFunc)<=0)
 | 
|---|
| 317 |         {
 | 
|---|
| 318 |             *fLog << err << "ERROR - Reading '" << gsNameEvalFunc << "' from file " << fFileName << endl;
 | 
|---|
| 319 |             return kFALSE;
 | 
|---|
| 320 |         }
 | 
|---|
| 321 | 
 | 
|---|
| 322 |         *fLog << inf << "Evaluation function found in file: " << fFunc.GetRule() << endl;
 | 
|---|
| 323 |     }
 | 
|---|
| 324 | 
 | 
|---|
| 325 |     return kTRUE;
 | 
|---|
| 326 | }
 | 
|---|
| 327 | 
 | 
|---|
| 328 | Int_t MRanForestCalc::PreProcess(MParList *plist)
 | 
|---|
| 329 | {
 | 
|---|
| 330 |     fRFOut = (MParameterD*)plist->FindCreateObj("MParameterD", fNameOutput);
 | 
|---|
| 331 |     if (!fRFOut)
 | 
|---|
| 332 |         return kFALSE;
 | 
|---|
| 333 | 
 | 
|---|
| 334 |     fData = (MDataArray*)plist->FindCreateObj("MDataArray");
 | 
|---|
| 335 |     if (!fData)
 | 
|---|
| 336 |         return kFALSE;
 | 
|---|
| 337 | 
 | 
|---|
| 338 |     if (!ReadForests(*plist))
 | 
|---|
| 339 |     {
 | 
|---|
| 340 |         *fLog << err << "Reading RFs failed... aborting." << endl;
 | 
|---|
| 341 |         return kFALSE;
 | 
|---|
| 342 |     }
 | 
|---|
| 343 | 
 | 
|---|
| 344 |     *fLog << inf << "RF read from " << fFileName << endl;
 | 
|---|
| 345 | 
 | 
|---|
| 346 |     if (!fFunc.PreProcess(plist))
 | 
|---|
| 347 |     {
 | 
|---|
| 348 |         *fLog << err << "PreProcessing of evaluation function failed... aborting." << endl;
 | 
|---|
| 349 |         return kFALSE;
 | 
|---|
| 350 |     }
 | 
|---|
| 351 | 
 | 
|---|
| 352 |     if (fTestMatrix)
 | 
|---|
| 353 |         return kTRUE;
 | 
|---|
| 354 | 
 | 
|---|
| 355 |     fData->Print();
 | 
|---|
| 356 | 
 | 
|---|
| 357 |     if (!fData->PreProcess(plist))
 | 
|---|
| 358 |     {
 | 
|---|
| 359 |         *fLog << err << "PreProcessing of the MDataArray failed... aborting." << endl;
 | 
|---|
| 360 |         return kFALSE;
 | 
|---|
| 361 |     }
 | 
|---|
| 362 | 
 | 
|---|
| 363 |     return kTRUE;
 | 
|---|
| 364 | }
 | 
|---|
| 365 | 
 | 
|---|
| 366 | Double_t MRanForestCalc::Eval() const
 | 
|---|
| 367 | {
 | 
|---|
| 368 |     TVector event;
 | 
|---|
| 369 |     if (fTestMatrix)
 | 
|---|
| 370 |         *fTestMatrix >> event;
 | 
|---|
| 371 |     else
 | 
|---|
| 372 |         *fData >> event;
 | 
|---|
| 373 | 
 | 
|---|
| 374 |     // --------------- Single Tree RF -------------------
 | 
|---|
| 375 |     if (fEForests.GetEntriesFast()==1)
 | 
|---|
| 376 |     {
 | 
|---|
| 377 |         MRanForest *rf = static_cast<MRanForest*>(fEForests.UncheckedAt(0));
 | 
|---|
| 378 |         return rf->CalcHadroness(event);
 | 
|---|
| 379 |     }
 | 
|---|
| 380 | 
 | 
|---|
| 381 |     // --------------- Multi Tree RF -------------------
 | 
|---|
| 382 |     static TF1 f1("f1", "gaus");
 | 
|---|
| 383 | 
 | 
|---|
| 384 |     Double_t sume = 0;
 | 
|---|
| 385 |     Double_t sumh = 0;
 | 
|---|
| 386 |     Double_t maxh = 0;
 | 
|---|
| 387 |     Double_t maxe = 0;
 | 
|---|
| 388 | 
 | 
|---|
| 389 |     Double_t max  = -1e10;
 | 
|---|
| 390 |     Double_t min  =  1e10;
 | 
|---|
| 391 | 
 | 
|---|
| 392 |     TIter Next(&fEForests);
 | 
|---|
| 393 |     MRanForest *rf = 0;
 | 
|---|
| 394 | 
 | 
|---|
| 395 |     TGraph g;
 | 
|---|
| 396 |     while ((rf=(MRanForest*)Next()))
 | 
|---|
| 397 |     {
 | 
|---|
| 398 |         const Double_t h = rf->CalcHadroness(event);
 | 
|---|
| 399 |         const Double_t e = rf->GetUserVal();
 | 
|---|
| 400 | 
 | 
|---|
| 401 |         g.SetPoint(g.GetN(), e, h);
 | 
|---|
| 402 | 
 | 
|---|
| 403 |         sume += e*h;
 | 
|---|
| 404 |         sumh += h;
 | 
|---|
| 405 | 
 | 
|---|
| 406 |         if (h>maxh)
 | 
|---|
| 407 |         {
 | 
|---|
| 408 |             maxh = h;
 | 
|---|
| 409 |             maxe = e;
 | 
|---|
| 410 |         }
 | 
|---|
| 411 |         if (e>max)
 | 
|---|
| 412 |             max = e;
 | 
|---|
| 413 |         if (e<min)
 | 
|---|
| 414 |             min = e;
 | 
|---|
| 415 |     }
 | 
|---|
| 416 | 
 | 
|---|
| 417 |     switch (fEstimationMode)
 | 
|---|
| 418 |     {
 | 
|---|
| 419 |     case kMean:
 | 
|---|
| 420 |         return sume/sumh;
 | 
|---|
| 421 |     case kMaximum:
 | 
|---|
| 422 |         return maxe;
 | 
|---|
| 423 |     case kFit:
 | 
|---|
| 424 |         f1.SetParameter(0, maxh);
 | 
|---|
| 425 |         f1.SetParameter(1, maxe);
 | 
|---|
| 426 |         f1.SetParameter(2, 0.125);
 | 
|---|
| 427 |         g.Fit(&f1, "Q0N");
 | 
|---|
| 428 |         return f1.GetParameter(1);
 | 
|---|
| 429 |     }
 | 
|---|
| 430 | 
 | 
|---|
| 431 |     return 0;
 | 
|---|
| 432 | }
 | 
|---|
| 433 | 
 | 
|---|
| 434 | Int_t MRanForestCalc::Process()
 | 
|---|
| 435 | {
 | 
|---|
| 436 |     const Double_t val = Eval();
 | 
|---|
| 437 | 
 | 
|---|
| 438 |     fRFOut->SetVal(fFunc.Eval(val));
 | 
|---|
| 439 |     fRFOut->SetReadyToSave();
 | 
|---|
| 440 | 
 | 
|---|
| 441 |     return kTRUE;
 | 
|---|
| 442 | }
 | 
|---|
| 443 | 
 | 
|---|
| 444 | void MRanForestCalc::Print(Option_t *o) const
 | 
|---|
| 445 | {
 | 
|---|
| 446 |     *fLog << all;
 | 
|---|
| 447 |     *fLog << GetDescriptor() << ":" << endl;
 | 
|---|
| 448 |     *fLog << " - Forest ";
 | 
|---|
| 449 |     switch (fEForests.GetEntries())
 | 
|---|
| 450 |     {
 | 
|---|
| 451 |     case 0:  *fLog << "not yet initialized." << endl;     break;
 | 
|---|
| 452 |     case 1:  *fLog << "is a single tree forest." << endl; break;
 | 
|---|
| 453 |     default: *fLog << "is a multi tree forest." << endl;  break;
 | 
|---|
| 454 |     }
 | 
|---|
| 455 |     /*
 | 
|---|
| 456 |      *fLog << " - Trees: " << fNumTrees << endl;
 | 
|---|
| 457 |      *fLog << " - Trys: " << fNumTry << endl;
 | 
|---|
| 458 |      *fLog << " - Node Size: " << fNdSize << endl;
 | 
|---|
| 459 |      *fLog << " - Node Size: " << fNdSize << endl;
 | 
|---|
| 460 |      */
 | 
|---|
| 461 |     *fLog << " - FileName: " << fFileName << endl;
 | 
|---|
| 462 |     *fLog << " - NameOutput: " << fNameOutput << endl;
 | 
|---|
| 463 | }
 | 
|---|
| 464 | 
 | 
|---|
| 465 | // --------------------------------------------------------------------------
 | 
|---|
| 466 | //
 | 
|---|
| 467 | //
 | 
|---|
| 468 | Int_t MRanForestCalc::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
 | 
|---|
| 469 | {
 | 
|---|
| 470 |     Bool_t rc = kFALSE;
 | 
|---|
| 471 |     if (IsEnvDefined(env, prefix, "FileName", print))
 | 
|---|
| 472 |     {
 | 
|---|
| 473 |         rc = kTRUE;
 | 
|---|
| 474 |         SetFileName(GetEnvValue(env, prefix, "FileName", fFileName));
 | 
|---|
| 475 |     }
 | 
|---|
| 476 |     if (IsEnvDefined(env, prefix, "Debug", print))
 | 
|---|
| 477 |     {
 | 
|---|
| 478 |         rc = kTRUE;
 | 
|---|
| 479 |         SetDebug(GetEnvValue(env, prefix, "Debug", fDebug));
 | 
|---|
| 480 |     }
 | 
|---|
| 481 |     if (IsEnvDefined(env, prefix, "NameOutput", print))
 | 
|---|
| 482 |     {
 | 
|---|
| 483 |         rc = kTRUE;
 | 
|---|
| 484 |         SetNameOutput(GetEnvValue(env, prefix, "NameOutput", fNameOutput));
 | 
|---|
| 485 |     }
 | 
|---|
| 486 |     if (IsEnvDefined(env, prefix, "EstimationMode", print))
 | 
|---|
| 487 |     {
 | 
|---|
| 488 |         TString txt = GetEnvValue(env, prefix, "EstimationMode", "");
 | 
|---|
| 489 |         txt = txt.Strip(TString::kBoth);
 | 
|---|
| 490 |         txt.ToLower();
 | 
|---|
| 491 |         if (txt==(TString)"mean")
 | 
|---|
| 492 |             fEstimationMode = kMean;
 | 
|---|
| 493 |         if (txt==(TString)"maximum")
 | 
|---|
| 494 |             fEstimationMode = kMaximum;
 | 
|---|
| 495 |         if (txt==(TString)"fit")
 | 
|---|
| 496 |             fEstimationMode = kFit;
 | 
|---|
| 497 |         rc = kTRUE;
 | 
|---|
| 498 |     }
 | 
|---|
| 499 |     return rc;
 | 
|---|
| 500 | }
 | 
|---|