1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appears in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz, 1/2009 <mailto:tbretz@astro.uni-wuerzburg.de>
|
---|
19 | !
|
---|
20 | ! Copyright: CheObs Software Development, 2000-2009
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MSimRandomPhotons
|
---|
28 | //
|
---|
29 | // Simulate poissonian photons. Since the distribution of the arrival time
|
---|
30 | // differences of these photons is an exonential we can simulate them
|
---|
31 | // using exponentially distributed time differences between two consecutive
|
---|
32 | // photons.
|
---|
33 | //
|
---|
34 | // FIXME: We should add the wavelength distribution.
|
---|
35 | //
|
---|
36 | // The artificial night sky background rate is calculated as follows:
|
---|
37 | //
|
---|
38 | // * The photon detection efficiency vs. wavelength of the detector is obtained
|
---|
39 | // from "PhotonDetectionEfficiency" of type "MParSpline"
|
---|
40 | //
|
---|
41 | // * The angular acceptance of the light collectors is obtained
|
---|
42 | // from "ConesAngularAcceptance" of type "MParSpline"
|
---|
43 | //
|
---|
44 | // * The spectral acceptance of the light collectors is obtained
|
---|
45 | // from "ConesTransmission" of type "MParSpline"
|
---|
46 | //
|
---|
47 | // * The reflectivity of the mirrors vs wavelength is obtained
|
---|
48 | // from "MirrorReflectivity" of type "MParSpline"
|
---|
49 | //
|
---|
50 | // The rate is then calculated as
|
---|
51 | //
|
---|
52 | // R = R0 * Ai * f
|
---|
53 | //
|
---|
54 | // R0 is the night sky background rate as given in Eckart's paper (divided
|
---|
55 | // by the wavelength window). Ai the area of the cones acceptance window,
|
---|
56 | // f is given as:
|
---|
57 | //
|
---|
58 | // f = nm * Min(Ar, sr*d^2)
|
---|
59 | //
|
---|
60 | // with
|
---|
61 | //
|
---|
62 | // nm being the integral of the product of the mirror reflectivity, the cone
|
---|
63 | // transmission and the photon detection efficiency.
|
---|
64 | //
|
---|
65 | // d the distance of the focal plane to the mirror
|
---|
66 | //
|
---|
67 | // Ar is the total reflective area of the reflector
|
---|
68 | //
|
---|
69 | // sr is the effective solid angle corresponding to the integral of the
|
---|
70 | // cones angular acceptance
|
---|
71 | //
|
---|
72 | // Alternatively, the night-sky background rate can be calculated from
|
---|
73 | // a spectrum as given in Fig. 1 (but versus Nanometers) in
|
---|
74 | //
|
---|
75 | // Chris R. Benn & Sara L. Ellison La Palma Night-Sky Brightness
|
---|
76 | //
|
---|
77 | // After proper conversion of the units, the rate of the pixel 0
|
---|
78 | // is then calculated by
|
---|
79 | //
|
---|
80 | // rate = f * nsb
|
---|
81 | //
|
---|
82 | // With nsb
|
---|
83 | //
|
---|
84 | // nsb = Integral(nsb spectrum * combines efficiencies)
|
---|
85 | //
|
---|
86 | // and f can be either
|
---|
87 | //
|
---|
88 | // Eff. angular acceptance Cones (e.g. 20deg) * Cone-Area (mm^2)
|
---|
89 | // f = sr * A0
|
---|
90 | //
|
---|
91 | // or
|
---|
92 | //
|
---|
93 | // Mirror-Area * Field of view of cones (deg^2)
|
---|
94 | // f = Ar * A0;
|
---|
95 | //
|
---|
96 | //
|
---|
97 | // Input Containers:
|
---|
98 | // fNameGeomCam [MGeomCam]
|
---|
99 | // MPhotonEvent
|
---|
100 | // MPhotonStatistics
|
---|
101 | // MCorsikaEvtHeader
|
---|
102 | // [MCorsikaRunHeader]
|
---|
103 | //
|
---|
104 | // Output Containers:
|
---|
105 | // MPhotonEvent
|
---|
106 | // AccidentalPhotonRate [MPedestalCam]
|
---|
107 | //
|
---|
108 | //////////////////////////////////////////////////////////////////////////////
|
---|
109 | #include "MSimRandomPhotons.h"
|
---|
110 |
|
---|
111 | #include <TRandom.h>
|
---|
112 |
|
---|
113 | #include "MMath.h" // RndmExp
|
---|
114 |
|
---|
115 | #include "MLog.h"
|
---|
116 | #include "MLogManip.h"
|
---|
117 |
|
---|
118 | #include "MParList.h"
|
---|
119 |
|
---|
120 | #include "MGeomCam.h"
|
---|
121 | #include "MGeom.h"
|
---|
122 |
|
---|
123 | #include "MPhotonEvent.h"
|
---|
124 | #include "MPhotonData.h"
|
---|
125 |
|
---|
126 | #include "MPedestalCam.h"
|
---|
127 | #include "MPedestalPix.h"
|
---|
128 |
|
---|
129 | #include "MCorsikaRunHeader.h"
|
---|
130 |
|
---|
131 | #include "MSpline3.h"
|
---|
132 | #include "MParSpline.h"
|
---|
133 | #include "MOptics.h"
|
---|
134 |
|
---|
135 | ClassImp(MSimRandomPhotons);
|
---|
136 |
|
---|
137 | using namespace std;
|
---|
138 |
|
---|
139 | // --------------------------------------------------------------------------
|
---|
140 | //
|
---|
141 | // Default Constructor.
|
---|
142 | //
|
---|
143 | MSimRandomPhotons::MSimRandomPhotons(const char* name, const char *title)
|
---|
144 | : fGeom(0), fEvt(0), fStat(0), /*fEvtHeader(0),*/ fRunHeader(0),
|
---|
145 | fRates(0), fSimulateWavelength(kFALSE), fNameGeomCam("MGeomCam"),
|
---|
146 | fFileNameNSB("resmc/night-sky-la-palma.txt"), fForce(kFALSE)
|
---|
147 | {
|
---|
148 | fName = name ? name : "MSimRandomPhotons";
|
---|
149 | fTitle = title ? title : "Simulate possonian photons (like NSB or dark current)";
|
---|
150 | }
|
---|
151 |
|
---|
152 | // --------------------------------------------------------------------------
|
---|
153 | //
|
---|
154 | // Check for the necessary containers
|
---|
155 | //
|
---|
156 | Int_t MSimRandomPhotons::PreProcess(MParList *pList)
|
---|
157 | {
|
---|
158 | fGeom = (MGeomCam*)pList->FindObject(fNameGeomCam, "MGeomCam");
|
---|
159 | if (!fGeom)
|
---|
160 | {
|
---|
161 | *fLog << inf << fNameGeomCam << " [MGeomCam] not found..." << endl;
|
---|
162 |
|
---|
163 | fGeom = (MGeomCam*)pList->FindObject("MGeomCam");
|
---|
164 | if (!fGeom)
|
---|
165 | {
|
---|
166 | *fLog << err << "MGeomCam not found... aborting." << endl;
|
---|
167 | return kFALSE;
|
---|
168 | }
|
---|
169 | }
|
---|
170 |
|
---|
171 | fEvt = (MPhotonEvent*)pList->FindObject("MPhotonEvent");
|
---|
172 | if (!fEvt)
|
---|
173 | {
|
---|
174 | *fLog << err << "MPhotonEvent not found... aborting." << endl;
|
---|
175 | return kFALSE;
|
---|
176 | }
|
---|
177 |
|
---|
178 | fStat = (MPhotonStatistics*)pList->FindObject("MPhotonStatistics");
|
---|
179 | if (!fStat)
|
---|
180 | {
|
---|
181 | *fLog << err << "MPhotonStatistics not found... aborting." << endl;
|
---|
182 | return kFALSE;
|
---|
183 | }
|
---|
184 |
|
---|
185 | fRates = (MPedestalCam*)pList->FindCreateObj("MPedestalCam", "AccidentalPhotonRates");
|
---|
186 | if (!fRates)
|
---|
187 | return kFALSE;
|
---|
188 |
|
---|
189 | /*
|
---|
190 | fEvtHeader = (MCorsikaEvtHeader*)pList->FindObject("MCorsikaEvtHeader");
|
---|
191 | if (!fEvtHeader)
|
---|
192 | {
|
---|
193 | *fLog << err << "MCorsikaEvtHeader not found... aborting." << endl;
|
---|
194 | return kFALSE;
|
---|
195 | }*/
|
---|
196 |
|
---|
197 | fRunHeader = (MCorsikaRunHeader*)pList->FindObject("MCorsikaRunHeader");
|
---|
198 | if (fSimulateWavelength && !fRunHeader)
|
---|
199 | {
|
---|
200 | *fLog << err << "MCorsikaRunHeader not found... aborting." << endl;
|
---|
201 | return kFALSE;
|
---|
202 | }
|
---|
203 |
|
---|
204 | MOptics *r = (MOptics*)pList->FindObject("Reflector", "MOptics");
|
---|
205 | if (!r)
|
---|
206 | {
|
---|
207 | *fLog << err << "Reflector [MOptics] not found... aborting." << endl;
|
---|
208 | return kFALSE;
|
---|
209 | }
|
---|
210 |
|
---|
211 | const MParSpline *s1 = (MParSpline*)pList->FindObject("PhotonDetectionEfficiency", "MParSpline");
|
---|
212 | const MParSpline *s2 = (MParSpline*)pList->FindObject("ConesTransmission", "MParSpline");
|
---|
213 | const MParSpline *s3 = (MParSpline*)pList->FindObject("MirrorReflectivity", "MParSpline");
|
---|
214 | const MParSpline *s4 = (MParSpline*)pList->FindObject("ConesAngularAcceptance", "MParSpline");
|
---|
215 |
|
---|
216 | // Ensure that all efficiencies are at least defined in the raneg of the
|
---|
217 | // photon detection efficiency. We assume that this is the limiting factor
|
---|
218 | // and has to be zero at both ends.
|
---|
219 | if (s2->GetXmin()>s1->GetXmin())
|
---|
220 | {
|
---|
221 | *fLog << err << "ERROR - ConeTransmission range must be defined down to " << s1->GetXmin() << "nm (PhotonDetectionEffciency)." << endl;
|
---|
222 | return kFALSE;
|
---|
223 | }
|
---|
224 | if (s2->GetXmax()<s1->GetXmax())
|
---|
225 | {
|
---|
226 | *fLog << err << "ERROR - ConeTransmission range must be defined up to " << s1->GetXmax() << "nm (PhotonDetectionEffciency)." << endl;
|
---|
227 | return kFALSE;
|
---|
228 | }
|
---|
229 | if (s3->GetXmin()>s1->GetXmin())
|
---|
230 | {
|
---|
231 | *fLog << err << "ERROR - MirrorReflectivity range must be defined down to " << s1->GetXmin() << "nm (PhotonDetectionEffciency)." << endl;
|
---|
232 | return kFALSE;
|
---|
233 | }
|
---|
234 | if (s3->GetXmax()<s1->GetXmax())
|
---|
235 | {
|
---|
236 | *fLog << err << "ERROR - MirrorReflectivity range must be defined up to " << s1->GetXmax() << "nm (PhotonDetectionEffciency)." << endl;
|
---|
237 | return kFALSE;
|
---|
238 | }
|
---|
239 |
|
---|
240 | // If the simulated wavelength range exists and is smaller, reduce the
|
---|
241 | // range to it. Later it is checked that at both edges the transmission
|
---|
242 | // is 0. This must be true in both cases: The simulated wavelength range
|
---|
243 | // exceed the PDE or the PDE range exceeds the simulated waveband.
|
---|
244 | const Float_t wmin = fRunHeader && fRunHeader->GetWavelengthMin()>s1->GetXmin() ? fRunHeader->GetWavelengthMin() : s1->GetXmin();
|
---|
245 | const Float_t wmax = fRunHeader && fRunHeader->GetWavelengthMax()<s1->GetXmax() ? fRunHeader->GetWavelengthMax() : s1->GetXmax();
|
---|
246 |
|
---|
247 | const Int_t min = TMath::FloorNint(wmin);
|
---|
248 | const Int_t max = TMath::CeilNint(wmax);
|
---|
249 |
|
---|
250 | // Multiply all relevant efficiencies to get the total transmission
|
---|
251 | MParSpline eff;
|
---|
252 | eff.SetFunction("1", max-min, min, max);
|
---|
253 |
|
---|
254 | eff.Multiply(*s1->GetSpline());
|
---|
255 | eff.Multiply(*s2->GetSpline());
|
---|
256 | eff.Multiply(*s3->GetSpline());
|
---|
257 |
|
---|
258 | // Effectively transmitted wavelength band in the simulated range
|
---|
259 | const Double_t nm = eff.GetSpline()->Integral();
|
---|
260 |
|
---|
261 | // Angular acceptance of the cones
|
---|
262 | const Double_t sr = s4 && s4->GetSpline() ? s4->GetSpline()->IntegralSolidAngle() : 1;
|
---|
263 |
|
---|
264 | {
|
---|
265 | const Double_t d2 = fGeom->GetCameraDist()*fGeom->GetCameraDist();
|
---|
266 | const Double_t conv = fGeom->GetConvMm2Deg()*TMath::DegToRad();
|
---|
267 | const Double_t f1 = TMath::Min(r->GetA()/1e4, sr*d2) * conv*conv;
|
---|
268 |
|
---|
269 | // Rate in GHz / mm^2
|
---|
270 | fScale = fFreqNSB * nm * f1; // [GHz/mm^2] efficiency * m^2 *rad^2 *mm^2
|
---|
271 |
|
---|
272 | const Double_t freq0 = fScale*(*fGeom)[0].GetA()*1000;
|
---|
273 |
|
---|
274 | *fLog << inf << "Resulting Freq. in " << fNameGeomCam << "[0]: " << Form("%.2f", freq0) << "MHz" << endl;
|
---|
275 |
|
---|
276 | // FIXME: Scale with the number of pixels
|
---|
277 | if (freq0>1000)
|
---|
278 | {
|
---|
279 | *fLog << err << "ERROR - Frequency exceeds 1GHz, this might leed to too much memory consumption." << endl;
|
---|
280 | return kFALSE;
|
---|
281 | }
|
---|
282 | }
|
---|
283 |
|
---|
284 | if (fFileNameNSB.IsNull())
|
---|
285 | return kTRUE;
|
---|
286 |
|
---|
287 | // const MMcRunHeader *mcrunheader = (MMcRunHeader*)pList->FindObject("MMcRunHeader");
|
---|
288 | // Set NumPheFromDNSB
|
---|
289 |
|
---|
290 | // # Number of photons from the diffuse NSB (nphe / ns 0.1*0.1 deg^2 239 m^2) and
|
---|
291 | // nsb_mean 0.20
|
---|
292 | // Magic pixel: 0.00885361 deg
|
---|
293 | // dnsbpix = 0.2*50/15
|
---|
294 | // ampl = MMcFadcHeader->GetAmplitud()
|
---|
295 | // sqrt(pedrms*pedrms + dnsbpix*ampl*ampl/ratio)
|
---|
296 |
|
---|
297 | // Conversion of the y-axis
|
---|
298 | // ------------------------
|
---|
299 | // Double_t ff = 1; // myJy / arcsec^2 per nm
|
---|
300 | // ff *= 1e-6; // Jy / arcsec^2 per nm
|
---|
301 | // ff *= 3600*3600; // Jy / deg^2
|
---|
302 | // ff *= 1./TMath::DegToRad()/TMath::DegToRad(); // Jy/sr = 1e-26J/s/m^2/Hz/sr
|
---|
303 | // ff *= 1e-26; // J/s/m^2/Hz/sr per nm
|
---|
304 |
|
---|
305 | const Double_t arcsec2rad = TMath::DegToRad()/3600.;
|
---|
306 | const Double_t f = 1e-32 / (arcsec2rad*arcsec2rad);
|
---|
307 |
|
---|
308 | // Read night sky background flux from file
|
---|
309 | MParSpline flux;
|
---|
310 | if (!flux.ReadFile(fFileNameNSB))
|
---|
311 | return kFALSE;
|
---|
312 |
|
---|
313 | if (flux.GetXmin()>wmin)
|
---|
314 | {
|
---|
315 | *fLog << err << "ERROR - NSB flux from " << fFileNameNSB << " must be defined down to " << wmin << "nm." << endl;
|
---|
316 | return kFALSE;
|
---|
317 | }
|
---|
318 | if (flux.GetXmax()<wmax)
|
---|
319 | {
|
---|
320 | *fLog << err << "ERROR - NSB flux from " << fFileNameNSB << " must be defined up to " << wmax << "nm." << endl;
|
---|
321 | return kFALSE;
|
---|
322 | }
|
---|
323 |
|
---|
324 | MParSpline nsb;
|
---|
325 |
|
---|
326 | // Normalization to our units,
|
---|
327 | // conversion from energy flux to photon flux
|
---|
328 | nsb.SetFunction(Form("%.12e/(x*TMath::H())", f), max-min, min, max);
|
---|
329 |
|
---|
330 | // multiply night sky background flux with normalization
|
---|
331 | nsb.Multiply(*flux.GetSpline());
|
---|
332 |
|
---|
333 | // Multiply with the total transmission
|
---|
334 | nsb.Multiply(*eff.GetSpline());
|
---|
335 |
|
---|
336 | // Check if the photon flux is zero at both ends of the NSB
|
---|
337 | if (eff.GetSpline()->Eval(min)>1e-5)
|
---|
338 | {
|
---|
339 | *fLog << warn << "WARNING - Total transmission efficiency at ";
|
---|
340 | *fLog << min << "nm is not zero, but " << eff.GetSpline()->Eval(min) << "... abort." << endl;
|
---|
341 | }
|
---|
342 | if (eff.GetSpline()->Eval(max)>1e-5)
|
---|
343 | {
|
---|
344 | *fLog << warn << "WARNING - Total transmission efficiency at ";
|
---|
345 | *fLog << max << "nm is not zero, but " << eff.GetSpline()->Eval(max) << "... abort." << endl;
|
---|
346 | }
|
---|
347 |
|
---|
348 | // Check if the photon flux is zero at both ends of the simulated region
|
---|
349 | if (eff.GetSpline()->Eval(wmin)>1e-5)
|
---|
350 | {
|
---|
351 | *fLog << (fForce?warn:err) << "ERROR - Total transmission efficiency at ";
|
---|
352 | *fLog << wmin << "nm is not zero... abort." << endl;
|
---|
353 | *fLog << " PhotonDetectionEfficency: " << s1->GetSpline()->Eval(wmin) << endl;
|
---|
354 | *fLog << " ConeTransmission: " << s2->GetSpline()->Eval(wmin) << endl;
|
---|
355 | *fLog << " MirrorReflectivity: " << s3->GetSpline()->Eval(wmin) << endl;
|
---|
356 | *fLog << " TotalEfficiency: " << eff.GetSpline()->Eval(wmin) << endl;
|
---|
357 | if (!fForce)
|
---|
358 | return kFALSE;
|
---|
359 | }
|
---|
360 | if (eff.GetSpline()->Eval(wmax)>1e-5)
|
---|
361 | {
|
---|
362 | *fLog << (fForce?warn:err) << "ERROR - Total transmission efficiency at ";
|
---|
363 | *fLog << wmax << "nm is not zero... abort." << endl;
|
---|
364 | *fLog << " PhotonDetectionEfficency: " << s1->GetSpline()->Eval(wmax) << endl;
|
---|
365 | *fLog << " ConeTransmission: " << s2->GetSpline()->Eval(wmax) << endl;
|
---|
366 | *fLog << " MirrorReflectivity: " << s3->GetSpline()->Eval(wmax) << endl;
|
---|
367 | *fLog << " TotalEfficiency: " << eff.GetSpline()->Eval(wmax) << endl;
|
---|
368 | if (!fForce)
|
---|
369 | return kFALSE;
|
---|
370 | }
|
---|
371 |
|
---|
372 | // Conversion from m to radians
|
---|
373 | const Double_t conv = fGeom->GetConvMm2Deg()*TMath::DegToRad()*1e3;
|
---|
374 |
|
---|
375 | // Angular acceptance of the cones
|
---|
376 | //const Double_t sr = s5.GetSpline()->IntegralSolidAngle(); // sr
|
---|
377 | // Absolute reflector area
|
---|
378 | const Double_t Ar = r->GetA()/1e4; // m^2
|
---|
379 | // Size of the cone's entrance window
|
---|
380 | const Double_t A0 = (*fGeom)[0].GetA()*1e-6; // m^2
|
---|
381 |
|
---|
382 | // Rate * m^2 * Solid Angle
|
---|
383 | // -------------------------
|
---|
384 |
|
---|
385 | // Angular acceptance Cones (e.g. 20deg) * Cone-Area
|
---|
386 | const Double_t f1 = A0 * sr; // m^2 sr
|
---|
387 |
|
---|
388 | // Mirror-Area * Field of view of cones (e.g. 0.1deg)
|
---|
389 | const Double_t f2 = Ar * A0*conv*conv; // m^2 sr
|
---|
390 |
|
---|
391 | // FIXME: Calculate the reflectivity of the bottom by replacing
|
---|
392 | // MirrorReflectivity by bottom reflectivity and reflect
|
---|
393 | // and use it to reflect the difference between f1 and f2
|
---|
394 | // if any.
|
---|
395 |
|
---|
396 | // Total NSB rate in MHz per m^2 and sr
|
---|
397 | const Double_t rate = nsb.GetSpline()->Integral() * 1e-6;
|
---|
398 |
|
---|
399 | *fLog << inf;
|
---|
400 |
|
---|
401 | // Resulting rates as if Razmick's constant had been used
|
---|
402 | // *fLog << 1.75e6/(600-300) * f1 * eff.GetSpline()->Integral() << " MHz" << endl;
|
---|
403 | // *fLog << 1.75e6/(600-300) * f2 * eff.GetSpline()->Integral() << " MHz" << endl;
|
---|
404 |
|
---|
405 | *fLog << "Conversion factor Fnu: " << f << endl;
|
---|
406 | *fLog << "Total reflective area: " << Form("%.2f", Ar) << " m" << UTF8::kSquare << endl;
|
---|
407 | *fLog << "Acceptance area of cone 0: " << Form("%.2f", A0*1e6) << " mm" << UTF8::kSquare << " = ";
|
---|
408 | *fLog << A0*conv*conv << " sr" << endl;
|
---|
409 | *fLog << "Cones angular acceptance: " << sr << " sr" << endl;
|
---|
410 | *fLog << "ConeArea*ConeSolidAngle (f1): " << f1 << " m^2 sr" << endl;
|
---|
411 | *fLog << "MirrorArea*ConeSkyAngle (f2): " << f2 << " m^2 sr" << endl;
|
---|
412 | *fLog << "Effective. transmission: " << Form("%.1f", nm) << " nm" << endl;
|
---|
413 | *fLog << "NSB freq. in " << fNameGeomCam << "[0] (f1): " << Form("%.2f", rate * f1) << " MHz" << endl;
|
---|
414 | *fLog << "NSB freq. in " << fNameGeomCam << "[0] (f2): " << Form("%.2f", rate * f2) << " MHz" << endl;
|
---|
415 | *fLog << "Using f2." << endl;
|
---|
416 |
|
---|
417 | // Scale the rate per mm^2 and to GHz
|
---|
418 | fScale = rate * f2 / (*fGeom)[0].GetA() / 1000;
|
---|
419 |
|
---|
420 | // FIXME: Scale with the number of pixels
|
---|
421 | if (rate*f2>1000)
|
---|
422 | {
|
---|
423 | *fLog << err << "ERROR - Frequency exceeds 1GHz, this might leed to too much memory consumption." << endl;
|
---|
424 | return kFALSE;
|
---|
425 | }
|
---|
426 |
|
---|
427 | return kTRUE;
|
---|
428 | }
|
---|
429 |
|
---|
430 | Bool_t MSimRandomPhotons::ReInit(MParList *pList)
|
---|
431 | {
|
---|
432 | // Overwrite the default set by MGeomApply
|
---|
433 | fRates->Init(*fGeom);
|
---|
434 | return kTRUE;
|
---|
435 | }
|
---|
436 |
|
---|
437 | // --------------------------------------------------------------------------
|
---|
438 | //
|
---|
439 | // Check for the necessary containers
|
---|
440 | //
|
---|
441 | Int_t MSimRandomPhotons::Process()
|
---|
442 | {
|
---|
443 | // Get array from event container
|
---|
444 | // const Int_t num = fEvt->GetNumPhotons();
|
---|
445 | //
|
---|
446 | // Do not produce pure pedestal events!
|
---|
447 | // if (num==0)
|
---|
448 | // return kTRUE;
|
---|
449 |
|
---|
450 | // Get array from event container
|
---|
451 | // FIXME: Use statistics container instead
|
---|
452 | const UInt_t npix = fGeom->GetNumPixels();
|
---|
453 |
|
---|
454 | // This is the possible window in which the triggered digitization
|
---|
455 | // may take place.
|
---|
456 | const Double_t start = fStat->GetTimeFirst();
|
---|
457 | const Double_t end = fStat->GetTimeLast();
|
---|
458 |
|
---|
459 | // Loop over all pixels
|
---|
460 | for (UInt_t idx=0; idx<npix; idx++)
|
---|
461 | {
|
---|
462 | // Scale the rate with the pixel size.
|
---|
463 | const Double_t rate = fFreqFixed + fScale*(*fGeom)[idx].GetA();
|
---|
464 |
|
---|
465 | (*fRates)[idx].SetPedestal(rate);
|
---|
466 |
|
---|
467 | // Calculate the average distance between two consequtive photons
|
---|
468 | const Double_t avglen = 1./rate;
|
---|
469 |
|
---|
470 | // Start producing photons at time "start"
|
---|
471 | Double_t t = start;
|
---|
472 | while (1)
|
---|
473 | {
|
---|
474 | // Get a random time for the photon.
|
---|
475 | // The differences are exponentially distributed.
|
---|
476 | t += MMath::RndmExp(avglen);
|
---|
477 |
|
---|
478 | // Check if we reached the end of the useful time window
|
---|
479 | if (t>end)
|
---|
480 | break;
|
---|
481 |
|
---|
482 | // Add a new photon
|
---|
483 | // FIXME: SLOW!
|
---|
484 | MPhotonData &ph = fEvt->Add();
|
---|
485 |
|
---|
486 | // Set source to NightSky, time to t and tag to pixel index
|
---|
487 | ph.SetPrimary(MMcEvtBasic::kNightSky);
|
---|
488 | ph.SetWeight();
|
---|
489 | ph.SetTime(t);
|
---|
490 | ph.SetTag(idx);
|
---|
491 |
|
---|
492 | // fProductionHeight, fPosX, fPosY, fCosU, fCosV (irrelevant) FIXME: Reset?
|
---|
493 |
|
---|
494 | if (fSimulateWavelength)
|
---|
495 | {
|
---|
496 | const Float_t wmin = fRunHeader->GetWavelengthMin();
|
---|
497 | const Float_t wmax = fRunHeader->GetWavelengthMax();
|
---|
498 |
|
---|
499 | ph.SetWavelength(TMath::Nint(gRandom->Uniform(wmin, wmax)));
|
---|
500 | }
|
---|
501 | }
|
---|
502 | }
|
---|
503 |
|
---|
504 | // Re-sort the photons by time!
|
---|
505 | fEvt->Sort(kTRUE);
|
---|
506 |
|
---|
507 | // Update maximum index
|
---|
508 | fStat->SetMaxIndex(npix-1);
|
---|
509 |
|
---|
510 | // Shrink
|
---|
511 | return kTRUE;
|
---|
512 | }
|
---|
513 |
|
---|
514 | // --------------------------------------------------------------------------
|
---|
515 | //
|
---|
516 | // Read the parameters from the resource file.
|
---|
517 | //
|
---|
518 | // FrequencyFixed: 0.040
|
---|
519 | // FrequencyNSB: 5.8
|
---|
520 | //
|
---|
521 | // The fixed frequency is given in units fitting the units of the time.
|
---|
522 | // Usually the time is given in nanoseconds thus, e.g., 0.040 means 40MHz.
|
---|
523 | //
|
---|
524 | // The FrequencyNSB is scaled by the area of the pixel in cm^2. Therefore
|
---|
525 | // 0.040 would mean 40MHz/cm^2
|
---|
526 | //
|
---|
527 | Int_t MSimRandomPhotons::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
---|
528 | {
|
---|
529 | Bool_t rc = kFALSE;
|
---|
530 | if (IsEnvDefined(env, prefix, "Force", print))
|
---|
531 | {
|
---|
532 | rc = kTRUE;
|
---|
533 | fForce = GetEnvValue(env, prefix, "Force", fForce);
|
---|
534 | }
|
---|
535 |
|
---|
536 | if (IsEnvDefined(env, prefix, "FrequencyFixed", print))
|
---|
537 | {
|
---|
538 | rc = kTRUE;
|
---|
539 | fFreqFixed = GetEnvValue(env, prefix, "FrequencyFixed", fFreqFixed);
|
---|
540 | }
|
---|
541 |
|
---|
542 | if (IsEnvDefined(env, prefix, "FrequencyNSB", print))
|
---|
543 | {
|
---|
544 | rc = kTRUE;
|
---|
545 | fFreqNSB = GetEnvValue(env, prefix, "FrequencyNSB", fFreqNSB);
|
---|
546 | }
|
---|
547 |
|
---|
548 | if (IsEnvDefined(env, prefix, "FileNameNSB", print))
|
---|
549 | {
|
---|
550 | rc = kTRUE;
|
---|
551 | fFileNameNSB = GetEnvValue(env, prefix, "FileNameNSB", fFileNameNSB);
|
---|
552 | }
|
---|
553 |
|
---|
554 | if (IsEnvDefined(env, prefix, "SimulateCherenkovSpectrum", print))
|
---|
555 | {
|
---|
556 | rc = kTRUE;
|
---|
557 | fSimulateWavelength = GetEnvValue(env, prefix, "SimulateCherenkovSpectrum", fSimulateWavelength);
|
---|
558 | }
|
---|
559 |
|
---|
560 | return rc;
|
---|
561 | }
|
---|