source: trunk/Mars/msignal/MExtractTimeAndChargeSpline.cc@ 12706

Last change on this file since 12706 was 12629, checked in by tbretz, 13 years ago
Make the result of the noise alculation valid, so that it can directly be used on the tasklist.
File size: 15.8 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of MARS, the MAGIC Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analyzing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appear in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17! Author(s): Thomas Bretz <mailto:tbretz@astro.uni-wuerzbrug.de>
18! Author(s): Markus Gaug 09/2004 <mailto:markus@ifae.es>
19!
20! Copyright: MAGIC Software Development, 2002-2007
21!
22!
23\* ======================================================================== */
24
25//////////////////////////////////////////////////////////////////////////////
26//
27// MExtractTimeAndChargeSpline
28//
29// Fast Spline extractor using a cubic spline algorithm, adapted from
30// Numerical Recipes in C++, 2nd edition, pp. 116-119.
31//
32// The coefficients "ya" are here denoted as "fHiGainSignal" and "fLoGainSignal"
33// which means the FADC value subtracted by the clock-noise corrected pedestal.
34//
35// The coefficients "y2a" get immediately divided 6. and are called here
36// "fHiGainSecondDeriv" and "fLoGainSecondDeriv" although they are now not exactly
37// the second derivative coefficients any more.
38//
39// The calculation of the cubic-spline interpolated value "y" on a point
40// "x" along the FADC-slices axis becomes:
41//
42// y = a*fHiGainSignal[klo] + b*fHiGainSignal[khi]
43// + (a*a*a-a)*fHiGainSecondDeriv[klo] + (b*b*b-b)*fHiGainSecondDeriv[khi]
44//
45// with:
46// a = (khi - x)
47// b = (x - klo)
48//
49// and "klo" being the lower bin edge FADC index and "khi" the upper bin edge FADC index.
50// fHiGainSignal[klo] and fHiGainSignal[khi] are the FADC values at "klo" and "khi".
51//
52// An analogues formula is used for the low-gain values.
53//
54// The coefficients fHiGainSecondDeriv and fLoGainSecondDeriv are calculated with the
55// following simplified algorithm:
56//
57// for (Int_t i=1;i<range-1;i++) {
58// pp = fHiGainSecondDeriv[i-1] + 4.;
59// fHiGainFirstDeriv[i] = fHiGainSignal[i+1] - 2.*fHiGainSignal[i] + fHiGainSignal[i-1]
60// fHiGainFirstDeriv[i] = (6.0*fHiGainFirstDeriv[i]-fHiGainFirstDeriv[i-1])/pp;
61// }
62//
63// for (Int_t k=range-2;k>=0;k--)
64// fHiGainSecondDeriv[k] = (fHiGainSecondDeriv[k]*fHiGainSecondDeriv[k+1] + fHiGainFirstDeriv[k])/6.;
65//
66//
67// This algorithm takes advantage of the fact that the x-values are all separated by exactly 1
68// which simplifies the Numerical Recipes algorithm.
69// (Note that the variables "fHiGainFirstDeriv" are not real first derivative coefficients.)
70//
71// The algorithm to search the time proceeds as follows:
72//
73// 1) Calculate all fHiGainSignal from fHiGainFirst to fHiGainLast
74// (note that an "overlap" to the low-gain arrays is possible: i.e. fHiGainLast>14 in the case of
75// the MAGIC FADCs).
76// 2) Remember the position of the slice with the highest content "fAbMax" at "fAbMaxPos".
77// 3) If one or more slices are saturated or fAbMaxPos is less than 2 slices from fHiGainFirst,
78// return fAbMaxPos as time and fAbMax as charge (note that the pedestal is subtracted here).
79// 4) Calculate all fHiGainSecondDeriv from the fHiGainSignal array
80// 5) Search for the maximum, starting in interval fAbMaxPos-1 in steps of 0.2 till fAbMaxPos-0.2.
81// If no maximum is found, go to interval fAbMaxPos+1.
82// --> 4 function evaluations
83// 6) Search for the absolute maximum from fAbMaxPos to fAbMaxPos+1 in steps of 0.2
84// --> 4 function evaluations
85// 7) Try a better precision searching from new max. position fAbMaxPos-0.2 to fAbMaxPos+0.2
86// in steps of 0.025 (83 psec. in the case of the MAGIC FADCs).
87// --> 14 function evaluations
88// 8) If Time Extraction Type kMaximum has been chosen, the position of the found maximum is
89// returned, else:
90// 9) The Half Maximum is calculated.
91// 10) fHiGainSignal is called beginning from fAbMaxPos-1 backwards until a value smaller than fHalfMax
92// is found at "klo".
93// 11) Then, the spline value between "klo" and "klo"+1 is halfed by means of bisection as long as
94// the difference between fHalfMax and spline evaluation is less than fResolution (default: 0.01).
95// --> maximum 12 interations.
96//
97// The algorithm to search the charge proceeds as follows:
98//
99// 1) If Charge Type: kAmplitude was chosen, return the Maximum of the spline, found during the
100// time search.
101// 2) If Charge Type: kIntegral was chosen, sum the fHiGainSignal between:
102// (Int_t)(fAbMaxPos - fRiseTimeHiGain) and
103// (Int_t)(fAbMaxPos + fFallTimeHiGain)
104// (default: fRiseTime: 1.5, fFallTime: 4.5)
105// sum the fLoGainSignal between:
106// (Int_t)(fAbMaxPos - fRiseTimeHiGain*fLoGainStretch) and
107// (Int_t)(fAbMaxPos + fFallTimeHiGain*fLoGainStretch)
108// (default: fLoGainStretch: 1.5)
109//
110// The values: fNumHiGainSamples and fNumLoGainSamples are set to:
111// 1) If Charge Type: kAmplitude was chosen: 1.
112// 2) If Charge Type: kIntegral was chosen: fRiseTimeHiGain + fFallTimeHiGain
113// or: fNumHiGainSamples*fLoGainStretch in the case of the low-gain
114//
115// Call: SetRange(fHiGainFirst, fHiGainLast, fLoGainFirst, fLoGainLast)
116// to modify the ranges.
117//
118// Defaults:
119// fHiGainFirst = 2
120// fHiGainLast = 14
121// fLoGainFirst = 2
122// fLoGainLast = 14
123//
124// Call: SetResolution() to define the resolution of the half-maximum search.
125// Default: 0.01
126//
127// Call: SetRiseTime() and SetFallTime() to define the integration ranges
128// for the case, the extraction type kIntegral has been chosen.
129//
130// Call: - SetChargeType(MExtractTimeAndChargeSpline::kAmplitude) for the
131// computation of the amplitude at the maximum (default) and extraction
132// the position of the maximum (default)
133// --> no further function evaluation needed
134// - SetChargeType(MExtractTimeAndChargeSpline::kIntegral) for the
135// computation of the integral beneith the spline between fRiseTimeHiGain
136// from the position of the maximum to fFallTimeHiGain after the position of
137// the maximum. The Low Gain is computed with half a slice more at the rising
138// edge and half a slice more at the falling edge.
139// The time of the half maximum is returned.
140// --> needs one function evaluations but is more precise
141//
142//////////////////////////////////////////////////////////////////////////////
143#include "MExtractTimeAndChargeSpline.h"
144
145#include "MPedestalPix.h"
146
147#include "MLog.h"
148#include "MLogManip.h"
149
150ClassImp(MExtractTimeAndChargeSpline);
151
152using namespace std;
153
154const Byte_t MExtractTimeAndChargeSpline::fgHiGainFirst = 0;
155const Byte_t MExtractTimeAndChargeSpline::fgHiGainLast = 14;
156const Int_t MExtractTimeAndChargeSpline::fgLoGainFirst = 1;
157const Byte_t MExtractTimeAndChargeSpline::fgLoGainLast = 14;
158const Float_t MExtractTimeAndChargeSpline::fgResolution = 0.05;
159const Float_t MExtractTimeAndChargeSpline::fgRiseTimeHiGain = 0.64;
160const Float_t MExtractTimeAndChargeSpline::fgFallTimeHiGain = 0.76;
161const Float_t MExtractTimeAndChargeSpline::fgLoGainStretch = 1.5;
162const Float_t MExtractTimeAndChargeSpline::fgOffsetLoGain = 1.3;
163
164// --------------------------------------------------------------------------
165//
166// Default constructor.
167//
168// Calls:
169// - SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast)
170//
171// Initializes:
172// - fResolution to fgResolution
173// - fRiseTimeHiGain to fgRiseTimeHiGain
174// - fFallTimeHiGain to fgFallTimeHiGain
175// - Charge Extraction Type to kAmplitude
176// - fLoGainStretch to fgLoGainStretch
177//
178MExtractTimeAndChargeSpline::MExtractTimeAndChargeSpline(const char *name, const char *title)
179 : fRiseTimeHiGain(0), fFallTimeHiGain(0), fHeightTm(0.5), fExtractionType(MExtralgoSpline::kIntegralRel)
180{
181
182 fName = name ? name : "MExtractTimeAndChargeSpline";
183 fTitle = title ? title : "Calculate photons arrival time using a fast spline";
184
185 SetResolution();
186 SetLoGainStretch();
187 SetOffsetLoGain(fgOffsetLoGain);
188
189 SetRiseTimeHiGain();
190 SetFallTimeHiGain();
191
192 SetRange(fgHiGainFirst, fgHiGainLast, fgLoGainFirst, fgLoGainLast);
193}
194
195
196//-------------------------------------------------------------------
197//
198// Set the ranges
199// In order to set the fNum...Samples variables correctly for the case,
200// the integral is computed, have to overwrite this function and make an
201// explicit call to SetChargeType().
202//
203void MExtractTimeAndChargeSpline::SetRange(UShort_t hifirst, UShort_t hilast, Int_t lofirst, Byte_t lolast)
204{
205 MExtractor::SetRange(hifirst, hilast, lofirst, lolast);
206
207 SetChargeType(fExtractionType);
208}
209
210//-------------------------------------------------------------------
211//
212// Set the Charge Extraction type. Possible are:
213// - kAmplitude: Search the value of the spline at the maximum
214// - kIntegral: Integral the spline from fHiGainFirst to fHiGainLast,
215// by counting the edge bins only half and setting the
216// second derivative to zero, there.
217//
218void MExtractTimeAndChargeSpline::SetChargeType(MExtralgoSpline::ExtractionType_t typ)
219{
220 fExtractionType = typ;
221
222 InitArrays(fHiGainFirstDeriv.GetSize());
223
224 switch (fExtractionType)
225 {
226 case MExtralgoSpline::kAmplitude:
227 SetResolutionPerPheHiGain(0.053);
228 SetResolutionPerPheLoGain(0.016);
229 return;
230
231 case MExtralgoSpline::kIntegralRel:
232 case MExtralgoSpline::kIntegralAbs:
233 switch (fWindowSizeHiGain)
234 {
235 case 1:
236 SetResolutionPerPheHiGain(0.041);
237 break;
238 case 2:
239 SetResolutionPerPheHiGain(0.064);
240 break;
241 case 3:
242 case 4:
243 SetResolutionPerPheHiGain(0.050);
244 break;
245 case 5:
246 case 6:
247 SetResolutionPerPheHiGain(0.030);
248 break;
249 default:
250 *fLog << warn << GetDescriptor() << ": Could not set the high-gain extractor resolution per phe for window size "
251 << fWindowSizeHiGain << "... using default!" << endl;
252 SetResolutionPerPheHiGain(0.050);
253 break;
254 }
255
256 switch (fWindowSizeLoGain)
257 {
258 case 1:
259 case 2:
260 SetResolutionPerPheLoGain(0.005);
261 break;
262 case 3:
263 case 4:
264 SetResolutionPerPheLoGain(0.017);
265 break;
266 case 5:
267 case 6:
268 case 7:
269 SetResolutionPerPheLoGain(0.005);
270 break;
271 case 8:
272 case 9:
273 SetResolutionPerPheLoGain(0.005);
274 break;
275 default:
276 *fLog << warn << "Could not set the low-gain extractor resolution per phe for window size "
277 << fWindowSizeLoGain << "... using default!" << endl;
278 SetResolutionPerPheLoGain(0.005);
279 break;
280 }
281 }
282}
283
284// --------------------------------------------------------------------------
285//
286// InitArrays
287//
288// Gets called in the ReInit() and initialized the arrays
289//
290Bool_t MExtractTimeAndChargeSpline::InitArrays(Int_t n)
291{
292 // Initialize arrays to the maximum number of entries necessary
293 fHiGainFirstDeriv .Set(n);
294 fHiGainSecondDeriv.Set(n);
295
296 fLoGainFirstDeriv .Set(n);
297 fLoGainSecondDeriv.Set(n);
298
299 fRiseTimeLoGain = fRiseTimeHiGain * fLoGainStretch;
300 fFallTimeLoGain = fFallTimeHiGain * fLoGainStretch;
301
302 switch (fExtractionType)
303 {
304 case MExtralgoSpline::kAmplitude:
305 fNumHiGainSamples = 1.;
306 fNumLoGainSamples = fLoGainLast ? 1. : 0.;
307 fSqrtHiGainSamples = 1.;
308 fSqrtLoGainSamples = 1.;
309 fWindowSizeHiGain = 1;
310 fWindowSizeLoGain = 1;
311 fRiseTimeHiGain = 0.5;
312 break;
313
314 case MExtralgoSpline::kIntegralAbs:
315 case MExtralgoSpline::kIntegralRel:
316 fNumHiGainSamples = fRiseTimeHiGain + fFallTimeHiGain;
317 fNumLoGainSamples = fLoGainLast ? fRiseTimeLoGain + fFallTimeLoGain : 0.;
318 fSqrtHiGainSamples = TMath::Sqrt(fNumHiGainSamples);
319 fSqrtLoGainSamples = TMath::Sqrt(fNumLoGainSamples);
320 fWindowSizeHiGain = TMath::CeilNint(fRiseTimeHiGain + fFallTimeHiGain);
321 fWindowSizeLoGain = TMath::CeilNint(fRiseTimeLoGain + fFallTimeLoGain);
322 break;
323 }
324
325 return kTRUE;
326}
327
328void MExtractTimeAndChargeSpline::FindTimeAndChargeHiGain2(const Float_t *ptr, Int_t num,
329 Float_t &sum, Float_t &dsum,
330 Float_t &time, Float_t &dtime,
331 Byte_t sat, Int_t maxpos) const
332{
333 // Do some handling if maxpos is last slice!
334 MExtralgoSpline s(ptr, num, fHiGainFirstDeriv.GetArray(), fHiGainSecondDeriv.GetArray());
335
336 s.SetExtractionType(fExtractionType);
337 s.SetHeightTm(fHeightTm);
338 s.SetRiseFallTime(fRiseTimeHiGain, fFallTimeHiGain);
339
340 if (IsNoiseCalculation())
341 {
342 sum = s.ExtractNoise();
343 dsum = 1;
344 return;
345 }
346
347 s.Extract(maxpos);
348 s.GetTime(time, dtime);
349 s.GetSignal(sum, dsum);
350}
351
352void MExtractTimeAndChargeSpline::FindTimeAndChargeLoGain2(const Float_t *ptr, Int_t num,
353 Float_t &sum, Float_t &dsum,
354 Float_t &time, Float_t &dtime,
355 Byte_t sat, Int_t maxpos) const
356{
357 MExtralgoSpline s(ptr, num, fLoGainFirstDeriv.GetArray(), fLoGainSecondDeriv.GetArray());
358
359 s.SetExtractionType(fExtractionType);
360 s.SetHeightTm(fHeightTm);
361 s.SetRiseFallTime(fRiseTimeLoGain, fFallTimeLoGain);
362
363 if (IsNoiseCalculation())
364 {
365 sum = s.ExtractNoise();
366 return;
367 }
368
369 s.Extract(maxpos);
370 s.GetTime(time, dtime);
371 s.GetSignal(sum, dsum);
372}
373
374// --------------------------------------------------------------------------
375//
376// In addition to the resources of the base-class MExtractor:
377// Resolution
378// RiseTimeHiGain
379// FallTimeHiGain
380// LoGainStretch
381// ExtractionType: amplitude, integral
382//
383Int_t MExtractTimeAndChargeSpline::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
384{
385
386 Bool_t rc = kFALSE;
387
388 if (IsEnvDefined(env, prefix, "Resolution", print))
389 {
390 SetResolution(GetEnvValue(env, prefix, "Resolution",fResolution));
391 rc = kTRUE;
392 }
393 if (IsEnvDefined(env, prefix, "RiseTimeHiGain", print))
394 {
395 SetRiseTimeHiGain(GetEnvValue(env, prefix, "RiseTimeHiGain", fRiseTimeHiGain));
396 rc = kTRUE;
397 }
398 if (IsEnvDefined(env, prefix, "FallTimeHiGain", print))
399 {
400 SetFallTimeHiGain(GetEnvValue(env, prefix, "FallTimeHiGain", fFallTimeHiGain));
401 rc = kTRUE;
402 }
403 if (IsEnvDefined(env, prefix, "LoGainStretch", print))
404 {
405 SetLoGainStretch(GetEnvValue(env, prefix, "LoGainStretch", fLoGainStretch));
406 rc = kTRUE;
407 }
408 if (IsEnvDefined(env, prefix, "HeightTm", print))
409 {
410 fHeightTm = GetEnvValue(env, prefix, "HeightTm", fHeightTm);
411 rc = kTRUE;
412 }
413
414 if (IsEnvDefined(env, prefix, "ExtractionType", print))
415 {
416 TString type = GetEnvValue(env, prefix, "ExtractionType", "");
417 type.ToLower();
418 type = type.Strip(TString::kBoth);
419 if (type==(TString)"amplitude")
420 SetChargeType(MExtralgoSpline::kAmplitude);
421 if (type==(TString)"integralabsolute")
422 SetChargeType(MExtralgoSpline::kIntegralAbs);
423 if (type==(TString)"integralrelative")
424 SetChargeType(MExtralgoSpline::kIntegralRel);
425 rc=kTRUE;
426 }
427
428 return MExtractTimeAndCharge::ReadEnv(env, prefix, print) ? kTRUE : rc;
429}
Note: See TracBrowser for help on using the repository browser.