source: trunk/Mars/msimcamera/MSimCamera.cc@ 18271

Last change on this file since 18271 was 18129, checked in by dneise, 10 years ago
back-factored for loop from C++11-style to old-style
File size: 18.9 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of CheObs, the Modular Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appears in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 1/2009 <mailto:tbretz@phys.ethz.ch>
19!
20! Copyright: CheObs Software Development, 2000-2013
21!
22!
23\* ======================================================================== */
24
25//////////////////////////////////////////////////////////////////////////////
26//
27// MSimCamera
28//
29// This task initializes the analog channels with analog noise and simulated
30// the analog pulses from the photon signal.
31//
32// Input Containers:
33// MPhotonEvent
34// MPhotonStatistics
35// MRawRunHeader
36//
37// Output Containers:
38// MAnalogChannels
39//
40//////////////////////////////////////////////////////////////////////////////
41#include "MSimCamera.h"
42
43#include <TF1.h>
44#include <TRandom.h> // Needed for TRandom
45
46#include "MLog.h"
47#include "MLogManip.h"
48
49#include "MTruePhotonsPerPixelCont.h"
50
51#include "MSpline3.h"
52#include "MParSpline.h"
53
54#include "MParList.h"
55
56#include "MPhotonEvent.h"
57#include "MPhotonData.h"
58
59#include "MPedestalCam.h"
60#include "MPedestalPix.h"
61
62#include "MAnalogSignal.h"
63#include "MAnalogChannels.h"
64
65#include "MParameters.h"
66
67#include "MMcEvt.hxx" // To be replaced by a CheObs class
68#include "MRawRunHeader.h"
69
70ClassImp(MSimCamera);
71
72using namespace std;
73
74// --------------------------------------------------------------------------
75//
76// Default Constructor.
77//
78MSimCamera::MSimCamera(const char* name, const char *title)
79 : fEvt(0), fStat(0), fRunHeader(0), fElectronicNoise(0), fGain(0),
80 fCamera(0), fMcEvt(0),fCrosstalkCoeffParam(0), fSpline(0), fBaselineGain(kFALSE),
81 fDefaultOffset(-1), fDefaultNoise(-1), fDefaultGain(-1), fACFudgeFactor(0),
82 fACTimeConstant(0)
83
84{
85 fName = name ? name : "MSimCamera";
86 fTitle = title ? title : "Task to simulate the electronic noise and to convert photons into pulses";
87}
88
89// --------------------------------------------------------------------------
90//
91// Search for the necessayr parameter containers.
92// Setup spline for pulse shape.
93//
94Int_t MSimCamera::PreProcess(MParList *pList)
95{
96 fMcEvt = (MMcEvt*)pList->FindCreateObj("MMcEvt");
97 if (!fMcEvt)
98 return kFALSE;
99
100 fCamera = (MAnalogChannels*)pList->FindCreateObj("MAnalogChannels");
101 if (!fCamera)
102 return kFALSE;
103
104 fEvt = (MPhotonEvent*)pList->FindObject("MPhotonEvent");
105 if (!fEvt)
106 {
107 *fLog << err << "MPhotonEvent not found... aborting." << endl;
108 return kFALSE;
109 }
110
111 fStat = (MPhotonStatistics*)pList->FindObject("MPhotonStatistics");
112 if (!fStat)
113 {
114 *fLog << err << "MPhotonStatistics not found... aborting." << endl;
115 return kFALSE;
116 }
117
118 fRunHeader = (MRawRunHeader *)pList->FindObject("MRawRunHeader");
119 if (!fRunHeader)
120 {
121 *fLog << err << "MRawRunHeader not found... aborting." << endl;
122 return kFALSE;
123 }
124 // -------------------------------------------------------------------
125 // Dominik Neise and Sebastian Mueller on fix time offsets:
126 // We obtain the fix temporal offsets for the FACT camera pixels out of
127 // a text file. The textfile must be mentioned in the ceres.rc file.
128 // There are no default offsets on purporse. The filename must be specified
129 // in ceres.rc and the file must be parsed without errors and it must
130 // provide exactly 1440 floating point numbers.
131 fFixTimeOffsetsBetweenPixelsInNs =
132 (MMatrix*)pList->FindObject("MFixTimeOffset");
133 if (!fFixTimeOffsetsBetweenPixelsInNs)
134 {
135 // the key value pair providing the text file is not present in the
136 // environment env.
137 *fLog << err << "In Source: "<< __FILE__ <<" in line: "<< __LINE__;
138 *fLog << " in function: "<< __func__ <<"\n";
139 *fLog << "MFixTimeOffset not found... aborting." << endl;
140 return kFALSE;
141
142 }
143 else if ( fFixTimeOffsetsBetweenPixelsInNs->fM.size() != 1440 )
144 {
145 // The number of time offsets must match the number of pixels in the
146 // FACT camera.
147 *fLog << err << "In Source: "<< __FILE__ <<" in line: "<< __LINE__;
148 *fLog << " in function: "<< __func__ <<"\n";
149 *fLog << "MFixTimeOffset has the wrong dimension! ";
150 *fLog << "There should be "<< 1440 <<" time offsets ";
151 *fLog << "(one for each pixel in FACT) but there are: ";
152 *fLog << fFixTimeOffsetsBetweenPixelsInNs->fM.size() << "! ";
153 *fLog << "... aborting." << endl;
154 return kFALSE;
155 }
156 // Check all entries for inf and nan. Those are not accepted here.
157 for( int row_index=0; row_index<fFixTimeOffsetsBetweenPixelsInNs->fM.size(); row_index++){
158 std::vector<double> row = fFixTimeOffsetsBetweenPixelsInNs->fM.at(row_index);
159 for( int col_index=0; col_index<row.size(); col_index++){
160 double specific_delay = row.at(col_index);
161 if( std::isnan(specific_delay) || std::isinf(specific_delay) ){
162 *fLog << err << "In Source: "<< __FILE__ <<" in line: ";
163 *fLog << __LINE__;
164 *fLog << " in function: "<< __func__ <<"\n";
165 *fLog << "There is a non normal specific_delay in the fix temporal ";
166 *fLog << "pixel offsets. This is that at least one specific_delay is ";
167 *fLog << "NaN or Inf. This here is >"<< specific_delay;
168 *fLog << "<... aborting." << endl;
169 return kFALSE;
170 }
171 }
172
173 }
174 // -------------------------------------------------------------------
175/*
176 fPulsePos = (MParameterD*)pList->FindObject("IntendedPulsePos", "MParameterD");
177 if (!fPulsePos)
178 {
179 *fLog << err << "IntendedPulsePos [MParameterD] not found... aborting." << endl;
180 return kFALSE;
181 }
182 */
183 fResidualTimeSpread = (MParameterD*)pList->FindObject("ResidualTimeSpread");
184 if (!fResidualTimeSpread)
185 {
186 *fLog << err << "ResidualTimeSpread [MParameterD] not found... aborting." << endl;
187 return kFALSE;
188 }
189
190 // Create it here to make sure that MGeomApply will set the correct size
191 fElectronicNoise = (MPedestalCam*)pList->FindCreateObj("MPedestalCam", "ElectronicNoise");
192 if (!fElectronicNoise)
193 return kFALSE;
194
195 fGain = (MPedestalCam*)pList->FindCreateObj("MPedestalCam", "Gain");
196 if (!fGain)
197 return kFALSE;
198
199 fAccidentalPhotons = (MPedestalCam*)pList->FindObject("AccidentalPhotonRates","MPedestalCam");
200 if(!fAccidentalPhotons)
201 {
202 *fLog << err << "AccidentalPhotonRates [MPedestalCam] not found... aborting." << endl;
203 return kFALSE;
204 }
205
206 fCrosstalkCoeffParam = (MParameterD*)pList->FindCreateObj("MParameterD","CrosstalkCoeffParam");
207 if (!fCrosstalkCoeffParam)
208 {
209 *fLog << err << "CrosstalkCoeffParam [MParameterD] not found... aborting." << endl;
210 return kFALSE;
211 }
212
213 fTruePhotons = (MTruePhotonsPerPixelCont*)pList->FindCreateObj("MTruePhotonsPerPixelCont");
214 if (!fTruePhotons)
215 {
216 *fLog << err << "MTruePhotonsPerPixelCont not found... aborting." << endl;
217 return kFALSE;
218 }
219
220 MParSpline *pulse = (MParSpline*)pList->FindObject("PulseShape", "MParSpline");
221 if (!pulse)
222 {
223 *fLog << err << "PulseShape [MParSpline] not found... aborting." << endl;
224 return kFALSE;
225 }
226
227// if (fRunHeader->GetFreqSampling()!=1000)
228// {
229// *fLog << err << "ERROR - Sampling frequencies others than 1GHz are not yet supported." << endl;
230// *fLog << warn << "FIXME - SCALE MPulsShape WITH THE SAMPLING FREQUENCY." << endl;
231// return kFALSE;
232// }
233
234 fSpline = pulse->GetSpline();
235 if (!fSpline)
236 {
237 *fLog << err << "No spline initialized." << endl;
238 return kFALSE;
239 }
240
241 // ---------------- Information output ----------------------
242
243 if (fBaselineGain)
244 *fLog << inf << "Gain is also applied to the electronic noise." << endl;
245
246 return kTRUE;
247}
248
249// --------------------------------------------------------------------------
250//
251// FIXME: For now this is a workaround to set a baseline and the
252// electronic (guassian noise)
253//
254Bool_t MSimCamera::ReInit(MParList *plist)
255{
256 for (int i=0; i<fElectronicNoise->GetSize(); i++)
257 {
258 MPedestalPix &ped = (*fElectronicNoise)[i];
259 ped.SetPedestal(fDefaultOffset);
260 if (fDefaultNoise>0)
261 ped.SetPedestalRms(fDefaultNoise);
262
263 ped.SetPedestalABoffset(0);
264 ped.SetNumEvents(0);
265
266
267 MPedestalPix &gain = (*fGain)[i];
268 if (fDefaultGain>0)
269 gain.SetPedestal(fDefaultGain);
270
271 gain.SetPedestalRms(0);
272 gain.SetPedestalABoffset(0);
273 gain.SetNumEvents(0);
274 }
275
276 return kTRUE;
277}
278
279// --------------------------------------------------------------------------
280//
281// fStat->GetMaxIndex must return the maximum index possible
282// (equiv. number of pixels) not just the maximum index stored!
283//
284Int_t MSimCamera::Process()
285{
286 // Calculate start time, end time and corresponding number of samples
287 const Double_t freq = fRunHeader->GetFreqSampling()/1000.;
288
289 // FIXME: Should we use a higher sampling here?
290
291 const Double_t start = fStat->GetTimeFirst()*freq;
292 const Double_t end = fStat->GetTimeLast() *freq;
293
294 const UInt_t nlen = TMath::CeilNint(end-start);
295
296 // Get number of pixels/channels
297 const UInt_t npix = fStat->GetMaxIndex()+1;
298
299 if (npix>(UInt_t)fElectronicNoise->GetSize())
300 {
301 *fLog << err << "ERROR - More indices (" << npix << ") ";
302 *fLog << "assigned than existing in camera (";
303 *fLog << fElectronicNoise->GetSize() << ")!" << endl;
304 return kERROR;
305 }
306
307 const Double_t pl = fSpline->GetXmin()*freq;
308 const Double_t pr = fSpline->GetXmax()*freq;
309
310 // Init the arrays and set the range which will contain valid data
311 fCamera->Init(npix, nlen);
312 fCamera->SetValidRange(TMath::FloorNint(pr), TMath::CeilNint(nlen+pl));
313
314 Double_t timeoffset[npix];
315
316
317 // Add electronic noise to empty channels
318 for (UInt_t i=0; i<npix; i++)
319 {
320
321 // Get the ResidualTimeSpread Parameter
322 const Double_t residualTimeSpread = fResidualTimeSpread->GetVal();
323
324 // Jens Buss on residual time spread:
325 // randomly draw an additional time offset to be added to the arrivaltime
326 // from a gaussian normal distribution with a given standard deviation
327 timeoffset[i] = gRandom->Gaus(0.0, residualTimeSpread);
328 const MPedestalPix &pix = (*fElectronicNoise)[i];
329
330 const Double_t val = pix.GetPedestal();
331 const Double_t rms = pix.GetPedestalRms();
332
333 // FTemme: Implementation of AC-coupling:
334 // to calculate the value of the accoupling per slice I use the
335 // following equation:
336 // accouplingPerSlice = accidentalPhotonRate * (1 + crossTalkProb)
337 // * areaOfOnePulse / samplingRate;
338 // Therefore I need the following variables
339 // Double_t accidentalPhotonRate; // [MHz]
340 // Float_t crossTalkProb; // [1]
341 // Double_t areaOfOnePulse; // [ADC-Counts * s]
342 // Double_t samplingRate; // [slices * MHz]
343
344 // The accidental photon rate is stored in GHz, so we have to multiply
345 // with 1E3 to get MHz:
346 const MPedestalPix &accPhoPix = (*fAccidentalPhotons)[i];
347
348 const Double_t accidentalPhotonRate = accPhoPix.GetPedestal() * 1e3; //[MHz]
349
350 Double_t currentAccidentalPhotonRate = accidentalPhotonRate;
351 if (fACTimeConstant!=0)
352 {
353 const Double_t accidentalPhotons = fACTimeConstant * accidentalPhotonRate;
354 const Double_t sigmaAccidentalPhotons = TMath::Sqrt(accidentalPhotons);
355
356 const Double_t gaus = gRandom->Gaus(accidentalPhotons,sigmaAccidentalPhotons);
357
358 currentAccidentalPhotonRate = gaus / fACTimeConstant;
359 }
360
361 // Get the CrosstalkCoefficient Parameter
362 const Double_t crossTalkProb = fCrosstalkCoeffParam->GetVal();
363
364 // To get the area of one Pulse, I only need to calculate the Integral
365 // of the Pulse Shape, which is stored in fSpline. Because the spline is
366 // normalized to a maximal amplitude of 1.0, I had to multiply it with
367 // the Default gain [ADC-Counts * s]
368 const Double_t areaOfOnePulse = fSpline->Integral() * fDefaultGain;
369
370 // The sampling rate I get from the RunHeader:
371 const Double_t samplingRate = fRunHeader->GetFreqSampling(); // [slices * MHz]
372
373 const Double_t accouplingPerSlice = currentAccidentalPhotonRate
374 * (1 + crossTalkProb + fACFudgeFactor)
375 * areaOfOnePulse / samplingRate;
376
377 // The accoupling is substracted from the timeline by decreasing the
378 // mean of the gaussian noise which is added
379
380 if (!fBaselineGain)
381 {
382 (*fCamera)[i].AddGaussianNoise(rms, val - accouplingPerSlice);
383 continue;
384 }
385 // Sorry, the name "pedestal" is misleading here
386 // FIXME: Simulate gain fluctuations
387 const Double_t gain = (*fGain)[i].GetPedestal();
388
389 // FIXME: We might add the base line here already.
390 // FIXME: How stable is the offset?
391 // FIXME: Should we write a container AppliedGain for MSImTrigger?
392
393 (*fCamera)[i].AddGaussianNoise(rms*gain, (val - accouplingPerSlice)*gain);
394 }
395
396 // FIXME: Simulate correlations with neighboring pixels
397
398 const Int_t num = fEvt->GetNumPhotons();
399
400 // A random shift, uniformely distributed within one slice, to make sure that
401 // the first photon is not always aligned identically with a sample edge.
402 // FIXME: Make it switchable
403 const Float_t rndm = gRandom->Uniform();
404
405 // FIXME: Shell we add a random shift of [0,1] samples per channel?
406 // Or maybe per channel and run?
407
408 Double_t tot = 0;
409
410 for (int i=0 ; i<1440 ; i++)
411 {
412 (*fTruePhotons->cherenkov_photons_weight)[i] = 0;
413 (*fTruePhotons->cherenkov_photons_number)[i] = 0;
414 (*fTruePhotons->cherenkov_arrival_time_mean)[i] = 0;
415 (*fTruePhotons->cherenkov_arrival_time_variance)[i] = 0;
416 (*fTruePhotons->muon_cherenkov_photons_weight)[i] = 0;
417 (*fTruePhotons->muon_cherenkov_photons_number)[i] = 0;
418 (*fTruePhotons->cherenkov_arrival_time_min)[i] = 10000;
419 (*fTruePhotons->cherenkov_arrival_time_max)[i] = 0;
420 (*fTruePhotons->noise_photons_weight)[i] = 0;
421 }
422
423 //--------------------------------------------------------------------------
424
425
426 // Simulate pulses
427 for (Int_t i=0; i<num; i++)
428 {
429 const MPhotonData &ph = (*fEvt)[i];
430
431 const UInt_t idx = ph.GetTag();
432 Double_t t = (ph.GetTime()-fStat->GetTimeFirst())*freq+rndm;// - fSpline->GetXmin();
433
434 // Sebastian Mueller and Dominik Neise on fix time offsets:
435 // We add a fix temporal offset to the relative arrival time of the
436 // individual pixel. The offsets are stored in the
437 // fFixTimeOffsetsBetweenPixelsInNs -> fM matrix. We identify the first
438 // column to hold the offsets in ns.
439 t = t + freq*fFixTimeOffsetsBetweenPixelsInNs->fM[idx][0];
440
441 // Jens Buss on residual time spread:
442 // add random time offset to the arrivaltimes
443 t = t + timeoffset[idx];
444
445 // FIXME: Time jitter?
446 // FIXME: Add additional routing here?
447 // FIMXE: How stable is the gain?
448
449 if (ph.GetPrimary()!=MMcEvt::kNightSky && ph.GetPrimary()!=MMcEvt::kArtificial)
450 {
451 tot += ph.GetWeight();
452 (*fTruePhotons->cherenkov_photons_weight)[idx] += ph.GetWeight();
453 (*fTruePhotons->cherenkov_photons_number)[idx] += 1;
454
455 (*fTruePhotons->cherenkov_arrival_time_mean)[idx] += t;
456 (*fTruePhotons->cherenkov_arrival_time_variance)[idx] += t*t;
457
458 if (ph.GetPrimary()==MMcEvt::kMUON)
459 {
460 (*fTruePhotons->muon_cherenkov_photons_weight)[idx] += ph.GetWeight();
461 (*fTruePhotons->muon_cherenkov_photons_number)[idx] += 1;
462 }
463
464 // find min
465 if (t < (*fTruePhotons->cherenkov_arrival_time_min)[idx] )
466 {
467 (*fTruePhotons->cherenkov_arrival_time_min)[idx] = t;
468 }
469 // find max
470 if (t > (*fTruePhotons->cherenkov_arrival_time_max)[idx] )
471 {
472 (*fTruePhotons->cherenkov_arrival_time_max)[idx] = t;
473 }
474 }
475 else
476 {
477 (*fTruePhotons->noise_photons_weight)[idx] += ph.GetWeight();
478 }
479
480 // Sorry, the name "pedestal" is misleading here
481 // FIXME: Simulate gain fluctuations
482 const Double_t gain = (*fGain)[idx].GetPedestal();
483
484 // === FIXME === FIXME === FIXME === Frequency!!!!
485 (*fCamera)[idx].AddPulse(*fSpline, t, ph.GetWeight()*gain);
486 }
487
488 for (unsigned int i=0 ; i < 1440 ; i++)
489 {
490 float number = (*fTruePhotons->cherenkov_photons_number)[i];
491 (*fTruePhotons->cherenkov_arrival_time_mean)[i] /= number;
492 float mean = (*fTruePhotons->cherenkov_arrival_time_mean)[i];
493 float sum_tt = (*fTruePhotons->cherenkov_arrival_time_variance)[i];
494 (*fTruePhotons->cherenkov_arrival_time_variance)[i] = (sum_tt / number - mean*mean) /(number - 1);
495 }
496
497 fMcEvt->SetPhotElfromShower(TMath::Nint(tot));
498
499 return kTRUE;
500}
501
502// --------------------------------------------------------------------------
503//
504// BaselineGain: Off
505//
506Int_t MSimCamera::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
507{
508 Bool_t rc = kFALSE;
509 if (IsEnvDefined(env, prefix, "BaselineGain", print))
510 {
511 rc = kTRUE;
512 fBaselineGain = GetEnvValue(env, prefix, "BaselineGain", fBaselineGain);
513 }
514
515 if (IsEnvDefined(env, prefix, "DefaultOffset", print))
516 {
517 rc = kTRUE;
518 fDefaultOffset = GetEnvValue(env, prefix, "DefaultOffset", fDefaultOffset);
519 }
520 if (IsEnvDefined(env, prefix, "DefaultNoise", print))
521 {
522 rc = kTRUE;
523 fDefaultNoise = GetEnvValue(env, prefix, "DefaultNoise", fDefaultNoise);
524 }
525 if (IsEnvDefined(env, prefix, "DefaultGain", print))
526 {
527 rc = kTRUE;
528 fDefaultGain = GetEnvValue(env, prefix, "DefaultGain", fDefaultGain);
529 }
530 if (IsEnvDefined(env, prefix, "ACFudgeFactor", print))
531 {
532 rc = kTRUE;
533 fACFudgeFactor = GetEnvValue(env, prefix, "ACFudgeFactor", fACFudgeFactor);
534 }
535 if (IsEnvDefined(env, prefix, "ACTimeConstant", print))
536 {
537 rc = kTRUE;
538 fACTimeConstant = GetEnvValue(env, prefix, "ACTimeConstant", fACTimeConstant);
539 }
540
541 return rc;
542}
Note: See TracBrowser for help on using the repository browser.