source: trunk/Mars/msimreflector/MFresnelLens.cc@ 19594

Last change on this file since 19594 was 19593, checked in by tbretz, 6 years ago
Renamed MLens to MFresnelLens
File size: 7.8 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of CheObs, the Modular Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appears in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 6/2019 <mailto:tbretz@physik.rwth-aachen.de>
19!
20! Copyright: CheObs Software Development, 2000-2009
21!
22!
23\* ======================================================================== */
24
25//////////////////////////////////////////////////////////////////////////////
26//
27// MLens
28//
29//////////////////////////////////////////////////////////////////////////////
30#include "MLens.h"
31
32#include <fstream>
33#include <errno.h>
34
35#include "MQuaternion.h"
36
37#include "MLog.h"
38#include "MLogManip.h"
39
40ClassImp(MLens);
41
42using namespace std;
43
44// --------------------------------------------------------------------------
45//
46// Default constructor
47//
48MLens::MLens(const char *name, const char *title)
49{
50 fName = name ? name : "MLens";
51 fTitle = title ? title : "Parameter container storing a collection of several mirrors (reflector)";
52
53 fMaxR = 25;
54}
55
56// --------------------------------------------------------------------------
57//
58// Return the total Area of all mirrors. Note, that it is recalculated
59// with any call.
60//
61Double_t MLens::GetA() const
62{
63 return fMaxR*fMaxR*TMath::Pi();
64}
65
66// --------------------------------------------------------------------------
67//
68// Check with a rough estimate whether a photon can hit the reflector.
69//
70Bool_t MLens::CanHit(const MQuaternion &p) const
71{
72 // p is given in the reflectory coordinate frame. This is meant as a
73 // fast check without lengthy calculations to omit all photons which
74 // cannot hit the reflector at all
75 return p.R2()<fMaxR*fMaxR;
76}
77
78struct Groove
79{
80 double fTheta;
81 double fPeakZ;
82
83 double fTanTheta;
84 double fTanTheta2[3];
85
86 Groove() { }
87 Groove(double theta, double z) : fTheta(theta), fPeakZ(z)
88 {
89 fTanTheta = tan(theta);
90
91 fTanTheta2[0] = fTanTheta*fTanTheta;
92 fTanTheta2[1] = fTanTheta*fTanTheta * fPeakZ;
93 fTanTheta2[2] = fTanTheta*fTanTheta * fPeakZ*fPeakZ;
94 }
95};
96
97float CalcIntersection(const MQuaternion &p, const MQuaternion &u, const Groove &g, const double &fThickness)
98{
99 // p is the position in the plane of the lens (px, py, 0, t)
100 // u is the direction of the photon (ux, uy, dz, dt)
101
102 // Assuming a cone with peak at z and opening angle theta
103
104 // Radius at distance z+dz from the tip and at distance r from the axis of the cone
105 // r = (z-dz) * tan(theta)
106
107 // Defining
108 // zc := z+dz
109
110 // Surface of the cone
111 // (X) ( tan(theta) * sin(phi) )
112 // (Y) = zc * ( tan(theta) * cos(phi) )
113 // (Z) ( 1 )
114
115 // Line
116 // (X) (u.x) (p.x)
117 // (Y) = dz * (u.y) + (p.y)
118 // (Z) (u.z) ( 0 )
119
120 // Equality
121 //
122 // X^2+Y^2 = r^2
123 //
124 // (dz*u.x+p.x)^2 + (dz*u.y+p.y)^2 = (z-dz)^2 * tan(theta)^2
125 //
126 // dz^2*ux^2 + px^2 + 2*dz*ux*px + dz^2*uy^2 + py^2 + 2*dz*uy*py = (z^2*tan(theta)^2 + dz^2*tan(theta)^2 - 2*z*dz*tan(theta)^2
127 //
128 // dz^2*(ux^2 + uy^2 - tan(theta)^2) + 2*dz*(ux*px + uy*py + z*tan(theta)^2) + (px^2+py^2 - z^2*tan(theta)^2) = 0
129
130 // t := tan(theta)
131 // a := ux^2 + uy^2 - t^2
132 // b/2 := ux*px + uy*py - z *t^2 := B
133 // c := px^2 + py^2 - z^2*t^2
134
135 // dz = [ -b +- sqrt(b^2 - 4*a*c) ] / [2*a]
136 // dz = [ -B +- sqrt(B^2 - a*c) ] / a
137
138 const double a = u.R2() - g.fTanTheta2[0];
139 const double B = u.XYvector()*p.XYvector() + g.fTanTheta2[1];
140 const double c = p.R2() - g.fTanTheta2[2];
141
142 const double B2 = B*B;
143 const double ac = a*c;
144
145 if (B2<ac)
146 return 0;
147
148 const double sqrtBac = sqrt(B2 - a*c);
149
150 if (a==0)
151 return 0;
152
153 const double dz[2] =
154 {
155 (sqrtBac-B) / a,
156 (sqrtBac+B) / a
157 };
158
159 // Only one dz[i] can be within the lens (due to geometrical reasons
160
161 if (dz[0]<0 && dz[0]>fThickness)
162 return dz[0];
163
164 if (dz[1]<0 && dz[1]>fThickness)
165 return dz[1];
166
167 return 0;
168}
169
170double CalcRefractiveIndex(const double &lambda)
171{
172 // https://refractiveindex.info/?shelf=organic&book=poly(methyl_methacrylate)&page=Szczurowski
173
174 // n^2-1=\frac{0.99654λ^2}{λ^2-0.00787}+\frac{0.18964λ^2}{λ^2-0.02191}+\frac{0.00411λ^2}{λ^2-3.85727}
175
176 const double l2 = lambda*lambda;
177
178 const double c0 = 0.99654/(1-0.00787/l2);
179 const double c1 = 0.18964/(1-0.02191/l2);
180 const double c2 = 0.00411/(1-3.85727/l2);
181
182 return sqrt(1+c0+c1+c2);
183}
184
185void ApplyRefraction(MQuaternion &u, const TVector3 &n, const double &n1, const double &n2)
186{
187 // u: incoming direction
188 // n: normal vector of surface
189 // n2: refractive index of new(?) medium
190 // n1: refractive index of old(?) medium
191
192 const double r = n2/n1;
193 const double c = n*u.fVectorPart;
194
195 const double R = 1 - r*r*(1-c*c);
196
197 const auto v = r*c + sqrt(R<0 ? 0 : R);
198
199 u = r*u - n*v;
200}
201
202Int_t MLens::ExecuteOptics(MQuaternion &p, MQuaternion &u, const Short_t &wavelength) const
203{
204 const double F = 50; // [mm] focal length
205 const double R = 25; // [mm] radius of lens
206 const int N = 25; // [cnt] Nuber of grooves within radius
207
208 const double w = R/N; // [mm] Width of a single groove
209
210 const double n = CalcRefractiveIndex(wavelength==0 ? 450 : wavelength);
211
212 const int nth = TMath::FloorNint(p.R()/w); // Ray will hit the nth groove
213
214 const double r0 = nth*w; // Lower radius of nth groove
215 const double r1 = (nth+1)*w; // Upper radius of nth groove
216 const double cen = (nth+0.5)*w; // Center of nth groove
217
218 // FIXME: Do we have to check the nth-1 and nth+1 groove as well?
219
220 // Angle to the center of the groove
221 const double phi = acos(cen / (F/1.125));
222
223 // theta peak_z
224 const Groove g( TMath::Pi()/2 - phi, r0*tan(phi));
225
226 // Calculate the insersection between the ray and the cone
227 float dz = CalcIntersection(p, u, g, -3);
228
229 // No groove was hit
230 if (dz>=0)
231 return -1;
232
233 // Propagate to the hit point
234 p.PropagateZ(u, dz);
235
236 // Check where the ray has hit
237 const double pr = p.R();
238
239 // If the ray has not hit within the right radius.. reject
240 if (pr<=r0 || pr>r1)
241 return -1;
242
243 // Normal vector of the surface at the hit point
244 // FIXME: Surface roughness?
245 TVector3 norm;
246 norm.SetMagThetaPhi(1, g.fTheta+TMath::Pi()/2, p.XYvector().Phi());
247
248 // Apply refraction at lens entrance (change directional vector)
249 // FIXME: Surace roughness
250 ApplyRefraction(u, norm, 1, n);
251
252 // Propagate ray until bottom of lens
253 const double v = u.fRealPart; // c changes in the medium
254 u.fRealPart = n*v;
255 p.PropagateZ(u, -3);
256 u.fRealPart = v; // Set back to c
257
258 // New normal surface (bottom of lens)
259 norm.SetMagThetaPhi(1, 0, 0);
260
261 // Apply refraction at lens exit (change directional vector)
262 // FIXME: Surace roughness
263 ApplyRefraction(u, norm, n, 1);
264
265 // To make this consistent with a mirror system, we now change our coordinate system
266 // Rays from the lens to the camera are up-going (positive sign)
267 u.fVectorPart.SetZ(-u.Z());
268
269 // This is only correct if the focal distance is calculated from the inner lens surface!
270 p.fVectorPart.SetZ(0);
271
272 return nth; // Keep track of groove index
273}
Note: See TracBrowser for help on using the repository browser.