| 1 | /* ======================================================================== *\ | 
|---|
| 2 | ! | 
|---|
| 3 | ! * | 
|---|
| 4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction | 
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful | 
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. | 
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY. | 
|---|
| 8 | ! * | 
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its | 
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee, | 
|---|
| 11 | ! * provided that the above copyright notice appears in all copies and | 
|---|
| 12 | ! * that both that copyright notice and this permission notice appear | 
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express | 
|---|
| 14 | ! * or implied warranty. | 
|---|
| 15 | ! * | 
|---|
| 16 | ! | 
|---|
| 17 | ! | 
|---|
| 18 | !   Author(s): Thomas Bretz,  1/2009 <mailto:tbretz@astro.uni-wuerzburg.de> | 
|---|
| 19 | ! | 
|---|
| 20 | !   Copyright: CheObs Software Development, 2000-2009 | 
|---|
| 21 | ! | 
|---|
| 22 | ! | 
|---|
| 23 | \* ======================================================================== */ | 
|---|
| 24 |  | 
|---|
| 25 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 26 | // | 
|---|
| 27 | //  MSimRandomPhotons | 
|---|
| 28 | // | 
|---|
| 29 | //  Simulate poissonian photons. Since the distribution of the arrival time | 
|---|
| 30 | // differences of these photons is an exonential we can simulate them | 
|---|
| 31 | // using exponentially distributed time differences between two consecutive | 
|---|
| 32 | // photons. | 
|---|
| 33 | // | 
|---|
| 34 | // FIXME: We should add the wavelength distribution. | 
|---|
| 35 | // | 
|---|
| 36 | // The artificial night sky background rate is calculated as follows: | 
|---|
| 37 | // | 
|---|
| 38 | //  * The photon detection efficiency vs. wavelength of the detector is obtained | 
|---|
| 39 | //    from "PhotonDetectionEfficiency" of type "MParSpline" | 
|---|
| 40 | // | 
|---|
| 41 | //  * The angular acceptance of the light collectors is obtained | 
|---|
| 42 | //    from "ConesAngularAcceptance" of type "MParSpline" | 
|---|
| 43 | // | 
|---|
| 44 | //  * The spectral acceptance of the light collectors is obtained | 
|---|
| 45 | //    from "ConesTransmission" of type "MParSpline" | 
|---|
| 46 | // | 
|---|
| 47 | //  * The reflectivity of the mirrors vs wavelength is obtained | 
|---|
| 48 | //    from "MirrorReflectivity" of type "MParSpline" | 
|---|
| 49 | // | 
|---|
| 50 | // The rate is then calculated as | 
|---|
| 51 | // | 
|---|
| 52 | //   R = R0 * Ai * f | 
|---|
| 53 | // | 
|---|
| 54 | // R0 is the night sky background rate as given in Eckart's paper (divided | 
|---|
| 55 | // by the wavelength window). Ai the area of the cones acceptance window, | 
|---|
| 56 | // f is given as: | 
|---|
| 57 | // | 
|---|
| 58 | //   f = nm * Min(Ar, sr*d^2) | 
|---|
| 59 | // | 
|---|
| 60 | // with | 
|---|
| 61 | // | 
|---|
| 62 | //   nm being the integral of the product of the mirror reflectivity, the cone | 
|---|
| 63 | //   transmission and the photon detection efficiency. | 
|---|
| 64 | // | 
|---|
| 65 | //   d the distance of the focal plane to the mirror | 
|---|
| 66 | // | 
|---|
| 67 | //   Ar is the total reflective area of the reflector | 
|---|
| 68 | // | 
|---|
| 69 | //   sr is the effective solid angle corresponding to the integral of the | 
|---|
| 70 | //   cones angular acceptance | 
|---|
| 71 | // | 
|---|
| 72 | // Alternatively, the night-sky background rate can be calculated from | 
|---|
| 73 | // a spectrum as given in Fig. 1 (but versus Nanometers) in | 
|---|
| 74 | // | 
|---|
| 75 | //   Chris R. Benn & Sara L. Ellison La Palma Night-Sky Brightness | 
|---|
| 76 | // | 
|---|
| 77 | // After proper conversion of the units, the rate of the pixel 0 | 
|---|
| 78 | // is then calculated by | 
|---|
| 79 | // | 
|---|
| 80 | //     rate = f * nsb | 
|---|
| 81 | // | 
|---|
| 82 | // With nsb | 
|---|
| 83 | // | 
|---|
| 84 | //   nsb = Integral(nsb spectrum * combines efficiencies) | 
|---|
| 85 | // | 
|---|
| 86 | // and f can be either | 
|---|
| 87 | // | 
|---|
| 88 | //   Eff. angular acceptance Cones (e.g. 20deg) * Cone-Area (mm^2) | 
|---|
| 89 | //   f = sr * A0 | 
|---|
| 90 | // | 
|---|
| 91 | // or | 
|---|
| 92 | // | 
|---|
| 93 | //   Mirror-Area * Field of view of cones (deg^2) | 
|---|
| 94 | //   f = Ar * A0; | 
|---|
| 95 | // | 
|---|
| 96 | // | 
|---|
| 97 | //  Input Containers: | 
|---|
| 98 | //   fNameGeomCam [MGeomCam] | 
|---|
| 99 | //   MPhotonEvent | 
|---|
| 100 | //   MPhotonStatistics | 
|---|
| 101 | //   MCorsikaEvtHeader | 
|---|
| 102 | //   [MCorsikaRunHeader] | 
|---|
| 103 | // | 
|---|
| 104 | //  Output Containers: | 
|---|
| 105 | //   MPhotonEvent | 
|---|
| 106 | //   AccidentalPhotonRate [MPedestalCam] | 
|---|
| 107 | // | 
|---|
| 108 | ////////////////////////////////////////////////////////////////////////////// | 
|---|
| 109 | #include "MSimRandomPhotons.h" | 
|---|
| 110 |  | 
|---|
| 111 | #include <TRandom.h> | 
|---|
| 112 |  | 
|---|
| 113 | #include "MMath.h"        // RndmExp | 
|---|
| 114 |  | 
|---|
| 115 | #include "MLog.h" | 
|---|
| 116 | #include "MLogManip.h" | 
|---|
| 117 |  | 
|---|
| 118 | #include "MParList.h" | 
|---|
| 119 |  | 
|---|
| 120 | #include "MGeomCam.h" | 
|---|
| 121 | #include "MGeom.h" | 
|---|
| 122 |  | 
|---|
| 123 | #include "MPhotonEvent.h" | 
|---|
| 124 | #include "MPhotonData.h" | 
|---|
| 125 |  | 
|---|
| 126 | #include "MPedestalCam.h" | 
|---|
| 127 | #include "MPedestalPix.h" | 
|---|
| 128 |  | 
|---|
| 129 | #include "MCorsikaRunHeader.h" | 
|---|
| 130 |  | 
|---|
| 131 | #include "MSpline3.h" | 
|---|
| 132 | #include "MParSpline.h" | 
|---|
| 133 | #include "MReflector.h" | 
|---|
| 134 |  | 
|---|
| 135 | ClassImp(MSimRandomPhotons); | 
|---|
| 136 |  | 
|---|
| 137 | using namespace std; | 
|---|
| 138 |  | 
|---|
| 139 | // -------------------------------------------------------------------------- | 
|---|
| 140 | // | 
|---|
| 141 | //  Default Constructor. | 
|---|
| 142 | // | 
|---|
| 143 | MSimRandomPhotons::MSimRandomPhotons(const char* name, const char *title) | 
|---|
| 144 | : fGeom(0), fEvt(0), fStat(0), /*fEvtHeader(0),*/ fRunHeader(0), | 
|---|
| 145 | fRates(0), fSimulateWavelength(kFALSE), fNameGeomCam("MGeomCam"), | 
|---|
| 146 | fFileNameNSB("resmc/night-sky-la-palma.txt") | 
|---|
| 147 | { | 
|---|
| 148 | fName  = name  ? name  : "MSimRandomPhotons"; | 
|---|
| 149 | fTitle = title ? title : "Simulate possonian photons (like NSB or dark current)"; | 
|---|
| 150 | } | 
|---|
| 151 |  | 
|---|
| 152 | // -------------------------------------------------------------------------- | 
|---|
| 153 | // | 
|---|
| 154 | //  Check for the necessary containers | 
|---|
| 155 | // | 
|---|
| 156 | Int_t MSimRandomPhotons::PreProcess(MParList *pList) | 
|---|
| 157 | { | 
|---|
| 158 | fGeom = (MGeomCam*)pList->FindObject(fNameGeomCam, "MGeomCam"); | 
|---|
| 159 | if (!fGeom) | 
|---|
| 160 | { | 
|---|
| 161 | *fLog << inf << fNameGeomCam << " [MGeomCam] not found..." << endl; | 
|---|
| 162 |  | 
|---|
| 163 | fGeom = (MGeomCam*)pList->FindObject("MGeomCam"); | 
|---|
| 164 | if (!fGeom) | 
|---|
| 165 | { | 
|---|
| 166 | *fLog << err << "MGeomCam not found... aborting." << endl; | 
|---|
| 167 | return kFALSE; | 
|---|
| 168 | } | 
|---|
| 169 | } | 
|---|
| 170 |  | 
|---|
| 171 | fEvt = (MPhotonEvent*)pList->FindObject("MPhotonEvent"); | 
|---|
| 172 | if (!fEvt) | 
|---|
| 173 | { | 
|---|
| 174 | *fLog << err << "MPhotonEvent not found... aborting." << endl; | 
|---|
| 175 | return kFALSE; | 
|---|
| 176 | } | 
|---|
| 177 |  | 
|---|
| 178 | fStat = (MPhotonStatistics*)pList->FindObject("MPhotonStatistics"); | 
|---|
| 179 | if (!fStat) | 
|---|
| 180 | { | 
|---|
| 181 | *fLog << err << "MPhotonStatistics not found... aborting." << endl; | 
|---|
| 182 | return kFALSE; | 
|---|
| 183 | } | 
|---|
| 184 |  | 
|---|
| 185 | fRates = (MPedestalCam*)pList->FindCreateObj("MPedestalCam", "AccidentalPhotonRates"); | 
|---|
| 186 | if (!fRates) | 
|---|
| 187 | return kFALSE; | 
|---|
| 188 |  | 
|---|
| 189 | /* | 
|---|
| 190 | fEvtHeader = (MCorsikaEvtHeader*)pList->FindObject("MCorsikaEvtHeader"); | 
|---|
| 191 | if (!fEvtHeader) | 
|---|
| 192 | { | 
|---|
| 193 | *fLog << err << "MCorsikaEvtHeader not found... aborting." << endl; | 
|---|
| 194 | return kFALSE; | 
|---|
| 195 | }*/ | 
|---|
| 196 |  | 
|---|
| 197 | fRunHeader = (MCorsikaRunHeader*)pList->FindObject("MCorsikaRunHeader"); | 
|---|
| 198 | if (fSimulateWavelength && !fRunHeader) | 
|---|
| 199 | { | 
|---|
| 200 | *fLog << err << "MCorsikaRunHeader not found... aborting." << endl; | 
|---|
| 201 | return kFALSE; | 
|---|
| 202 | } | 
|---|
| 203 |  | 
|---|
| 204 | MReflector *r = (MReflector*)pList->FindObject("Reflector", "MReflector"); | 
|---|
| 205 | if (!r) | 
|---|
| 206 | { | 
|---|
| 207 | *fLog << err << "Reflector [MReflector] not found... aborting." << endl; | 
|---|
| 208 | return kFALSE; | 
|---|
| 209 | } | 
|---|
| 210 |  | 
|---|
| 211 | const MParSpline *s1 = (MParSpline*)pList->FindObject("PhotonDetectionEfficiency", "MParSpline"); | 
|---|
| 212 | const MParSpline *s2 = (MParSpline*)pList->FindObject("ConesTransmission",         "MParSpline"); | 
|---|
| 213 | const MParSpline *s3 = (MParSpline*)pList->FindObject("MirrorReflectivity",        "MParSpline"); | 
|---|
| 214 | const MParSpline *s4 = (MParSpline*)pList->FindObject("ConesAngularAcceptance",    "MParSpline"); | 
|---|
| 215 |  | 
|---|
| 216 | // Ensure that all efficiencies are at least defined in the raneg of the | 
|---|
| 217 | // photon detection efficiency. We assume that this is the limiting factor | 
|---|
| 218 | // and has to be zero at both ends. | 
|---|
| 219 | if (s2->GetXmin()>s1->GetXmin()) | 
|---|
| 220 | { | 
|---|
| 221 | *fLog << err << "ERROR - ConeTransmission range must be defined down to " << s1->GetXmin() << "nm (PhotonDetectionEffciency)." << endl; | 
|---|
| 222 | return kFALSE; | 
|---|
| 223 | } | 
|---|
| 224 | if (s2->GetXmax()<s1->GetXmax()) | 
|---|
| 225 | { | 
|---|
| 226 | *fLog << err << "ERROR - ConeTransmission range must be defined up to " << s1->GetXmax() << "nm (PhotonDetectionEffciency)." << endl; | 
|---|
| 227 | return kFALSE; | 
|---|
| 228 | } | 
|---|
| 229 | if (s3->GetXmin()>s1->GetXmin()) | 
|---|
| 230 | { | 
|---|
| 231 | *fLog << err << "ERROR - MirrorReflectivity range must be defined down to " << s1->GetXmin() << "nm (PhotonDetectionEffciency)." << endl; | 
|---|
| 232 | return kFALSE; | 
|---|
| 233 | } | 
|---|
| 234 | if (s3->GetXmax()<s1->GetXmax()) | 
|---|
| 235 | { | 
|---|
| 236 | *fLog << err << "ERROR - MirrorReflectivity range must be defined up to " << s1->GetXmax() << "nm (PhotonDetectionEffciency)." << endl; | 
|---|
| 237 | return kFALSE; | 
|---|
| 238 | } | 
|---|
| 239 |  | 
|---|
| 240 | // If the simulated wavelength range exists and is smaller, reduce the | 
|---|
| 241 | // range to it. Later it is checked that at both edges the transmission | 
|---|
| 242 | // is 0. This must be true in both cases: The simulated wavelength range | 
|---|
| 243 | // exceed the PDE or the PDE range exceeds the simulated waveband. | 
|---|
| 244 | const Float_t wmin = fRunHeader && fRunHeader->GetWavelengthMin()>s1->GetXmin() ? fRunHeader->GetWavelengthMin() : s1->GetXmin(); | 
|---|
| 245 | const Float_t wmax = fRunHeader && fRunHeader->GetWavelengthMax()<s1->GetXmax() ? fRunHeader->GetWavelengthMax() : s1->GetXmax(); | 
|---|
| 246 |  | 
|---|
| 247 | const Int_t min = TMath::FloorNint(wmin); | 
|---|
| 248 | const Int_t max = TMath::CeilNint(wmax); | 
|---|
| 249 |  | 
|---|
| 250 | // Multiply all relevant efficiencies to get the total transmission | 
|---|
| 251 | MParSpline eff; | 
|---|
| 252 | eff.SetFunction("1", max-min, min, max); | 
|---|
| 253 |  | 
|---|
| 254 | eff.Multiply(*s1->GetSpline()); | 
|---|
| 255 | eff.Multiply(*s2->GetSpline()); | 
|---|
| 256 | eff.Multiply(*s3->GetSpline()); | 
|---|
| 257 |  | 
|---|
| 258 | // Effectively transmitted wavelength band in the simulated range | 
|---|
| 259 | const Double_t nm = eff.GetSpline()->Integral(); | 
|---|
| 260 |  | 
|---|
| 261 | // Angular acceptance of the cones | 
|---|
| 262 | const Double_t sr = s4 && s4->GetSpline() ? s4->GetSpline()->IntegralSolidAngle() : 1; | 
|---|
| 263 |  | 
|---|
| 264 | { | 
|---|
| 265 | const Double_t d2   = fGeom->GetCameraDist()*fGeom->GetCameraDist(); | 
|---|
| 266 | const Double_t conv = fGeom->GetConvMm2Deg()*TMath::DegToRad(); | 
|---|
| 267 | const Double_t f1   = TMath::Min(r->GetA()/1e4, sr*d2) * conv*conv; | 
|---|
| 268 |  | 
|---|
| 269 | // Rate in GHz / mm^2 | 
|---|
| 270 | fScale = fFreqNSB * nm * f1; // [GHz/mm^2] efficiency * m^2 *rad^2 *mm^2 | 
|---|
| 271 |  | 
|---|
| 272 | const Double_t freq0 = fScale*(*fGeom)[0].GetA()*1000; | 
|---|
| 273 |  | 
|---|
| 274 | *fLog << inf << "Resulting Freq. in " << fNameGeomCam << "[0]: " << Form("%.2f", freq0) << "MHz" << endl; | 
|---|
| 275 |  | 
|---|
| 276 | // FIXME: Scale with the number of pixels | 
|---|
| 277 | if (freq0>1000) | 
|---|
| 278 | { | 
|---|
| 279 | *fLog << err << "ERROR - Frequency exceeds 1GHz, this might leed to too much memory consumption." << endl; | 
|---|
| 280 | return kFALSE; | 
|---|
| 281 | } | 
|---|
| 282 | } | 
|---|
| 283 |  | 
|---|
| 284 | if (fFileNameNSB.IsNull()) | 
|---|
| 285 | return kTRUE; | 
|---|
| 286 |  | 
|---|
| 287 | // const MMcRunHeader *mcrunheader = (MMcRunHeader*)pList->FindObject("MMcRunHeader"); | 
|---|
| 288 | // Set NumPheFromDNSB | 
|---|
| 289 |  | 
|---|
| 290 | // # Number of photons from the diffuse NSB (nphe / ns 0.1*0.1 deg^2 239 m^2) and | 
|---|
| 291 | // nsb_mean 0.20 | 
|---|
| 292 | // Magic pixel: 0.00885361 deg | 
|---|
| 293 | // dnsbpix = 0.2*50/15 | 
|---|
| 294 | // ampl = MMcFadcHeader->GetAmplitud() | 
|---|
| 295 | // sqrt(pedrms*pedrms + dnsbpix*ampl*ampl/ratio) | 
|---|
| 296 |  | 
|---|
| 297 | // Conversion of the y-axis | 
|---|
| 298 | // ------------------------ | 
|---|
| 299 | // Double_t ff = 1;                               // myJy / arcsec^2 per nm | 
|---|
| 300 | // ff *= 1e-6;                                    // Jy   / arcsec^2 per nm | 
|---|
| 301 | // ff *= 3600*3600;                               // Jy   / deg^2 | 
|---|
| 302 | // ff *= 1./TMath::DegToRad()/TMath::DegToRad();  // Jy/sr = 1e-26J/s/m^2/Hz/sr | 
|---|
| 303 | // ff *= 1e-26;                                   // J/s/m^2/Hz/sr   per nm | 
|---|
| 304 |  | 
|---|
| 305 | const Double_t arcsec2rad = TMath::DegToRad()/3600.; | 
|---|
| 306 | const Double_t f = 1e-32 / (arcsec2rad*arcsec2rad); | 
|---|
| 307 |  | 
|---|
| 308 | // Read night sky background flux from file | 
|---|
| 309 | MParSpline flux; | 
|---|
| 310 | if (!flux.ReadFile(fFileNameNSB)) | 
|---|
| 311 | return kFALSE; | 
|---|
| 312 |  | 
|---|
| 313 | if (flux.GetXmin()>wmin) | 
|---|
| 314 | { | 
|---|
| 315 | *fLog << err << "ERROR - NSB flux from " << fFileNameNSB << " must be defined down to " << wmin << "nm." << endl; | 
|---|
| 316 | return kFALSE; | 
|---|
| 317 | } | 
|---|
| 318 | if (flux.GetXmax()<wmax) | 
|---|
| 319 | { | 
|---|
| 320 | *fLog << err << "ERROR - NSB flux from " << fFileNameNSB << " must be defined up to " << wmax << "nm." << endl; | 
|---|
| 321 | return kFALSE; | 
|---|
| 322 | } | 
|---|
| 323 |  | 
|---|
| 324 | MParSpline nsb; | 
|---|
| 325 |  | 
|---|
| 326 | // Normalization to our units, | 
|---|
| 327 | // conversion from energy flux to photon flux | 
|---|
| 328 | nsb.SetFunction(Form("%.12e/(x*TMath::H())", f), max-min, min, max); | 
|---|
| 329 |  | 
|---|
| 330 | // multiply night sky background flux with normalization | 
|---|
| 331 | nsb.Multiply(*flux.GetSpline()); | 
|---|
| 332 |  | 
|---|
| 333 | // Multiply with the total transmission | 
|---|
| 334 | nsb.Multiply(*eff.GetSpline()); | 
|---|
| 335 |  | 
|---|
| 336 | // Check if the photon flux is zero at both ends of the NSB | 
|---|
| 337 | if (eff.GetSpline()->Eval(min)>1e-5) | 
|---|
| 338 | { | 
|---|
| 339 | *fLog << warn << "WARNING - Total transmission efficiency at "; | 
|---|
| 340 | *fLog << min << "nm is not zero, but " << eff.GetSpline()->Eval(min) << "... abort." << endl; | 
|---|
| 341 | } | 
|---|
| 342 | if (eff.GetSpline()->Eval(max)>1e-5) | 
|---|
| 343 | { | 
|---|
| 344 | *fLog << warn << "WARNING - Total transmission efficiency at "; | 
|---|
| 345 | *fLog << max << "nm is not zero, but " << eff.GetSpline()->Eval(max) << "... abort." << endl; | 
|---|
| 346 | } | 
|---|
| 347 |  | 
|---|
| 348 | // Check if the photon flux is zero at both ends of the simulated region | 
|---|
| 349 | if (eff.GetSpline()->Eval(wmin)>1e-5) | 
|---|
| 350 | { | 
|---|
| 351 | *fLog << err << "ERROR - Total transmission efficiency at "; | 
|---|
| 352 | *fLog << wmin << "nm is not zero... abort." << endl; | 
|---|
| 353 | *fLog << "        PhotonDetectionEfficency: " << s1->GetSpline()->Eval(wmin) << endl; | 
|---|
| 354 | *fLog << "        ConeTransmission:         " << s2->GetSpline()->Eval(wmin) << endl; | 
|---|
| 355 | *fLog << "        MirrorReflectivity:       " << s3->GetSpline()->Eval(wmin) << endl; | 
|---|
| 356 | *fLog << "        TotalEfficiency:          " << eff.GetSpline()->Eval(wmin) << endl; | 
|---|
| 357 | return kFALSE; | 
|---|
| 358 | } | 
|---|
| 359 | if (eff.GetSpline()->Eval(wmax)>1e-5) | 
|---|
| 360 | { | 
|---|
| 361 | *fLog << err << "ERROR - Total transmission efficiency at "; | 
|---|
| 362 | *fLog << wmax << "nm is not zero... abort." << endl; | 
|---|
| 363 | *fLog << "        PhotonDetectionEfficency: " << s1->GetSpline()->Eval(wmax) << endl; | 
|---|
| 364 | *fLog << "        ConeTransmission:         " << s2->GetSpline()->Eval(wmax) << endl; | 
|---|
| 365 | *fLog << "        MirrorReflectivity:       " << s3->GetSpline()->Eval(wmax) << endl; | 
|---|
| 366 | *fLog << "        TotalEfficiency:          " << eff.GetSpline()->Eval(wmax) << endl; | 
|---|
| 367 | return kFALSE; | 
|---|
| 368 | } | 
|---|
| 369 |  | 
|---|
| 370 | // Conversion from m to radians | 
|---|
| 371 | const Double_t conv = fGeom->GetConvMm2Deg()*TMath::DegToRad()*1e3; | 
|---|
| 372 |  | 
|---|
| 373 | // Angular acceptance of the cones | 
|---|
| 374 | //const Double_t sr = s5.GetSpline()->IntegralSolidAngle(); // sr | 
|---|
| 375 | // Absolute reflector area | 
|---|
| 376 | const Double_t Ar = r->GetA()/1e4;                          // m^2 | 
|---|
| 377 | // Size of the cone's entrance window | 
|---|
| 378 | const Double_t A0 = (*fGeom)[0].GetA()*1e-6;                // m^2 | 
|---|
| 379 |  | 
|---|
| 380 | // Rate * m^2 * Solid Angle | 
|---|
| 381 | // ------------------------- | 
|---|
| 382 |  | 
|---|
| 383 | // Angular acceptance Cones (e.g. 20deg) * Cone-Area | 
|---|
| 384 | const Double_t f1 = A0 * sr;                // m^2 sr | 
|---|
| 385 |  | 
|---|
| 386 | // Mirror-Area * Field of view of cones (e.g. 0.1deg) | 
|---|
| 387 | const Double_t f2 = Ar * A0*conv*conv;      // m^2 sr | 
|---|
| 388 |  | 
|---|
| 389 | // FIXME: Calculate the reflectivity of the bottom by replacing | 
|---|
| 390 | // MirrorReflectivity by bottom reflectivity and reflect | 
|---|
| 391 | // and use it to reflect the difference between f1 and f2 | 
|---|
| 392 | // if any. | 
|---|
| 393 |  | 
|---|
| 394 | // Total NSB rate in MHz per m^2 and sr | 
|---|
| 395 | const Double_t rate = nsb.GetSpline()->Integral() * 1e-6; | 
|---|
| 396 |  | 
|---|
| 397 | *fLog << inf; | 
|---|
| 398 |  | 
|---|
| 399 | // Resulting rates as if Razmick's constant had been used | 
|---|
| 400 | // *fLog << 1.75e6/(600-300) * f1 * eff.GetSpline()->Integral() << " MHz" << endl; | 
|---|
| 401 | // *fLog << 1.75e6/(600-300) * f2 * eff.GetSpline()->Integral() << " MHz" << endl; | 
|---|
| 402 |  | 
|---|
| 403 | *fLog << "Conversion factor Fnu:         " << f  << endl; | 
|---|
| 404 | *fLog << "Total reflective area:         " << Form("%.2f", Ar) << " m" << UTF8::kSquare << endl; | 
|---|
| 405 | *fLog << "Acceptance area of cone 0:     " << Form("%.2f", A0*1e6) << " mm" << UTF8::kSquare << " = "; | 
|---|
| 406 | *fLog << A0*conv*conv << " sr" << endl; | 
|---|
| 407 | *fLog << "Cones angular acceptance:      " << sr << " sr" << endl; | 
|---|
| 408 | *fLog << "ConeArea*ConeSolidAngle (f1):  " << f1 << " m^2 sr" << endl; | 
|---|
| 409 | *fLog << "MirrorArea*ConeSkyAngle (f2):  " << f2 << " m^2 sr" << endl; | 
|---|
| 410 | *fLog << "Effective. transmission:       " << Form("%.1f", nm) << " nm" << endl; | 
|---|
| 411 | *fLog << "NSB freq. in " << fNameGeomCam << "[0] (f1): " << Form("%.2f", rate * f1) << " MHz" << endl; | 
|---|
| 412 | *fLog << "NSB freq. in " << fNameGeomCam << "[0] (f2): " << Form("%.2f", rate * f2) << " MHz" << endl; | 
|---|
| 413 | *fLog << "Using f2." << endl; | 
|---|
| 414 |  | 
|---|
| 415 | // Scale the rate per mm^2 and to GHz | 
|---|
| 416 | fScale = rate * f2 / (*fGeom)[0].GetA() / 1000; | 
|---|
| 417 |  | 
|---|
| 418 | // FIXME: Scale with the number of pixels | 
|---|
| 419 | if (rate*f2>1000) | 
|---|
| 420 | { | 
|---|
| 421 | *fLog << err << "ERROR - Frequency exceeds 1GHz, this might leed to too much memory consumption." << endl; | 
|---|
| 422 | return kFALSE; | 
|---|
| 423 | } | 
|---|
| 424 |  | 
|---|
| 425 | return kTRUE; | 
|---|
| 426 | } | 
|---|
| 427 |  | 
|---|
| 428 | Bool_t MSimRandomPhotons::ReInit(MParList *pList) | 
|---|
| 429 | { | 
|---|
| 430 | // Overwrite the default set by MGeomApply | 
|---|
| 431 | fRates->Init(*fGeom); | 
|---|
| 432 | return kTRUE; | 
|---|
| 433 | } | 
|---|
| 434 |  | 
|---|
| 435 | // -------------------------------------------------------------------------- | 
|---|
| 436 | // | 
|---|
| 437 | //  Check for the necessary containers | 
|---|
| 438 | // | 
|---|
| 439 | Int_t MSimRandomPhotons::Process() | 
|---|
| 440 | { | 
|---|
| 441 | // Get array from event container | 
|---|
| 442 | // const Int_t num = fEvt->GetNumPhotons(); | 
|---|
| 443 | // | 
|---|
| 444 | // Do not produce pure pedestal events! | 
|---|
| 445 | // if (num==0) | 
|---|
| 446 | //    return kTRUE; | 
|---|
| 447 |  | 
|---|
| 448 | // Get array from event container | 
|---|
| 449 | // FIXME: Use statistics container instead | 
|---|
| 450 | const UInt_t npix = fGeom->GetNumPixels(); | 
|---|
| 451 |  | 
|---|
| 452 | // This is the possible window in which the triggered digitization | 
|---|
| 453 | // may take place. | 
|---|
| 454 | const Double_t start = fStat->GetTimeFirst(); | 
|---|
| 455 | const Double_t end   = fStat->GetTimeLast(); | 
|---|
| 456 |  | 
|---|
| 457 | // Loop over all pixels | 
|---|
| 458 | for (UInt_t idx=0; idx<npix; idx++) | 
|---|
| 459 | { | 
|---|
| 460 | // Scale the rate with the pixel size. | 
|---|
| 461 | const Double_t rate = fFreqFixed + fScale*(*fGeom)[idx].GetA(); | 
|---|
| 462 |  | 
|---|
| 463 | (*fRates)[idx].SetPedestal(rate); | 
|---|
| 464 |  | 
|---|
| 465 | // Calculate the average distance between two consequtive photons | 
|---|
| 466 | const Double_t avglen = 1./rate; | 
|---|
| 467 |  | 
|---|
| 468 | // Start producing photons at time "start" | 
|---|
| 469 | Double_t t = start; | 
|---|
| 470 | while (1) | 
|---|
| 471 | { | 
|---|
| 472 | // Get a random time for the photon. | 
|---|
| 473 | // The differences are exponentially distributed. | 
|---|
| 474 | t += MMath::RndmExp(avglen); | 
|---|
| 475 |  | 
|---|
| 476 | // Check if we reached the end of the useful time window | 
|---|
| 477 | if (t>end) | 
|---|
| 478 | break; | 
|---|
| 479 |  | 
|---|
| 480 | // Add a new photon | 
|---|
| 481 | // FIXME: SLOW! | 
|---|
| 482 | MPhotonData &ph = fEvt->Add(); | 
|---|
| 483 |  | 
|---|
| 484 | // Set source to NightSky, time to t and tag to pixel index | 
|---|
| 485 | ph.SetPrimary(MMcEvtBasic::kNightSky); | 
|---|
| 486 | ph.SetWeight(); | 
|---|
| 487 | ph.SetTime(t); | 
|---|
| 488 | ph.SetTag(idx); | 
|---|
| 489 |  | 
|---|
| 490 | // fProductionHeight, fPosX, fPosY, fCosU, fCosV (irrelevant)  FIXME: Reset? | 
|---|
| 491 |  | 
|---|
| 492 | if (fSimulateWavelength) | 
|---|
| 493 | { | 
|---|
| 494 | const Float_t wmin = fRunHeader->GetWavelengthMin(); | 
|---|
| 495 | const Float_t wmax = fRunHeader->GetWavelengthMax(); | 
|---|
| 496 |  | 
|---|
| 497 | ph.SetWavelength(TMath::Nint(gRandom->Uniform(wmin, wmax))); | 
|---|
| 498 | } | 
|---|
| 499 | } | 
|---|
| 500 | } | 
|---|
| 501 |  | 
|---|
| 502 | // Re-sort the photons by time! | 
|---|
| 503 | fEvt->Sort(kTRUE); | 
|---|
| 504 |  | 
|---|
| 505 | // Update maximum index | 
|---|
| 506 | fStat->SetMaxIndex(npix-1); | 
|---|
| 507 |  | 
|---|
| 508 | // Shrink | 
|---|
| 509 | return kTRUE; | 
|---|
| 510 | } | 
|---|
| 511 |  | 
|---|
| 512 | // -------------------------------------------------------------------------- | 
|---|
| 513 | // | 
|---|
| 514 | // Read the parameters from the resource file. | 
|---|
| 515 | // | 
|---|
| 516 | //    FrequencyFixed: 0.040 | 
|---|
| 517 | //    FrequencyNSB:   5.8 | 
|---|
| 518 | // | 
|---|
| 519 | // The fixed frequency is given in units fitting the units of the time. | 
|---|
| 520 | // Usually the time is given in nanoseconds thus, e.g., 0.040 means 40MHz. | 
|---|
| 521 | // | 
|---|
| 522 | // The FrequencyNSB is scaled by the area of the pixel in cm^2. Therefore | 
|---|
| 523 | // 0.040 would mean 40MHz/cm^2 | 
|---|
| 524 | // | 
|---|
| 525 | Int_t MSimRandomPhotons::ReadEnv(const TEnv &env, TString prefix, Bool_t print) | 
|---|
| 526 | { | 
|---|
| 527 | Bool_t rc = kFALSE; | 
|---|
| 528 | if (IsEnvDefined(env, prefix, "FrequencyFixed", print)) | 
|---|
| 529 | { | 
|---|
| 530 | rc = kTRUE; | 
|---|
| 531 | fFreqFixed = GetEnvValue(env, prefix, "FrequencyFixed", fFreqFixed); | 
|---|
| 532 | } | 
|---|
| 533 |  | 
|---|
| 534 | if (IsEnvDefined(env, prefix, "FrequencyNSB", print)) | 
|---|
| 535 | { | 
|---|
| 536 | rc = kTRUE; | 
|---|
| 537 | fFreqNSB = GetEnvValue(env, prefix, "FrequencyNSB", fFreqNSB); | 
|---|
| 538 | } | 
|---|
| 539 |  | 
|---|
| 540 | if (IsEnvDefined(env, prefix, "FileNameNSB", print)) | 
|---|
| 541 | { | 
|---|
| 542 | rc = kTRUE; | 
|---|
| 543 | fFileNameNSB = GetEnvValue(env, prefix, "FileNameNSB", fFileNameNSB); | 
|---|
| 544 | } | 
|---|
| 545 |  | 
|---|
| 546 | if (IsEnvDefined(env, prefix, "SimulateCherenkovSpectrum", print)) | 
|---|
| 547 | { | 
|---|
| 548 | rc = kTRUE; | 
|---|
| 549 | fSimulateWavelength = GetEnvValue(env, prefix, "SimulateCherenkovSpectrum", fSimulateWavelength); | 
|---|
| 550 | } | 
|---|
| 551 |  | 
|---|
| 552 | return rc; | 
|---|
| 553 | } | 
|---|