1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appears in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz, 1/2009 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: CheObs Software Development, 2000-2019
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MAtmosphere
|
---|
28 | //
|
---|
29 | // Class to calculate atmospheric absorption.
|
---|
30 | //
|
---|
31 | //////////////////////////////////////////////////////////////////////////////
|
---|
32 | #include "MAtmosphere.h"
|
---|
33 |
|
---|
34 | #include <fstream>
|
---|
35 |
|
---|
36 | #include <TGraph.h>
|
---|
37 |
|
---|
38 | #include "MLog.h"
|
---|
39 | #include "MLogManip.h"
|
---|
40 |
|
---|
41 | #include "MParList.h"
|
---|
42 |
|
---|
43 | #include "MCorsikaRunHeader.h"
|
---|
44 | #include "MPhotonEvent.h"
|
---|
45 | #include "MPhotonData.h"
|
---|
46 |
|
---|
47 | ClassImp(MAtmosphere);
|
---|
48 | ClassImp(MAtmRayleigh);
|
---|
49 |
|
---|
50 | using namespace std;
|
---|
51 |
|
---|
52 | // ==========================================================================
|
---|
53 | //
|
---|
54 | // January 2002, A. Moralejo: We now precalculate the slant paths for the
|
---|
55 | // aerosol and Ozone vertical profiles, and then do an interpolation in
|
---|
56 | // wavelength for every photon to get the optical depths. The parameters
|
---|
57 | // used, defined below, have been taken from "Atmospheric Optics", by
|
---|
58 | // L. Elterman and R.B. Toolin, chapter 7 of the "Handbook of geophysics
|
---|
59 | // and Space environments". (S.L. Valley, editor). McGraw-Hill, NY 1965.
|
---|
60 | //
|
---|
61 | // WARNING: the Mie scattering and the Ozone absorption are implemented
|
---|
62 | // to work only with photons produced at a height a.s.l larger than the
|
---|
63 | // observation level. So this is not expected to work well for simulating
|
---|
64 | // the telescope pointing at theta > 90 deg (for instance for neutrino
|
---|
65 | // studies. Rayleigh scattering works even for light coming from below.
|
---|
66 | //
|
---|
67 | // Fixed bugs (of small influence) in Mie absorption implementation: there
|
---|
68 | // were errors in the optical depths table, as well as a confusion:
|
---|
69 | // height a.s.l. was used as if it was height above the telescope level.
|
---|
70 | // The latter error was also present in the Ozone aborption implementation.
|
---|
71 | //
|
---|
72 | // On the other hand, now we have the tables AE_ABI and OZ_ABI with optical
|
---|
73 | // depths between sea level and a height h (before it was between 2km a.s.l
|
---|
74 | // and a height h). So that we can simulate also in the future a different
|
---|
75 | // observation level.
|
---|
76 | //
|
---|
77 | // AM: WARNING: IF VERY LARGE zenith angle simulations are to be done (say
|
---|
78 | // above 85 degrees, for neutrino primaries or any other purpose) this code
|
---|
79 | // will have to be adapted accordingly and checked, since in principle it has
|
---|
80 | // been written and tested to simulate the absorption of Cherenkov photons
|
---|
81 | // arriving at the telescope from above.
|
---|
82 | //
|
---|
83 | // AM: WARNING 2: not to be used for wavelengths outside the range 250-700 nm
|
---|
84 | //
|
---|
85 | // January 2003, Abelardo Moralejo: found error in Ozone absorption treatment.
|
---|
86 | // At large zenith angles, the air mass used was the one calculated for
|
---|
87 | // Rayleigh scattering, but since the Ozone distribution is rather different
|
---|
88 | // from the global distribution of air molecules, this is not a good
|
---|
89 | // approximation. Now I have left in this code only the Rayleigh scattering,
|
---|
90 | // and moved to atm.c the Mie scattering and Ozone absorption calculated in
|
---|
91 | // a better way.
|
---|
92 | //
|
---|
93 | // A. Moralejo, January 2003: added some parameters for Mie scattering
|
---|
94 | // and Ozone absorption derived from the clear standard atmosphere model
|
---|
95 | // in "Atmospheric Optics", by L. Elterman and R.B. Toolin, chapter 7 of
|
---|
96 | // the "Handbook of geophysics and Space environments". S.L. Valley,
|
---|
97 | // editor. McGraw-Hill, NY 1965.
|
---|
98 | //
|
---|
99 | // AM, Jan 2003: Changed the meaning of the argument height: now it is the
|
---|
100 | // true height above sea level at which a photon has been emitted, before
|
---|
101 | // it was the height given by Corsika, measured in the vertical of the
|
---|
102 | // observer and not in the vertical of the emitting particle.
|
---|
103 | //
|
---|
104 | //
|
---|
105 | // MAGIC-Winter and MAGIC-Summer by M. Haffke,
|
---|
106 | // parametrizing profiles obtained with MSIS:
|
---|
107 | // http://uap-www.nrl.navy.mil/models_web/msis/msis_home.htm
|
---|
108 | //
|
---|
109 | //
|
---|
110 | // The MAGIC-Winter and MAGIC-Summer parametrisations reproduce the MSIS
|
---|
111 | // profiles for the 3 atmospheric layers from 0 up to 40 km height. Beyond
|
---|
112 | // that height, it was not possible to achieve a good fit, but the amount
|
---|
113 | // of residual atmosphere is so small that light absorption would be
|
---|
114 | // negligible anyway. Showers develop well below 40 km.
|
---|
115 | //
|
---|
116 | //
|
---|
117 | // The mass overburden is given by T = AATM + BATM * exp(-h/CATM)
|
---|
118 | // The last layer of the US standard atmosphere (in which T varies
|
---|
119 | // linearly with h) is above 100 km and has not been included here
|
---|
120 | // because it should not matter.
|
---|
121 | //
|
---|
122 |
|
---|
123 | const Double_t MAtmosphere::STEPTHETA = 1.74533e-2; // aprox. 1 degree
|
---|
124 |
|
---|
125 | const Double_t MAtmRayleigh::fgMeanFreePath = 2970;
|
---|
126 |
|
---|
127 | const Double_t MAtmosphere::aero_n[31] = {200, 87, 38, 16, 7.2, 3.1, 1.1, 0.4, 0.14, 5.0e-2, 2.6e-2, 2.3e-2, 2.1e-2, 2.3e-2, 2.5e-2, 4.1e-2, 6.7e-2, 7.3e-2, 8.0e-2, 9.0e-2, 8.6e-2, 8.2e-2, 8.0e-2, 7.6e-2, 5.2e-2, 3.6e-2, 2.5e-2, 2.4e-2, 2.2e-2, 2.0e-2, 1.9e-2};
|
---|
128 |
|
---|
129 | const Double_t MAtmosphere::oz_conc[51]={0.3556603E-02, 0.3264150E-02, 0.2933961E-02, 0.2499999E-02, 0.2264150E-02, 0.2207546E-02, 0.2160377E-02, 0.2226414E-02, 0.2283018E-02, 0.2811320E-02, 0.3499999E-02, 0.4603772E-02, 0.6207545E-02, 0.8452828E-02, 0.9528299E-02, 0.9905657E-02, 0.1028302E-01, 0.1113207E-01, 0.1216981E-01, 0.1424528E-01, 0.1641509E-01, 0.1839622E-01, 0.1971697E-01, 0.1981131E-01, 0.1933962E-01, 0.1801886E-01, 0.1632075E-01, 0.1405660E-01, 0.1226415E-01, 0.1066037E-01, 0.9028300E-02, 0.7933960E-02, 0.6830187E-02, 0.5820753E-02, 0.4830188E-02, 0.4311319E-02, 0.3613206E-02, 0.3018867E-02, 0.2528301E-02, 0.2169811E-02, 0.1858490E-02, 0.1518867E-02, 0.1188679E-02, 0.9301884E-03, 0.7443394E-03, 0.5764149E-03, 0.4462263E-03, 0.3528301E-03, 0.2792452E-03, 0.2226415E-03, 0.1858490E-03};
|
---|
130 |
|
---|
131 | MAtmRayleigh::MAtmRayleigh() : fR(MCorsikaRunHeader::fgEarthRadius),
|
---|
132 | // U.S. Standard Atmosphere (after Keilhauer)
|
---|
133 | fHeight{0, 7.0e5, 11.4e5, 37.0e5, 100e5},
|
---|
134 | //fAtmA{-149.801663, -57.932486, 0.63631894, 4.35453690e-4},
|
---|
135 | fAtmB{1183.6071, 1143.0425, 1322.9748, 655.67307},
|
---|
136 | fAtmC{954248.34, 800005.34, 629568.93, 737521.77},
|
---|
137 | fObsLevel(-1)
|
---|
138 |
|
---|
139 | {
|
---|
140 | }
|
---|
141 |
|
---|
142 | // --------------------------------------------------------------------------
|
---|
143 | //
|
---|
144 | // Precalcalculate the integrals from the observer level to the next
|
---|
145 | // atmpsheric layer below including the lower boundary. Thus a
|
---|
146 | // correct calculation is reduced to the calculation of the upper
|
---|
147 | // boundary.
|
---|
148 | //
|
---|
149 | // fRho[0] = B0;
|
---|
150 | // fRho[1] = B0-A0 + B1;
|
---|
151 | // fRho[2] = B0-A0 + B1-A1 + B2;
|
---|
152 | // fRho[3] = B0-A0 + B1-A1 + B2+A2 + B3;
|
---|
153 | // fRho[4] = B0-A0 + B1-A1 + B2+A2 + B3 - A3;
|
---|
154 | //
|
---|
155 | void MAtmRayleigh::PreCalcRho()
|
---|
156 | {
|
---|
157 | // Limits (height in cm) of the four layers in which
|
---|
158 | // atmosphere is parametrized.
|
---|
159 | // This is a stupid trick giving 0 for the integrals below
|
---|
160 | // the observer
|
---|
161 |
|
---|
162 | fRho[0] = 0;
|
---|
163 | for (int i=0; i<4; i++)
|
---|
164 | {
|
---|
165 | // Below the observation level, the atmospheric overburden is 0
|
---|
166 | const Float_t &h1 = fHeight[i+1];
|
---|
167 | if (h1<=fObsLevel)
|
---|
168 | fRho[i] = 0;
|
---|
169 |
|
---|
170 | // Start integration of the overburden at fObsLevel
|
---|
171 | const Float_t &h0 = TMath::Max(fHeight[i], fObsLevel);
|
---|
172 |
|
---|
173 | const Float_t &b = fAtmB[i];
|
---|
174 | const Float_t &c = fAtmC[i];
|
---|
175 |
|
---|
176 | const Double_t B = b*TMath::Exp(-h0/c);
|
---|
177 | const Double_t A = b*TMath::Exp(-h1/c);
|
---|
178 |
|
---|
179 | // Calculate rho for the i-th layer from the lower
|
---|
180 | // to the higher layer boundary.
|
---|
181 | // If height is within the layer only calculate up to height.
|
---|
182 | fRho[i] += B;
|
---|
183 | fRho[i+1] = fRho[i] - A;
|
---|
184 | }
|
---|
185 | }
|
---|
186 |
|
---|
187 | void MAtmRayleigh::Init(Float_t obs)
|
---|
188 | {
|
---|
189 | // Observation level above earth radius
|
---|
190 | fObsLevel = obs;
|
---|
191 | PreCalcRho();
|
---|
192 | }
|
---|
193 |
|
---|
194 | void MAtmRayleigh::Init(Float_t obs, const Float_t *atmb, const Float_t *atmc, const Float_t *height)
|
---|
195 | {
|
---|
196 | memcpy(fAtmB, atmb, sizeof(Float_t)*4);
|
---|
197 | memcpy(fAtmC, atmc, sizeof(Float_t)*4);
|
---|
198 | memcpy(fHeight, height, sizeof(Float_t)*5);
|
---|
199 |
|
---|
200 | Init(obs);
|
---|
201 | }
|
---|
202 |
|
---|
203 | // Init an atmosphere from the data stored in MCorsikaRunHeader
|
---|
204 | // This initialized fObsLevel, fR, fAtmB and fAtmC and
|
---|
205 | // PreCalcRho
|
---|
206 | void MAtmRayleigh::Init(const MCorsikaRunHeader &h)
|
---|
207 | {
|
---|
208 | // Use earth radius as defined in Corsika
|
---|
209 | fR = h.EarthRadius();
|
---|
210 |
|
---|
211 | //memcpy(fAtmA, h.GetAtmosphericCoeffA(), sizeof(Float_t)*4);
|
---|
212 | Init(h.GetObsLevel(), h.GetAtmosphericCoeffB(), h.GetAtmosphericCoeffC(), h.GetAtmosphericLayers());
|
---|
213 | }
|
---|
214 |
|
---|
215 | // Return the vertical thickness between the observer and height.
|
---|
216 | // Therefor the integral of the layers below (including the lower
|
---|
217 | // boudary) Have been precalculated by PreCalcRho
|
---|
218 | Double_t MAtmRayleigh::GetVerticalThickness(Double_t height) const
|
---|
219 | {
|
---|
220 | if (height<=fObsLevel)
|
---|
221 | return 0;
|
---|
222 |
|
---|
223 | // FIXME: We could store the start point above obs-level
|
---|
224 | // (Does this really gain anything?)
|
---|
225 | Int_t i=0;
|
---|
226 | while (i<4 && height>fHeight[i+1])
|
---|
227 | i++;
|
---|
228 |
|
---|
229 | const Double_t b = fAtmB[i];
|
---|
230 | const Double_t c = fAtmC[i];
|
---|
231 |
|
---|
232 | // fRho is the integral up to the lower bound of the layer or the
|
---|
233 | // observation level is the obervation level is within the bin
|
---|
234 | return fRho[i] - b*TMath::Exp(-height/c);
|
---|
235 | }
|
---|
236 |
|
---|
237 | /*
|
---|
238 | // The "orginal" code for the vertical thickness
|
---|
239 | Double_t GetVerticalThickness(Double_t obslev, Double_t height) const
|
---|
240 | {
|
---|
241 | // This is a C++-version of the original code from attenu.c
|
---|
242 |
|
---|
243 | // Limits (height in cm) of the four layers in which atmosphere is parametrized:
|
---|
244 | const double lahg[5] =
|
---|
245 | {
|
---|
246 | obslev,
|
---|
247 | TMath::Max(obslev, 4e5),
|
---|
248 | 1.0e6,
|
---|
249 | 4.0e6,
|
---|
250 | 1.0e7
|
---|
251 | };
|
---|
252 |
|
---|
253 | Double_t Rho_Tot = 0.0;
|
---|
254 | for (int i=0; i<4; i++)
|
---|
255 | {
|
---|
256 | const Double_t b = fAtmB[i];
|
---|
257 | const Double_t c = fAtmC[i];
|
---|
258 |
|
---|
259 | const Double_t h0 = TMath::Min(height, lahg[i+1]);
|
---|
260 | const Double_t h1 = lahg[i];
|
---|
261 |
|
---|
262 | // Calculate rho for the i-th layer from the lower
|
---|
263 | // to the higher layer boundary.
|
---|
264 | // If height is within the layer only calculate up to height.
|
---|
265 | Rho_Tot += b*(exp(-h1/c) - exp(-h0/c));
|
---|
266 |
|
---|
267 | if (lahg[i+1] > height)
|
---|
268 | break;
|
---|
269 | }
|
---|
270 |
|
---|
271 | return Rho_Tot;
|
---|
272 | }
|
---|
273 | */
|
---|
274 |
|
---|
275 | Double_t MAtmRayleigh::CalcTransmission(Double_t height, Double_t wavelength, Double_t sin2) const
|
---|
276 | {
|
---|
277 | // sin2: sin(theta)^2
|
---|
278 | // height is the true height a.s.l.
|
---|
279 |
|
---|
280 | // LARGE ZENITH ANGLE FACTOR (AIR MASS FACTOR):
|
---|
281 | // Air mass factor "airmass" calculated using a one-exponential
|
---|
282 | // density profile for the atmosphere,
|
---|
283 | //
|
---|
284 | // rho = rho_0 exp(-height/hscale) with hscale = 7.4 km
|
---|
285 | //
|
---|
286 | // The air mass factor is defined as I(theta)/I(0), the ratio of
|
---|
287 | // the optical paths I (in g/cm2) traversed between two given
|
---|
288 | // heights, at theta and at 0 deg z.a.
|
---|
289 |
|
---|
290 | const Double_t H = height-fObsLevel;
|
---|
291 | const Double_t h = 2*H;
|
---|
292 |
|
---|
293 | // Scale-height (cm) for Exponential density profile
|
---|
294 | const Double_t hscale = 7.4e5;
|
---|
295 | const Double_t f = 2*hscale;
|
---|
296 |
|
---|
297 | // Precalc R*cos(theta)^2 (FIXME: Is ph.GetCosW2 more precise?)
|
---|
298 | const Double_t Rcos2 = fR * (1-sin2); // cos2 = 1 - sin2
|
---|
299 |
|
---|
300 | const Double_t x1 = TMath::Sqrt((Rcos2 ) / f);
|
---|
301 | const Double_t x2 = TMath::Sqrt((Rcos2 + 2*h) / f);
|
---|
302 | const Double_t x3 = TMath::Sqrt((fR ) / f);
|
---|
303 | const Double_t x4 = TMath::Sqrt((fR + 2*h) / f);
|
---|
304 |
|
---|
305 | // Return a -1 transmittance in the case the photon comes
|
---|
306 | // exactly from the observation level, because in that case the
|
---|
307 | // "air mass factor" would become infinity and the calculation
|
---|
308 | // is not valid!
|
---|
309 | if (fabs(x3-x4) < 1.e-10)
|
---|
310 | return -1.;
|
---|
311 |
|
---|
312 | const Double_t e12 = erfc(x1) - erfc(x2);
|
---|
313 | const Double_t e34 = erfc(x3) - erfc(x4);
|
---|
314 |
|
---|
315 | const Double_t airmass = TMath::Exp(-fR*sin2 / f) * e12/e34;
|
---|
316 |
|
---|
317 | // Calculate the traversed "vertical thickness" of air using the
|
---|
318 | // US Standard atmosphere:
|
---|
319 | const Double_t Rho_tot = GetVerticalThickness(/*fObsLevel,*/ height);
|
---|
320 |
|
---|
321 | // We now convert from "vertical thickness" to "slanted thickness"
|
---|
322 | // traversed by the photon on its way to the telescope, simply
|
---|
323 | // multiplying by the air mass factor m:
|
---|
324 | const Double_t Rho_Fi = airmass * Rho_tot;
|
---|
325 |
|
---|
326 | // Finally we calculate the transmission coefficient for the Rayleigh
|
---|
327 | // scattering:
|
---|
328 | // AM Dec 2002, introduced ABS below to account (in the future) for
|
---|
329 | // possible photons coming from below the observation level.
|
---|
330 |
|
---|
331 | const Double_t wl = 400./wavelength;
|
---|
332 |
|
---|
333 | // Mean free path for scattering Rayleigh XR (g/cm^2)
|
---|
334 | return TMath::Exp(-TMath::Abs(Rho_Fi/fgMeanFreePath)*wl*wl*wl*wl);
|
---|
335 | }
|
---|
336 |
|
---|
337 | // ==========================================================================
|
---|
338 |
|
---|
339 | // Interpolate the graph at wavelength
|
---|
340 | Double_t MAtmosphere::GetBeta(Double_t wavelength, const TGraph &g) const
|
---|
341 | {
|
---|
342 | // FIXME: This might not be the fastest because range
|
---|
343 | // checks are done for each call!
|
---|
344 | return g.GetN()==0 ? 0 : g.Eval(wavelength)*1e-5; // from km^-1 to cm^-1
|
---|
345 | /*
|
---|
346 | // Linear interpolation
|
---|
347 | // (FIXME: Is it faster to be replaced with a binary search?)
|
---|
348 | // ( This might be faster because we have more photons
|
---|
349 | // with smaller wavelengths)
|
---|
350 | //int index;
|
---|
351 | //for (index = 1; index <g.GetN()-1; index++)
|
---|
352 | // if (wavelength < g.GetX()[index])
|
---|
353 | // break;
|
---|
354 | const Int_t index = TMath::BinarySearch(g.GetN(), g.GetX(), wavelength)+1;
|
---|
355 |
|
---|
356 | const Double_t t0 = g.GetY()[index-1];
|
---|
357 | const Double_t t1 = g.GetY()[index];
|
---|
358 |
|
---|
359 | const Double_t w0 = g.GetX()[index-1];
|
---|
360 | const Double_t w1 = g.GetX()[index];
|
---|
361 |
|
---|
362 | const Double_t beta0 = t0+(t1-t0)*(wavelength-w0)/(w1-w0);
|
---|
363 |
|
---|
364 | return beta0 * 1e-5; // from km^-1 to cm^-1
|
---|
365 | */
|
---|
366 | }
|
---|
367 |
|
---|
368 | MAtmosphere::~MAtmosphere()
|
---|
369 | {
|
---|
370 | if (fAbsCoeffOzone)
|
---|
371 | delete fAbsCoeffOzone;
|
---|
372 | if (fAbsCoeffAerosols)
|
---|
373 | delete fAbsCoeffAerosols;
|
---|
374 | }
|
---|
375 |
|
---|
376 | Float_t MAtmosphere::GetWavelengthMin() const
|
---|
377 | {
|
---|
378 | return fAbsCoeffOzone && fAbsCoeffAerosols ? TMath::Max(fAbsCoeffOzone->GetX()[0], fAbsCoeffAerosols->GetX()[0]) : -1;
|
---|
379 | }
|
---|
380 |
|
---|
381 | Float_t MAtmosphere::GetWavelengthMax() const
|
---|
382 | {
|
---|
383 | return fAbsCoeffOzone && fAbsCoeffAerosols ? TMath::Min(fAbsCoeffOzone->GetX()[fAbsCoeffOzone->GetN()-1], fAbsCoeffAerosols->GetX()[fAbsCoeffAerosols->GetN()-1]) : -1;
|
---|
384 | }
|
---|
385 |
|
---|
386 | Bool_t MAtmosphere::HasValidOzone() const
|
---|
387 | {
|
---|
388 | return fAbsCoeffOzone && fAbsCoeffOzone->GetN()>0;
|
---|
389 | }
|
---|
390 |
|
---|
391 | Bool_t MAtmosphere::HasValidAerosol() const
|
---|
392 | {
|
---|
393 | return fAbsCoeffAerosols && fAbsCoeffAerosols->GetN()>0;
|
---|
394 | }
|
---|
395 |
|
---|
396 | void MAtmosphere::PreCalcOzone()
|
---|
397 | {
|
---|
398 | // It follows a precalculation of the slant path integrals we need
|
---|
399 | // for the estimate of the Mie scattering and Ozone absorption:
|
---|
400 | Double_t dh = 1.e3;
|
---|
401 | //const Double_t STEPTHETA = 1.74533e-2; // aprox. 1 degree
|
---|
402 |
|
---|
403 | // Ozone absorption
|
---|
404 | for (Int_t j = 0; j < 90; j++)
|
---|
405 | {
|
---|
406 | const Double_t theta = j * STEPTHETA;
|
---|
407 | const Double_t sin2 = sin(theta)*sin(theta);
|
---|
408 | const Double_t H = R()+fObsLevel;
|
---|
409 |
|
---|
410 | Double_t path_slant = 0;
|
---|
411 | for (Double_t h=fObsLevel; h<50e5+dh/2; h+=dh)
|
---|
412 | {
|
---|
413 | // h is the true height vertical above ground
|
---|
414 | //if (fmod(h,1e4) == 0)
|
---|
415 | {
|
---|
416 | ozone_path[TMath::FloorNint(h/1e4)][j] = path_slant;
|
---|
417 | }
|
---|
418 |
|
---|
419 | const Double_t km = h/1e5;
|
---|
420 | const Int_t i = TMath::FloorNint(km);
|
---|
421 | const Double_t l = R()+h;
|
---|
422 |
|
---|
423 | const Double_t L = TMath::Sqrt(l*l - H*H * sin2);
|
---|
424 | const Double_t f = dh * l / L;
|
---|
425 |
|
---|
426 | // Linear interpolation at h/1e5
|
---|
427 | Double_t interpol = oz_conc[i] + fmod(km, 1) * (oz_conc[i+1]-oz_conc[i]);
|
---|
428 |
|
---|
429 | path_slant += f * interpol;
|
---|
430 | }
|
---|
431 | }
|
---|
432 | }
|
---|
433 |
|
---|
434 | void MAtmosphere::PreCalcAerosol()
|
---|
435 | {
|
---|
436 | // It follows a precalculation of the slant path integrals we need
|
---|
437 | // for the estimate of the Mie scattering and Ozone absorption:
|
---|
438 | Double_t dh = 1.e3;
|
---|
439 | //const Double_t STEPTHETA = 1.74533e-2; // aprox. 1 degree
|
---|
440 |
|
---|
441 | /* Mie (aerosol): */
|
---|
442 | for (Int_t j = 0; j < 90; j++)
|
---|
443 | {
|
---|
444 | const Double_t theta = j * STEPTHETA;
|
---|
445 | const Double_t sin2 = sin(theta)*sin(theta);
|
---|
446 | const Double_t H = R()+fObsLevel;
|
---|
447 |
|
---|
448 | Double_t path_slant = 0;
|
---|
449 | for (Double_t h=fObsLevel; h<=30e5+dh/2; h+=dh)
|
---|
450 | {
|
---|
451 | // h is the true height vertical above ground
|
---|
452 | //if (fmod(h,1e4) == 0)
|
---|
453 | {
|
---|
454 | aerosol_path[TMath::FloorNint(h/1e4)][j] = path_slant;
|
---|
455 | }
|
---|
456 |
|
---|
457 | const Double_t km = h/1e5;
|
---|
458 | const Int_t i = TMath::FloorNint(km);
|
---|
459 | const Double_t l = R()+h;
|
---|
460 |
|
---|
461 | const Double_t L = TMath::Sqrt(l*l - H*H * sin2);
|
---|
462 | const Double_t f = dh * l / L;
|
---|
463 |
|
---|
464 | // Linear interpolation at h/1e5
|
---|
465 | Double_t interpol = aero_n[i] + fmod(km, 1)*(aero_n[i+1]-aero_n[i]);
|
---|
466 |
|
---|
467 | path_slant += f * interpol/aero_n[0]; // aero_n [km^-1]
|
---|
468 | }
|
---|
469 | }
|
---|
470 | }
|
---|
471 |
|
---|
472 | Bool_t MAtmosphere::InitOzone(const TString name)
|
---|
473 | {
|
---|
474 | if (!name.IsNull())
|
---|
475 | {
|
---|
476 | if (fAbsCoeffOzone)
|
---|
477 | delete fAbsCoeffOzone;
|
---|
478 |
|
---|
479 | fAbsCoeffOzone = new TGraph(name);
|
---|
480 | fAbsCoeffOzone->Sort();
|
---|
481 | }
|
---|
482 |
|
---|
483 | if (!HasValidOzone())
|
---|
484 | return kFALSE;
|
---|
485 |
|
---|
486 | if (IsValid())
|
---|
487 | PreCalcOzone();
|
---|
488 |
|
---|
489 | return kTRUE;
|
---|
490 | }
|
---|
491 |
|
---|
492 | Bool_t MAtmosphere::InitAerosols(const TString name)
|
---|
493 | {
|
---|
494 | if (!name.IsNull())
|
---|
495 | {
|
---|
496 | if (fAbsCoeffAerosols)
|
---|
497 | delete fAbsCoeffAerosols;
|
---|
498 |
|
---|
499 | fAbsCoeffAerosols = new TGraph(name);
|
---|
500 | fAbsCoeffAerosols->Sort();
|
---|
501 | }
|
---|
502 |
|
---|
503 | if (!HasValidAerosol())
|
---|
504 | return kFALSE;
|
---|
505 |
|
---|
506 | if (IsValid())
|
---|
507 | PreCalcAerosol();
|
---|
508 |
|
---|
509 | return kTRUE;
|
---|
510 | }
|
---|
511 |
|
---|
512 | /*
|
---|
513 | Double_t GetOz(Double_t height, Double_t theta) const
|
---|
514 | {
|
---|
515 | // Distance between two points D = 1km /cos(theta)
|
---|
516 | // Density along y within this km: f = (x[i+1]-x[i])/1km * dy
|
---|
517 | // Integral of this density f = (x[i+1]-x[i])/1km * (y[i+1]-y[i])
|
---|
518 | // f(h) = int [ (c1-c0)/1km*(h-h0)*dh + c0 ] dh
|
---|
519 | // = (c-co)*(h-h0)
|
---|
520 |
|
---|
521 | Double_t rc = 0;
|
---|
522 | int i;
|
---|
523 | for (i=0; i<49; i++)
|
---|
524 | if (i>=2 && i+1<height/1e5) // cm -> km
|
---|
525 | rc += oz_conc[i] * 1e5/cos(theta);
|
---|
526 |
|
---|
527 | rc -= oz_conc[2]*0.2*1e5/cos(theta);
|
---|
528 | rc += oz_conc[i+1]*fmod(height/1e5,1)*1e5/cos(theta);
|
---|
529 |
|
---|
530 | return rc;
|
---|
531 | }
|
---|
532 | */
|
---|
533 |
|
---|
534 | Double_t MAtmosphere::CalcOzoneAbsorption(Double_t h, Double_t wavelength, Double_t theta) const
|
---|
535 | {
|
---|
536 | if (!fAbsCoeffOzone)
|
---|
537 | return 1;
|
---|
538 |
|
---|
539 | //******* Ozone absorption *******
|
---|
540 |
|
---|
541 | // Vigroux Ozone absorption coefficient a.s.l. through interpolation:
|
---|
542 | //const float oz_vigroux[15]= {1.06e2, 1.01e1, 8.98e-1, 6.40e-2, 1.80e-3, 0, 0, 3.50e-3, 3.45e-2, 9.20e-2, 1.32e-1, 6.20e-2, 2.30e-2, 1.00e-2, 0.00};
|
---|
543 | //const Double_t beta0 = getbeta(wavelength, oz_vigroux);
|
---|
544 | const Double_t beta0 = GetBeta(wavelength, *fAbsCoeffOzone);
|
---|
545 |
|
---|
546 | // Now use the pre-calculated values of the path integral
|
---|
547 | // for h and theta
|
---|
548 | const UInt_t H = TMath::Min(500, TMath::Nint(h/1e4));
|
---|
549 | const UInt_t T = TMath::Min( 89, TMath::Nint(theta/STEPTHETA));
|
---|
550 |
|
---|
551 | const Double_t path = ozone_path[H][T];
|
---|
552 |
|
---|
553 | return TMath::Exp(-beta0*path);
|
---|
554 | }
|
---|
555 |
|
---|
556 | Double_t MAtmosphere::CalcAerosolAbsorption(Double_t h, Double_t wavelength, Double_t theta) const
|
---|
557 | {
|
---|
558 | if (!fAbsCoeffAerosols)
|
---|
559 | return 1;
|
---|
560 |
|
---|
561 | //******* Mie (aerosol) *******
|
---|
562 |
|
---|
563 | //const float aero_betap[15] = {0.27, 0.26, 0.25, 0.24, 0.24, 0.23, 0.20, 0.180, 0.167, 0.158, 0.150, 0.142, 0.135, 0.127, 0.120};
|
---|
564 | //const Double_t beta0 = getbeta(wavelength, aero_betap);
|
---|
565 | const Double_t beta0 = GetBeta(wavelength, *fAbsCoeffAerosols);
|
---|
566 |
|
---|
567 | // Now use the pre-calculated values of the path integral
|
---|
568 | // for h and theta
|
---|
569 | const UInt_t H = TMath::Min(300, TMath::Nint(h/1e4));
|
---|
570 | const UInt_t T = TMath::Min( 89, TMath::Nint(theta/STEPTHETA));
|
---|
571 |
|
---|
572 | const Double_t path = aerosol_path[H][T];
|
---|
573 |
|
---|
574 | return TMath::Exp(-beta0*path);
|
---|
575 | }
|
---|
576 |
|
---|
577 | Double_t MAtmosphere::GetTransmission(const MPhotonData &ph) const
|
---|
578 | {
|
---|
579 | const Double_t wavelength = ph.GetWavelength();
|
---|
580 | const Double_t height = ph.GetProductionHeight();
|
---|
581 |
|
---|
582 | // Reduce the necessary number of floating point operations
|
---|
583 | // by storing the intermediate results
|
---|
584 | const Double_t sin2 = ph.GetSinW2();
|
---|
585 | const Double_t cost = TMath::Sqrt(1-sin2);
|
---|
586 | const Double_t theta = TMath::ACos(cost);
|
---|
587 |
|
---|
588 | // Path from production height to obslevel
|
---|
589 | const Double_t z = height-fObsLevel;
|
---|
590 |
|
---|
591 | // Distance of emission point to incident point on ground
|
---|
592 | const Double_t d = z/cost;
|
---|
593 |
|
---|
594 | // Avoid problems if photon is very close to telescope:
|
---|
595 | if (TMath::Abs(d)<1)
|
---|
596 | return 1;
|
---|
597 |
|
---|
598 | // Earth radius plus observation height (distance of telescope
|
---|
599 | // from earth center)
|
---|
600 | const Double_t H = R() + fObsLevel;
|
---|
601 |
|
---|
602 | // We calculate h, the true height a.s.l.
|
---|
603 | // of the photon emission point in cm
|
---|
604 | const Double_t h = TMath::Sqrt(H*H + d*d + 2*H*z) - R();
|
---|
605 |
|
---|
606 | //**** Rayleigh scattering: *****
|
---|
607 | const Double_t T_Ray = CalcTransmission(h, wavelength, sin2);
|
---|
608 | if (T_Ray<0)
|
---|
609 | return 0;
|
---|
610 |
|
---|
611 | //****** Ozone absorption: ******
|
---|
612 | const Double_t T_Oz = CalcOzoneAbsorption(h, wavelength, theta);
|
---|
613 |
|
---|
614 | //******** Mie (aerosol) ********
|
---|
615 | const Double_t T_Mie = CalcAerosolAbsorption(h, wavelength, theta);
|
---|
616 |
|
---|
617 | // FIXME: What if I wanna display these values?
|
---|
618 |
|
---|
619 | // Calculate final transmission coefficient
|
---|
620 | return T_Ray * T_Oz * T_Mie;
|
---|
621 | }
|
---|
622 |
|
---|