/* ======================================================================== *\ ! ! * ! * This file is part of CheObs, the Modular Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appears in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz, 1/2009 ! ! Copyright: CheObs Software Development, 2000-2009 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MSimPointingPos // // // This task is meant to simulate the pointing position (mirror orientation). // This depends on the direction from which the shower is coming but also // on the user request (e.g. Wobble mode). // // // If fOffTragetDistance==0 the telescope is oriented depending on the // view cone option. If a view cone was given the orientation is fixed to // the main direction around the view cone was produced. If no view // cone was given the telescope is oriented parallel to the shower axis. // // If no view cone option was given and off-target observations are switched // on by setting fOffTargetDistance!=0 the poitnting position is calculated: // // 1) fOffTargetDistance < 0: // The pointing position is randomly distributed in a disk of radius // -fOffTragetDistance. fOffTargetDistance is silently ignored. // // 2) fOffTargetDistance > 0: // The pointing position is set to a position in the given distance // away from the shower axis. If fOffTargetPhi>=0 it is fixed at // this phi value. For phi<0 it is randomly distributed at distances // fOffTargetDistance. (phi==0 is the direction of positive theta) // // // Input Containers: // MCorsikaRunHeader // MCorsikaEvtHeader // // Output Containers: // MPointingPos // ////////////////////////////////////////////////////////////////////////////// #include "MSimPointingPos.h" #include #include #include "MLog.h" #include "MLogManip.h" #include "MParList.h" #include "MCorsikaEvtHeader.h" #include "MCorsikaRunHeader.h" #include "MPointingPos.h" ClassImp(MSimPointingPos); using namespace std; // -------------------------------------------------------------------------- // // Default Constructor. // MSimPointingPos::MSimPointingPos(const char* name, const char *title) : fRunHeader(0), fEvtHeader(0), fPointing(0), fOffTargetDistance(0), fOffTargetPhi(-1) { fName = name ? name : "MSimPointingPos"; fTitle = title ? title : "Task to simulate the pointing position (mirror orientation)"; } // -------------------------------------------------------------------------- // // Get the distance from the real source to the poitning position. // Double_t MSimPointingPos::GetOffTargetDistance() const { return fOffTargetDistance==0 ? 0 : fOffTargetDistance*TMath::RadToDeg(); } // -------------------------------------------------------------------------- // // Get the phi angle counted from the upward direction the source position // is rotated. distance from the real source to the pointing position. // A negative value refers to a random distribution. // Double_t MSimPointingPos::GetOffTargetPhi() const { return fOffTargetPhi<0 ? -1 : fOffTargetPhi*TMath::RadToDeg(); } // -------------------------------------------------------------------------- // // Set fOffTargetDistance, see also GetOffTargetDistance // void MSimPointingPos::SetOffTargetDistance(Double_t d) { fOffTargetDistance = d==0 ? 0 : d*TMath::DegToRad(); } // -------------------------------------------------------------------------- // // Set fOffTargetPhi, see also GetOffTargetPhi // void MSimPointingPos::SetOffTargetPhi(Double_t p) { fOffTargetPhi = p<0 ? -1 : p*TMath::DegToRad(); } // -------------------------------------------------------------------------- // // Search for all necessary containers // Int_t MSimPointingPos::PreProcess(MParList *pList) { fPointing = (MPointingPos*)pList->FindCreateObj("MPointingPos"); if (!fPointing) return kFALSE; fRunHeader = (MCorsikaRunHeader*)pList->FindObject("MCorsikaRunHeader"); if (!fRunHeader) { *fLog << err << "MCorsikaRunHeader not found... aborting." << endl; return kFALSE; } fEvtHeader = (MCorsikaEvtHeader*)pList->FindObject("MCorsikaEvtHeader"); if (!fEvtHeader) { *fLog << err << "MCorsikaEvtHeader not found... aborting." << endl; return kFALSE; } if (!IsOffTargetObservation()) return kTRUE; *fLog << inf; *fLog << "Off target observations switched on with" << endl; if (fOffTargetDistance>0) { *fLog <<" a pointing distance of " << GetOffTargetDistance() << "deg "; if (fOffTargetPhi<0) *fLog << "randomly distributed in phi." << endl; else *fLog << "and phi=" << GetOffTargetPhi() << "deg." << endl; } else *fLog << " a homogenous distribution up to a distance of " << -GetOffTargetDistance() << "deg " << endl; return kTRUE; } Bool_t MSimPointingPos::ReInit(MParList *pList) { if (fRunHeader->HasViewCone() && IsOffTargetObservation()) { *fLog << warn; *fLog << "WARNING - Combining the view cone option with off-target observations doesn't make sense." << endl; *fLog << " Option for off-target observations will be ignored." << endl; } // FIXME: Check also the enlightened region on the ground! return kTRUE; } void MSimPointingPos::GetDelta(Double_t &dtheta, Double_t &dphi) const { if (fOffTargetDistance>0) { dtheta = fOffTargetDistance; dphi = fOffTargetPhi>=0 ? fOffTargetPhi : gRandom->Uniform(TMath::TwoPi()); } else { dtheta = TMath::Sqrt(gRandom->Uniform(fOffTargetDistance)); dphi = gRandom->Uniform(TMath::TwoPi()); } } // -------------------------------------------------------------------------- // Int_t MSimPointingPos::Process() { // If a view cone is given use the fixed telescope orientation const Bool_t viewcone = fRunHeader->HasViewCone(); // Local sky coordinates (direction of telescope axis) Double_t zd = viewcone ? fRunHeader->GetZdMin() : fEvtHeader->GetZd()*TMath::RadToDeg(); // x==north Double_t az = viewcone ? fRunHeader->GetAzMin() : fEvtHeader->GetAz()*TMath::RadToDeg(); // y==west if (!viewcone) { Double_t dtheta, dphi; GetDelta(dtheta, dphi); const Double_t theta = zd*TMath::DegToRad(); const Double_t phi = az*TMath::DegToRad(); TVector3 src, pnt; src.SetMagThetaPhi(1, theta, phi); pnt.SetMagThetaPhi(1, theta+dtheta, phi); pnt.Rotate(dphi, src); zd = pnt.Theta()*TMath::RadToDeg(); az = pnt.Phi() *TMath::RadToDeg(); } // Transform the corsika coordinate system (north is magnetic north) // into the telescopes local coordinate system. Note, that all vectors // are already correctly oriented. az += fRunHeader->GetMagneticFieldAz()*TMath::RadToDeg(); // Setup the pointing position fPointing->SetLocalPosition(zd, az); // Calculate incident angle between magnetic field direction // and pointing direction ( phi and theta? ) return kTRUE; } Int_t MSimPointingPos::ReadEnv(const TEnv &env, TString prefix, Bool_t print) { Bool_t rc = kFALSE; if (IsEnvDefined(env, prefix, "OffTargetDistance", print)) { rc = kTRUE; SetOffTargetDistance(GetEnvValue(env, prefix, "OffTargetDistance", GetOffTargetDistance())); } if (IsEnvDefined(env, prefix, "OffTargetPhi", print)) { rc = kTRUE; SetOffTargetPhi(GetEnvValue(env, prefix, "OffTargetPhi", GetOffTargetPhi())); } return rc; }