source: trunk/Mars/msimreflector/MFresnelLens.cc@ 19690

Last change on this file since 19690 was 19675, checked in by tbretz, 6 years ago
Allow to read Transmission curve during init process, simplified the main loop a bit further by removing the pre-step, note that the transmission is now a coefficient and not in percent anymore.
File size: 52.9 KB
Line 
1/* ======================================================================== *\
2!
3! *
4! * This file is part of CheObs, the Modular Analysis and Reconstruction
5! * Software. It is distributed to you in the hope that it can be a useful
6! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
7! * It is distributed WITHOUT ANY WARRANTY.
8! *
9! * Permission to use, copy, modify and distribute this software and its
10! * documentation for any purpose is hereby granted without fee,
11! * provided that the above copyright notice appears in all copies and
12! * that both that copyright notice and this permission notice appear
13! * in supporting documentation. It is provided "as is" without express
14! * or implied warranty.
15! *
16!
17!
18! Author(s): Thomas Bretz, 6/2019 <mailto:tbretz@physik.rwth-aachen.de>
19!
20! Copyright: CheObs Software Development, 2000-2019
21!
22!
23\* ======================================================================== */
24
25//////////////////////////////////////////////////////////////////////////////
26//
27// MFresnelLens
28//
29// For some details on definitions please refer to
30// https://application.wiley-vch.de/berlin/journals/op/07-04/OP0704_S52_S55.pdf
31//
32// The HAWC's Eye lens is an Orafol SC943
33// https://www.orafol.com/en/europe/products/optic-solutions/productlines#pl1
34//
35// A good description on ray-tracing can be found here
36// https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
37//
38//////////////////////////////////////////////////////////////////////////////
39#include "MFresnelLens.h"
40
41#include <fstream>
42#include <errno.h>
43
44#include <TRandom.h>
45
46#include "MQuaternion.h"
47#include "MReflection.h"
48
49#include "MMath.h"
50
51#include "MLog.h"
52#include "MLogManip.h"
53
54ClassImp(MFresnelLens);
55
56using namespace std;
57
58// ==========================================================================
59
60enum exception_t
61{
62 kValidRay = 0,
63
64 kStrayUpgoing,
65 kOutsideRadius,
66 kNoSurfaceFound,
67 kStrayDowngoing,
68 kAbsorbed,
69
70 kFoundSurfaceUnavailable,
71
72 kInvalidOrigin,
73 kTransitionError,
74
75 kEnter = 1000,
76 kLeave = 2000,
77};
78
79enum surface_t
80{
81 kPhotonHasLeft = 0,
82
83 kEntrySurface,
84 kSlopeSurface,
85 kDraftSurface,
86 kExitSurface,
87
88 kMaterial = 5,
89
90 kNoSurface = 9
91};
92
93
94class raytrace_exception : public runtime_error
95{
96protected:
97 int fError;
98 int fOrigin;
99 int fSurface;
100
101public:
102 raytrace_exception(const int &_id, const int &_origin, const int &_surface, const string& what_arg) :
103 runtime_error(what_arg), fError(_id), fOrigin(_origin), fSurface(_surface)
104 {
105 }
106
107 raytrace_exception(const int &_id, const int &_origin, const int &_surface, const char* what_arg) :
108 runtime_error(what_arg), fError(_id), fOrigin(_origin), fSurface(_surface)
109 {
110 }
111
112 int id() const { return fError + fSurface*10 + fOrigin*100; }
113 int error() const { return fError; }
114 int origin() const { return fOrigin; }
115 int surface() const { return fSurface; }
116};
117
118class raytrace_error : public raytrace_exception
119{
120public:
121 raytrace_error(const int &_id, const int &_origin, const int &_surface, const string& what_arg) :
122 raytrace_exception(_id, _origin, _surface, what_arg) { }
123 raytrace_error(const int &_id, const int &_origin, const int &_surface, const char* what_arg) :
124 raytrace_exception(_id, _origin, _surface, what_arg) { }
125};
126class raytrace_info : public raytrace_exception
127{
128public:
129 raytrace_info(const int &_id, const int &_origin, const int &_surface, const string& what_arg) :
130 raytrace_exception(_id, _origin, _surface, what_arg) { }
131 raytrace_info(const int &_id, const int &_origin, const int &_surface, const char* what_arg) :
132 raytrace_exception(_id, _origin, _surface, what_arg) { }
133};
134class raytrace_user : public raytrace_exception
135{
136public:
137 raytrace_user(const int &_id, const int &_origin, const int &_surface, const string& what_arg) :
138 raytrace_exception(_id, _origin, _surface, what_arg) { }
139 raytrace_user(const int &_id, const int &_origin, const int &_surface, const char* what_arg) :
140 raytrace_exception(_id, _origin, _surface, what_arg) { }
141};
142
143// ==========================================================================
144
145
146// --------------------------------------------------------------------------
147//
148// Default constructor
149//
150MFresnelLens::MFresnelLens(const char *name, const char *title) :
151 fPSF(0), fSlopeAbsorption(false), fDraftAbsorption(false),
152 fBottomReflection(true), fDisableMultiEntry(false), fFresnelReflection(true),
153 fMinHits(0), fMaxHits(0)
154{
155 fName = name ? name : "MFresnelLens";
156 fTitle = title ? title : "Parameter container storing a collection of several mirrors (reflector)";
157
158 // Default: Orafol SC943
159
160 DefineLens();
161}
162
163// ==========================================================================
164
165// --------------------------------------------------------------------------
166//
167// Default ORAFOL SC943
168//
169// Focal Length: F = 50.21 cm
170// Diameter: D = 54.92 cm
171// Groove width: w = 0.01 cm
172// Lens thickness: h = 0.25 cm
173//
174// Default wavelength: 546 nm
175//
176void MFresnelLens::DefineLens(double F, double D, double w, double h, double lambda)
177{
178 fR = D/2; // [cm] Lens radius
179 fW = w; // [cm] Width of a single groove
180 fH = h; // [cm] Thickness of lens
181 fF = F; // [cm] focal length (see also MGeomCamFAMOUS!)
182
183 fLambda = lambda;
184
185 fN = MFresnelLens::RefractiveIndex(fLambda); // Lens
186
187 // Velocity of light within the lens material [cm/ns]
188 // FIXME: Note that for the correct conversion in Transmission()
189 // also the speed in the surrounding medium has to be taken correctly
190 // into account (here it is assumed to be air with N=1
191 fVc = fN/(TMath::C()*100/1e9); // cm/ns
192
193 InitGeometry(fR, fW, fN, fF, fH);
194}
195
196// --------------------------------------------------------------------------
197//
198// Precalculate values such as the intersection points inside the grooves,
199// the angle of the slope and draft surface and the corresponding tangents.
200//
201void MFresnelLens::InitGeometry(double maxr, double width, double N0, double F, double d)
202{
203 const uint32_t num = TMath::CeilNint(maxr/width);
204
205 fGrooves.resize(num);
206
207 for (int i=0; i<num; i++)
208 {
209 const double r0 = i*width;
210 const double rc = i*width + width/2;
211 const double r1 = i*width + width;
212
213 // Slope angle of the reflecting surface alpha
214 // Angle of the draft surface psi
215 const double alpha = -MFresnelLens::SlopeAngle(rc, F, N0, d); // w.r.t. x [30]
216 const double psi = MFresnelLens::DraftAngle(r1); // w.r.t. z [ 5]
217
218 const double tan_alpha = tan(alpha);
219 const double tan_psi = tan(psi);
220
221 fGrooves[i].slope.z = r0*tan_alpha;
222 fGrooves[i].draft.z = -r1/tan_psi;
223
224 fGrooves[i].slope.theta = TMath::Pi()/2-alpha; // w.r.t. +z [ 60]
225 fGrooves[i].draft.theta = -psi; // w.r.t. +z [- 5]
226
227 fGrooves[i].slope.tan_theta = tan(fGrooves[i].slope.theta);
228 fGrooves[i].draft.tan_theta = tan(fGrooves[i].draft.theta);
229
230 fGrooves[i].slope.tan_theta2 = fGrooves[i].slope.tan_theta*fGrooves[i].slope.tan_theta;
231 fGrooves[i].draft.tan_theta2 = fGrooves[i].draft.tan_theta*fGrooves[i].draft.tan_theta;
232
233 fGrooves[i].slope.theta_norm = TMath::Pi()/2-fGrooves[i].slope.theta; // [ 30]
234 fGrooves[i].draft.theta_norm = TMath::Pi()/2-fGrooves[i].draft.theta; // [ 95]
235
236 const double dr = width/(tan_alpha*tan_psi+1);
237
238 fGrooves[i].r = r0 + dr;
239
240 const double z = -dr*tan_alpha;
241
242 fGrooves[i].slope.h = z;
243 fGrooves[i].draft.h = z;
244
245 if (z<-fH)
246 *fLog << warn << "Groove " << i << " deeper (" << z << ") than thickness of lens material (" << fH << ")." << endl;
247 }
248
249 fMaxR = (num+1)*width;
250}
251
252// --------------------------------------------------------------------------
253//
254// Reads the transmission curve from a file
255// (tranmission in percent versus wavelength in nanometers)
256//
257// The transmission curve is used to calculate the absorption lengths.
258// Therefore the thickness for which the tranission curve is valid is
259// required (in cm).
260//
261// The conversion can correct for fresnel reflection at the entry and exit
262// surface assuming that the outside material during the measurement was air
263// (n=1.0003) and the material in PMMA. Correction is applied when
264// correction is set to true <default>.
265//
266// If no valid data was read, 0 is returned. -1 is returned if any tranmission
267// value read from the file is >1. If the fresnel correction leads to a value >1,
268// the value is set to 1. The number of valid data points is returned.
269//
270Int_t MFresnelLens::ReadTransmission(const TString &file, float thickness, bool correction)
271{
272 TGraph transmission(file);
273
274 /*
275 double gx_min, gx_max, gy_min, gy_max;
276 absorption.ComputeRange(gx_min, gy_min, gx_max, gy_max);
277 if (lambda<gx_min || lambda>gx_max)
278 {
279 cout << "Invalid wavelength" << endl;
280 return;
281 }*/
282
283 if (transmission.GetN()==0)
284 return 0;
285
286 for (int i=0; i<transmission.GetN(); i++)
287 {
288 // Correct transmission for Fresnel reflection on the surface
289 const double lambda = transmission.GetX()[i];;
290
291 double trans = transmission.GetY()[i];
292 if (trans>1)
293 {
294 *fLog << err << "Transmission larger than 1." << endl;
295 return -1;
296 }
297
298 if (correction)
299 {
300 // Something like this is requried if correction
301 // for optical boundaries is necessary
302 const double n0 = MFresnelLens::RefractiveIndex(lambda);
303
304 // FIXME: Make N_air a variable
305 const double r0 = (n0-1.0003)/(n0+1.0003);
306 const double r2 = r0*r0;
307
308 trans *= (1+r2)*(1+r2);
309
310 if (trans>1)
311 {
312 *fLog << warn << "Transmission at " << lambda << "nm (" << trans << ") after Fresnel correction larger than 1." << endl;
313 trans = 1;
314 }
315 }
316
317 // convert to absorption length (FIMXE: Sanity check)
318 transmission.GetY()[i] = -thickness/log(trans>0.999 ? 0.999 : trans);
319 }
320
321 fAbsorptionLength = MSpline3(transmission);
322
323 return fAbsorptionLength.GetNp();
324}
325
326Int_t MFresnelLens::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
327{
328 const int correction = GetEnvValue(env, prefix, "Transmission.FresnelCorrection", -1);
329 const float thickness = GetEnvValue(env, prefix, "Transmission.Thickness", -1.0); // [cm]
330 const TString fname = GetEnvValue(env, prefix, "Transmission.FileName", "");
331
332 const bool correction_valid = correction>=0;
333 const bool thickness_valid = thickness>0;
334 const bool fname_valid = !fname.IsNull();
335
336 if (!correction_valid && !thickness_valid && !fname_valid)
337 return kFALSE;
338
339 if (correction_valid && thickness_valid && fname_valid)
340 return ReadTransmission(fname, thickness, correction) >= 0;
341
342 *fLog << err << "Reading transmission file required FileName, Thickness and FresnelCorrection." << endl;
343 return kERROR;
344}
345
346// ==========================================================================
347
348// --------------------------------------------------------------------------
349//
350// Refractive Index of PMMA, according to
351// https://refractiveindex.info/?shelf=organic&book=poly(methyl_methacrylate)&page=Szczurowski
352//
353// n^2-1=\frac{0.99654 l^2}{l^2-0.00787}+\frac{0.18964 l^2}{l^2-0.02191}+\frac{0.00411 l^2}{l^2-3.85727}
354//
355// Returns the refractive index n as a function of wavelength (in nanometers)
356//
357double MFresnelLens::RefractiveIndex(double lambda)
358{
359 const double l2 = lambda*lambda;
360
361 const double c0 = 0.99654/(1-0.00787e6/l2);
362 const double c1 = 0.18964/(1-0.02191e6/l2);
363 const double c2 = 0.00411/(1-3.85727e6/l2);
364
365 return sqrt(1+c0+c1+c2);
366}
367
368// --------------------------------------------------------------------------
369//
370// A Fresnel lens with parabolic surface calculated with the sagittag
371// function (k=-1) and a correction for the thickness of the lens
372// on the curvature. See also PhD thesis, Tim Niggemann ch. 7.1.1.
373//
374// see also W.J.Smith, Modern Optical Engineering, 2.8 The "Thin Lens"
375// 1/f = (n-1)/radius Eq. 2.36 with thickness t = 0
376// bfl = f Eq. 2.37 and R2 = inf (c2 = 0)
377//
378// Parameters are:
379// The distance from the center r
380// The focal length to be achieved F
381// The refractive index of the outer medium (usually air) n0
382// The refractive index of the lens material (e.g. PMMA) n1
383// The thichness of the lens d
384//
385// r, F and d have to be in the same units.
386//
387// Return the slope angle alpha [rad]. The Slope angle is defined with
388// respect to the plane of the lens. (0 at the center, decreasing
389// with increasing radial distance)
390//
391double MFresnelLens::SlopeAngleParabolic(double r, double F, double n0, double n1, double d)
392{
393 // In the datasheet, it looks as if F is calculated
394 // towards the center of the lens. It seems things are more
395 // consistent if the thickness correction in caluating the
396 // slope angle is omitted and the focal distance is measured
397 // from the entrance of the lens => FIXME: To be checked
398 const double rn = n1/n0;
399 const double c = (rn - 1) * (F + d/rn); // FIXME: try and error with a large d
400 return -atan(r/c);
401
402 // F = 50.21
403 // d= 10 d=20
404 // -: 47 43.7
405 // 0: 53.5 57.0
406 // +: 60.3 70.3
407}
408
409// --------------------------------------------------------------------------
410//
411// A Fresnel lens with an optimized parabolic surface calculated with
412// the sagittag function (k=-1) and fitted coefficients according
413// to Master thesis, Eichler.
414//
415// Note that for this setup other parameters must be fixed
416//
417// Parameters are:
418// The distance from the center r
419//
420// r is in cm.
421//
422// Return the slope angle alpha [rad]. The Slope angle is defined with
423// respect to the plane of the lens. (0 at the center, decreasing
424// with increasing radial distance)
425//
426double MFresnelLens::SlopeAngleAspherical(double r)
427{
428 // Master, Eichler [r/cm]
429 return -atan( r/26.47
430 +2*1.18e-4 * 1e1*r
431 +4*1.34e-9 * 1e3*r*r*r
432 +6*9.52e-15 * 1e5*r*r*r*r*r
433 -8*2.04e-19 * 1e7*r*r*r*r*r*r*r);
434}
435
436// --------------------------------------------------------------------------
437//
438// Ideal angle of the Fresnel surfaces at a distance r from the center
439// to achieve a focal distance F for a positive Fresnel lens made
440// from a material with a refractive index n.
441// A positive Fresnel lens is one which focuses light from infinity
442// (the side with the grooves) to a point (the flat side of the lens).
443//
444// The calculation follows
445// https://shodhganga.inflibnet.ac.in/bitstream/10603/131007/13/09_chapter%202.pdf
446// Here, a thin lens is assumed
447//
448// sin(omega) = r / sqrt(r^2+F^2)
449// tan(alpha) = sin(omega) / [ 1 - sqrt(n^2-sin(omega)^2) ]
450//
451// Return alpha [rad] as a function of the radial distance r, the
452// focal length F and the refractive index n. r and F have to have
453// the same units. The Slope angle is defined with respect to the plane
454// of the lens. (0 at the center, decreasing with increasing radial
455// distance)
456//
457double MFresnelLens::SlopeAngleOptimized(double r, double F, double n)
458{
459 // Use F+d/2
460 double so = r / sqrt(r*r + F*F);
461 return atan(so / (1-sqrt(n*n - so*so))); // alpha<0, Range [0deg; -50deg]
462}
463
464// --------------------------------------------------------------------------
465//
466// Currently calles SlopeAngleParabolic(r, F, 1, n, d)
467//
468double MFresnelLens::SlopeAngle(double r, double F, double n, double d)
469{
470 return SlopeAngleParabolic(r, F, 1.0003, n, d);
471}
472
473
474//
475// Draft angle of the Orafol SC943 According to the thesis of Eichler
476// and NiggemannTim Niggemann:
477//
478// The surface of the lens follows the shape of a parabolic lens to compensate spherical aberration
479// Draft angle: psi(r) = 3deg + r * 0.0473deg/mm
480//
481// The draft angle is returned in radians and is defined w.r.t. to the
482// normal of the lens surface. (almost 90deg at the center,
483// decreasing with increasing radial distance)
484//
485double MFresnelLens::DraftAngle(double r)
486{
487 return (3 + r*0.473)*TMath::DegToRad(); // Range [0deg; 15deg]
488}
489
490// ==========================================================================
491
492// --------------------------------------------------------------------------
493//
494// Return the total Area of all mirrors. Note, that it is recalculated
495// with any call.
496//
497Double_t MFresnelLens::GetA() const
498{
499 return fMaxR*fMaxR*TMath::Pi();
500}
501
502// --------------------------------------------------------------------------
503//
504// Check with a rough estimate whether a photon can hit the reflector.
505//
506Bool_t MFresnelLens::CanHit(const MQuaternion &p) const
507{
508 // p is given in the reflectory coordinate frame. This is meant as a
509 // fast check without lengthy calculations to omit all photons which
510 // cannot hit the reflector at all
511 return p.R2()<fMaxR*fMaxR;
512}
513
514// ==========================================================================
515
516// FIXME: The rays could be 'reflected' inside the material
517// (even though its going out) or vice versa
518static double RandomTheta(double psf)
519{
520 return psf>0 ? MMath::RndmPSF(psf)/2 : 0;
521}
522
523// FIXME: The rays could be 'reflected' inside the material
524// (even though its going out) or vice versa
525static double RandomPhi(double r, double psf)
526{
527 return psf>0 ? MMath::RndmPSF(psf)/2 : 0;
528}
529
530
531// --------------------------------------------------------------------------
532//
533// Calculate the intersection point beweteen a line defined by the position p
534// and the direction u and a cone defined by the object cone.
535//
536// Z: position of peak of cone
537// theta: opening angle of cone
538//
539// Distance r of cone surface at given z from z-axis
540// r_cone(z) = (Z-z)*tan(theta)
541//
542// Equalition of line
543// (x) (p.x) (u.x/u.z)
544// (y) = (p.y) + dz * (u.y/u.z)
545// (z) (p.z) ( 1 )
546//
547// Normalization
548// U.x := u.x/u.z
549// U.y := u.y/u.z
550//
551// Distance of line at given z from z-axis
552// r_line(z) = sqrt(x^2 + y^2) = sqrt( (p.x+dz*u.x)^2 + (p.y+dz*u.y)^2) with dz = z-p.z
553//
554// Equation to be solved
555// r_cone(z) = r_line(z)
556//
557// Solved with wxmaxima:
558//
559// [0] solve((px+(z-pz)*Ux)^2+(py+(z-pz)*Uy)^2= ((Z-z)*t)^2, z);
560//
561// z= (sqrt(((Uy^2+Ux^2)*pz^2+(-2*Uy*py-2*Ux*px-2*Z*Uy^2-2*Z*Ux^2)*pz+py^2+2*Z*Uy*py+px^2+2*Z*Ux*px+Z^2*Uy^2+Z^2*Ux^2)*t^2-Ux^2*py^2+2*Ux*Uy*px*py-Uy^2*px^2)+Z*t^2+(-Uy^2-Ux^2)*pz+Uy*py+Ux*px)/(t^2-Uy^2-Ux^2),
562// z=-(sqrt(((Uy^2+Ux^2)*pz^2+(-2*Uy*py-2*Ux*px-2*Z*Uy^2-2*Z*Ux^2)*pz+py^2+2*Z*Uy*py+px^2+2*Z*Ux*px+Z^2*Uy^2+Z^2*Ux^2)*t^2-Ux^2*py^2+2*Ux*Uy*px*py-Uy^2*px^2)-Z*t^2+( Uy^2+Ux^2)*pz-Uy*py-Ux*px)/(t^2-Uy^2-Ux^2)
563//
564double MFresnelLens::CalcIntersection(const MQuaternion &p, const MQuaternion &u, const Cone &cone) const
565{
566 const double &Z = cone.z;
567
568 const double Ux = u.X()/u.Z();
569 const double Uy = u.Y()/u.Z();
570
571 const double px = p.X();
572 const double py = p.Y();
573 const double pz = p.Z();
574
575 //const double &t = cone.tan_theta;
576 const double &t2 = cone.tan_theta2;
577
578 const double Ur2 = Ux*Ux + Uy*Uy;
579 const double pr2 = px*px + py*py;
580 const double Up2 = Ux*px + Uy*py;
581
582 const double cr2 = Ux*py - Uy*px;
583
584 const double a = t2 - Ur2;
585 const double b = Ur2*pz - Up2 - Z*t2;
586
587 const double h = Z-pz;
588 const double h2 = h*h;
589
590 // [ -b +-sqrt(b^2 - 4 ac) ] / [ 2a ]
591
592 const double radix = (Ur2*h2 + 2*Up2*h + pr2)*t2 - cr2*cr2;
593 if (radix<0)
594 return 0;
595
596 const double sqrt_radix = sqrt(radix);
597
598 const double dz[2] =
599 {
600 (+sqrt_radix - b)/a,
601 (-sqrt_radix - b)/a
602 };
603
604 // Return the closest solution inside the allowed range
605 // which is in the direction of movement
606
607 const double &H = cone.h;
608
609 const bool is_inside0 = dz[0]>=H && dz[0]<0;
610 const bool is_inside1 = dz[1]>=H && dz[1]<0;
611
612 // FIXME: Simplify!
613 if (!is_inside0 && !is_inside1)
614 return 0;
615
616 // Only dz[0] is in the right z-range
617 if (is_inside0 && !is_inside1)
618 {
619 // Check if dz[0] is in the right direction
620 if ((u.Z()>=0 && dz[0]>=p.Z()) ||
621 (u.Z()< 0 && dz[0]< p.Z()))
622 return dz[0];
623
624 return 0;
625 }
626
627 // Only dz[1] is in the right z-range
628 if (!is_inside0 && is_inside1)
629 {
630 // Check if dz[1] is in the right direction
631 if ((u.Z()>=0 && dz[1]>=p.Z()) ||
632 (u.Z()< 0 && dz[1]< p.Z()))
633 return dz[1];
634
635 return 0;
636 }
637
638 /*
639 if (is_inside0^is_inside1)
640 {
641 if (u.Z()>=0)
642 return dz[0]>p.Z() ? dz[0] : dz[1];
643 else
644 return dz[0]<p.Z() ? dz[0] : dz[1];
645 }*/
646
647
648 // dz[0] and dz[1] are in the right range
649 // return the surface which is hit first
650
651 // moving upwards
652 if (u.Z()>=0)
653 {
654 // Both solution could be correct
655 if (dz[0]>=p.Z() && dz[1]>=p.Z())
656 return std::min(dz[0], dz[1]);
657
658 // only one solution can be correct
659 return dz[0]>=p.Z() ? dz[0] : dz[1];
660 }
661 else
662 {
663 // Both solution could be correct
664 if (dz[0]<p.Z() && dz[1]<p.Z())
665 return std::max(dz[0], dz[1]);
666
667 // only one solution can be correct
668 return dz[0]<p.Z() ? dz[0] : dz[1];
669 }
670}
671
672// --------------------------------------------------------------------------
673//
674// Find the peak (draft+slope) which will be hit by the photon which
675// is defined by position p and direction u. ix gives the index of the groove
676// to originate the search from.
677//
678// Returns the index of the groove to which the surface belongs, -1 if no
679// matching surface was found.
680//
681int MFresnelLens::FindPeak(size_t ix, const MQuaternion &p, const MQuaternion &u) const
682{
683 // ---------------------------
684 // check for first groove first
685 if (ix==0)
686 {
687 const auto test = p.fVectorPart + (fGrooves[0].slope.h-p.Z())/u.Z()*u.fVectorPart;
688 if (test.XYvector().Mod()<fGrooves[0].r)
689 return 0;
690 }
691
692 // r = sqrt( (px + t*ux) + (py + t*uy)^2 )
693 // dr/dt = (2*uy*(dz*uy+py)+2*ux*(dz*ux+px))/(2*sqrt((dz*uy+py)^2+(dz*ux+px)^2))
694 // dr/dt = (uy*py + ux*px)/sqrt(py^2+px^2)
695 const bool outgoing = u.X()*p.X() + u.Y()*p.Y() > 0; // r is (at least locally) increasing
696
697 // ---------------------------
698 const double Ux = u.X()/u.Z();
699 const double Uy = u.Y()/u.Z();
700
701 const double px = p.X();
702 const double py = p.Y();
703 const double pz = p.Z();
704
705 const double Ur2 = Ux*Ux + Uy*Uy;
706 const double cr2 = Ux*py - Uy*px;
707 const double pr2 = px*px + py*py;
708 const double Up2 = Ux*px + Uy*py;
709
710 //for (int i=1; i<fGrooves.size(); i++)
711
712 // To speed up the search, search first along the radial moving direction of
713 // the photon. If that was not successfull, try in the opposite direction.
714 // FIXME: This could still fail in some very rare cases, for some extremely flat trajectories
715 for (int j=0; j<2; j++)
716 {
717 const bool first = j==0;
718
719 const int step = outgoing ^ !first ? 1 : -1;
720 const int end = outgoing ^ !first ? fGrooves.size() : 1;
721 const int beg = std::max<size_t>(j==0 ? ix : ix+step, 1);
722
723 for (int i=beg; i!=end; i+=step)
724 {
725 const Groove &groove1 = fGrooves[i-1];
726 const Groove &groove2 = fGrooves[i];
727
728 const double &z1 = groove1.draft.h;
729 const double &z2 = groove2.slope.h;
730
731 const double &r1 = groove1.r;
732 const double &r2 = groove2.r;
733
734 Cone cone;
735 cone.tan_theta = -(r2-r1)/(z2-z1);
736 cone.tan_theta2 = cone.tan_theta*cone.tan_theta;
737 cone.z = z1 + r1/cone.tan_theta;
738
739 const double &Z = cone.z;
740 const double &t2 = cone.tan_theta2;
741
742 const double a = t2 - Ur2;
743 const double b = Ur2*pz - Up2 - Z*t2;
744
745 const double h = Z-pz;
746 const double h2 = h*h;
747
748 // [ -b +-sqrt(b^2 - 4 ac) ] / [ 2a ]
749
750 const double radix = (Ur2*h2 + 2*Up2*h + pr2)*t2 - cr2*cr2;
751 if (radix<0)
752 continue;
753
754 const double sqrt_radix = sqrt(radix);
755
756 const double dz[2] =
757 {
758 (+sqrt_radix - b)/a,
759 (-sqrt_radix - b)/a
760 };
761
762 if (dz[0]>=z2 && dz[0]<=z1)
763 return i;
764
765 if (dz[1]>=z2 && dz[1]<=z1)
766 return i;
767 }
768 }
769
770 return -1;
771}
772
773// --------------------------------------------------------------------------
774//
775// If no transmission was given returns true. Otherwaise calculates the
776// absorption length for a flight time dt in the material and a photon
777// with wavelength lambda. The flight time is converted to a geometrical
778// using the speed of light in the medium.
779//
780// Returns true if the poton passed, false if it was absorbed.
781//
782bool MFresnelLens::Transmission(double dt, double lambda) const
783{
784 if (fAbsorptionLength.GetNp()==0)
785 return true;
786
787 // FIXME: Speed up!
788 const double alpha = fAbsorptionLength.Eval(lambda);
789
790 // We only have the travel time, thus we have to convert back to distance
791 // Note that the transmission coefficients are w.r.t. to geometrical
792 // distance not light-travel distance. Thus the distance has to be corrected
793 // for the corresponding refractive index of the material.
794 const double cm = dt/fVc;
795
796 const double trans = exp(-cm/alpha);
797 return gRandom->Uniform()<trans;
798}
799
800/*
801// surface=0 : incoming ray
802// surface=1 : slope
803// surface=2 : draft
804// surface=3 : bottom
805int MFresnelLens::EnterGroove(int surface, double n0, double lambda, MQuaternion &pos, MQuaternion &dir) const
806{
807 const double rx = pos.R();
808
809 if (surface==3)
810 {
811 //cout << "Bottom as origin invalid" << endl;
812 throw -1;
813
814 }
815 if (rx>=fR)
816 {
817 //cout << "Left the lens radius (enter)" << endl;
818 throw -2;
819 }
820 //if (dir.Z()>0)
821 //{
822 // cout << "Upgoing, outside of the material" << endl;
823 // PropagateZ(pos, dir, dir.Z()>0 ? 3 : -3);
824 // return -1;
825 //}
826
827
828 // Calculate the ordinal number of the groove correpsonding to rx
829 const int ix = TMath::FloorNint(rx/fW);
830
831 // Photons was just injected (test both surfaces) or came from the other surface
832 if (surface==0 || surface==2)
833 {
834 // Get the possible intersection point with the slope angle
835 const double z1 = CalcIntersection(pos, dir, fGrooves[ix].slope);
836
837 // We hit the slope angle
838 if (z1!=0)
839 {
840 // Move photon to new hit position
841 pos.PropagateZ(dir, z1);
842
843 if (fSlopeAbsorption)
844 throw -100;
845
846 // Get the normal vector of the surface which was hit
847 const VectorNorm norm(fGrooves[ix].slope.theta_norm+RandomTheta(fPSF),
848 pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
849
850 // Get the optical transition of the direction vector
851 const int ret = MOptics::ApplyTransition(dir, norm, 1, n0);
852
853 // Transition was Reflection - try again
854 if (ret==1 || ret==2)
855 return EnterGroove(1, n0, lambda, pos, dir)+1;
856
857 // Transition was Refraction - enter
858 if (ret>=3)
859 return LeavePeak(1, n0, lambda, pos, dir, pos.T())+1;
860
861 // Error occured (see ApplyTransition for details)
862 //cout << "ERR[TIR1]" << endl;
863 throw -3;
864 }
865 }
866
867 // Photons was just injected (test both surfaces) or came from the other surface
868 if (surface==0 || surface==1)
869 {
870 const double z2 = CalcIntersection(pos, dir, fGrooves[ix].draft);
871
872 // We hit the draft angle
873 if (z2!=0)
874 {
875 // Move photon to new hit position
876 pos.PropagateZ(dir, z2);
877
878 if (fDraftAbsorption)
879 throw -101;
880
881 // Get the normal vector of the surface which was hit
882 const VectorNorm norm(fGrooves[ix].draft.theta_norm+RandomTheta(fPSF),
883 pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
884
885 // Get the optical transition of the direction vector
886 const int ret = MOptics::ApplyTransition(dir, norm, 1, n0);
887
888 // Transition was Reflection - try again
889 if (ret==1 || ret==2)
890 return EnterGroove(2, n0, lambda, pos, dir)+1;
891
892 // Transition was Refraction - enter
893 if (ret>=3)
894 return -LeavePeak(2, n0, lambda, pos, dir, pos.T())+1;
895
896 // Error occured (see ApplyTransition for details)
897 //cout << "ERR[TIR2]" << endl;
898 throw -4;
899 }
900 }
901
902 if (dir.Z()>0)
903 {
904 //cout << "Upgoing, outside of the material" << endl;
905 //pos.PropagateZ(dir, dir.Z()>0 ? 3 : -3);
906 throw -5;
907 }
908
909 // The ray has left the peak at the bottom(?)
910 //cout << "ERR[N/A]" << endl;
911 throw -6;
912}
913*/
914
915
916// surface=0 : incoming ray
917// surface=1 : slope
918// surface=2 : draft
919// surface=3 : bottom
920int MFresnelLens::EnterGroove(int surface, double n0, MQuaternion &pos, MQuaternion &dir) const
921{
922 const double rx = pos.R();
923
924 if (surface==kExitSurface)
925 throw raytrace_error(kEnter+kInvalidOrigin, surface, -1,
926 "EnterGroove - Bottom as origin invalid");
927
928 if (rx>=fR) // This is an error as the direction vector is now invalid
929 throw raytrace_error(kEnter+kOutsideRadius, surface, -1,
930 "EnterGroove - Surface hit outside allowed radius");
931
932 /*
933 if (dir.Z()>0)
934 return -1;
935 }*/
936
937
938 // FIXME: There is a very tiny chance that a ray hits the same surface twice for
939 // very horizontal rays. Checking this needs to make sure that the same
940 // solution is not just found again.
941
942 // Calculate the ordinal number of the groove correpsonding to rx
943 const int ix = TMath::FloorNint(rx/fW);
944
945 // Photons was just injected (test both surfaces) or came from the other surface
946 if (surface==kEntrySurface || surface==kDraftSurface)
947 {
948 // Get the possible intersection point with the slope angle
949 const double z1 = CalcIntersection(pos, dir, fGrooves[ix].slope);
950
951 // We hit the slope angle
952 if (z1!=0)
953 {
954 // Move photon to new hit position
955 pos.PropagateZ(dir, z1);
956 if (fSlopeAbsorption)
957 throw raytrace_user(kEnter+kAbsorbed, surface, kSlopeSurface,
958 "EnterGroove - Photon absorbed by slope surface");
959
960 // Get the normal vector of the surface which was hit
961 const VectorNorm norm(fGrooves[ix].slope.theta_norm+RandomTheta(fPSF),
962 pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
963
964 // Get the optical transition of the direction vector
965 const int ret = MOptics::ApplyTransition(dir, norm, 1, n0, fFresnelReflection);
966
967 // Transition was Reflection - try again
968 if (ret==1 || ret==2)
969 return kSlopeSurface;//EnterGroove(1, n0, lambda, pos, dir)+1;
970
971 // Transition was Refraction - enter
972 if (ret>=3)
973 return -kSlopeSurface;//LeavePeak(1, n0, lambda, pos, dir, pos.T())+1;
974
975 // Error occured (see ApplyTransition for details)
976 throw raytrace_error(kEnter+kTransitionError, surface, kSlopeSurface,
977 "EnterGroove - MOptics::ApplyTransition failed for slope surface");
978 }
979 }
980
981 // Photons was just injected (test both surfaces) or came from the other surface
982 if (surface==kEntrySurface || surface==kSlopeSurface)
983 {
984 const double z2 = CalcIntersection(pos, dir, fGrooves[ix].draft);
985
986 // We hit the draft angle
987 if (z2!=0)
988 {
989 // Move photon to new hit position
990 pos.PropagateZ(dir, z2);
991 if (fDraftAbsorption)
992 throw raytrace_user(kEnter+kAbsorbed, surface, kDraftSurface,
993 "EnterGroove - Photon absorbed by draft surface");
994
995 // Get the normal vector of the surface which was hit
996 const VectorNorm norm(fGrooves[ix].draft.theta_norm+RandomTheta(fPSF),
997 pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
998
999 // Get the optical transition of the direction vector
1000 const int ret = MOptics::ApplyTransition(dir, norm, 1, n0, fFresnelReflection);
1001
1002 // Transition was Reflection - try again
1003 if (ret==1 || ret==2)
1004 return kDraftSurface;//EnterGroove(2, n0, lambda, pos, dir)+1;
1005
1006 // Transition was Refraction - enter
1007 if (ret>=3)
1008 return -kDraftSurface;//LeavePeak(2, n0, lambda, pos, dir, pos.T())+1;
1009
1010 // Error occured (see ApplyTransition for details)
1011 throw raytrace_error(kEnter+kTransitionError, surface, kDraftSurface,
1012 "EnterGroove - MOptics::ApplyTransition failed for draft surface");
1013 }
1014 }
1015
1016 if (dir.Z()>0)
1017 {
1018 // We have missed both surfaces and we are upgoing...
1019 // ... ray can be discarded
1020 throw raytrace_info(kEnter+kStrayUpgoing, surface, kNoSurface,
1021 "EnterGroove - Particle is upgoing and has hit no surface");
1022 }
1023
1024 // The ray has left the peak at the bottom(?)
1025 throw raytrace_error(kEnter+kStrayDowngoing, surface, kNoSurface,
1026 "EnterGroove - Particle is downgoing and has hit no surface");
1027}
1028
1029/*
1030// Leave the peak from inside the material, either thought the draft surface or the
1031// slope surface or the bottom connecting the valley of both
1032int MFresnelLens::LeavePeak(int surface, double n0, double lambda, MQuaternion &pos, MQuaternion &dir, double T0) const
1033{
1034 const double rx = pos.R();
1035
1036 if (rx>=fR)
1037 {
1038 //cout << "Left the lens radius (leave)" << endl;
1039 throw -10;
1040 }
1041
1042 if (dir.Z()>0 && surface!=3) // && surface!=4)
1043 {
1044 //cout << "Upgoing, inside of the material" << endl;
1045 //pos.PropagateZ(dir, dir.Z()>0 ? 3 : -3);
1046 throw -11;
1047 }
1048
1049 if (surface!=1 && surface!=2 && surface!=3) // && surface!=4)
1050 {
1051 //cout << "Surface of origin invalid" << endl;
1052 throw -12;
1053 }
1054
1055
1056 // Calculate the ordinal number of the groove correpsonding to rx
1057 const int ix = TMath::FloorNint(rx/fW);
1058
1059 // FIXME: The Z-coordinate (cone.h) is actually a line through two points!!!
1060
1061 Cone slope = fGrooves[ix].slope;
1062 Cone draft = fGrooves[ix].draft;
1063
1064 const bool is_draft = rx>fGrooves[ix].r;
1065 if (is_draft)
1066 {
1067 // We are in the volume under the draft angle... taking the slope from ix+1
1068 if (ix<fGrooves.size()-1) // FIXME: Does that make sense?
1069 slope = fGrooves[ix+1].slope;
1070 }
1071 else
1072 {
1073 // We are in the volume under the slope angle... taking the draft from ix-1
1074 if (ix>0) // FIXME: Check whether this is correct
1075 draft = fGrooves[ix-1].draft;
1076 }
1077
1078 if (is_draft+1!=surface && (surface==1 || surface==2))
1079 cout << "SURFACE: " << is_draft+1 << " " << surface << endl;
1080
1081 if (surface==3)
1082 {
1083 //cout << "Upgoing, coming from the bottom of the lens" << endl;
1084 // Find out which triangle (peak) the photon is going to enter
1085 // then proceed...
1086 throw -13;
1087 }
1088
1089
1090 // We are inside the material and downgoing, so if we come from a slope surface,
1091 // we can only hit a draft surface after and vice versa
1092 if (is_draft || surface==3)
1093 {
1094 const double z1 = CalcIntersection(pos, dir, slope);
1095
1096 // We hit the slope angle and are currently in the volume under the draft surface
1097 if (z1!=0)
1098 {
1099 // Move photon to new hit position
1100 pos.PropagateZ(dir, z1);
1101
1102 if (fSlopeAbsorption)
1103 throw -200;
1104
1105 // Get the normal vector of the surface which was hit
1106 const VectorNorm norm(slope.theta_norm+RandomTheta(fPSF),
1107 pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
1108
1109 // Get the optical transition of the direction vector
1110 const int ret = MOptics::ApplyTransition(dir, norm, n0, 1);
1111
1112 // Transition was Reflection - try again
1113 if (ret==1 || ret==2)
1114 return LeavePeak(1, n0, lambda, pos, dir, T0)+1;
1115
1116 // Transition was Refraction - leave
1117 if (ret>=3)
1118 {
1119 if (!Transmission(pos.T()-T0, lambda))
1120 throw -14;
1121
1122 return EnterGroove(1, n0, lambda, pos, dir)+1;
1123 }
1124
1125 // Error occured (see ApplyTransition for details)
1126 //cout << "ERR[TIR3]" << endl;
1127 throw -15;
1128 }
1129 }
1130
1131 if (!is_draft || surface==3)
1132 {
1133 const double z2 = CalcIntersection(pos, dir, draft);
1134
1135 // We hit the draft angle from the inside and are currently in the volume under the slope angle
1136 if (z2!=0)
1137 {
1138 // Move photon to new hit position
1139 pos.PropagateZ(dir, z2);
1140
1141 if (fDraftAbsorption)
1142 throw -201;
1143
1144 // Get the normal vector of the surface which was hit
1145 const VectorNorm norm(draft.theta_norm+RandomTheta(fPSF),
1146 pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
1147
1148 // Get the optical transition of the direction vector
1149 const int ret = MOptics::ApplyTransition(dir, norm, n0, 1);
1150
1151 // Transition was Reflection - try again
1152 if (ret==1 || ret==2)
1153 return LeavePeak(2, n0, lambda, pos, dir, T0)+1;
1154
1155 // Transition was Refraction - leave
1156 if (ret>=3)
1157 {
1158 if (!Transmission(pos.T()-T0, lambda))
1159 throw -16;
1160
1161 return EnterGroove(2, n0, lambda, pos, dir)+1;
1162 }
1163
1164 // Error occured (see ApplyTransition for details)
1165 //cout << "ERR[TIR4]" << endl;
1166 throw -17;
1167 }
1168 }
1169
1170 if (surface==3)// || surface==4)
1171 {
1172 //cout << ix << " Lost bottom reflected ray " << surface << endl;
1173 throw -18;
1174 }
1175
1176 // The ray has left the peak at the bottom
1177
1178 // FIXME: There is a tiny chance to escape to the side
1179 // As there is a slope in the bottom surface of the peak
1180
1181 // Move photon to new hit position
1182 pos.PropagateZ(dir, -fH);
1183
1184 if (pos.R()>fR)
1185 {
1186 //cout << "Left the lens radius (bottom)" << endl;
1187 throw -19;
1188 }
1189
1190 // Get the normal vector of the surface which was hit
1191 const VectorNorm norm(RandomTheta(fPSF), gRandom->Uniform(0, TMath::TwoPi()));
1192
1193 // Get the optical transition of the direction vector
1194 const int ret = MOptics::ApplyTransition(dir, norm, n0, 1);
1195
1196 // Transition was Reflection
1197 // (Photon scattered back from the bottom of the lens)
1198 if (ret==1 || ret==2)
1199 return LeavePeak(3, n0, lambda, pos, dir, T0)+1;
1200
1201 // Transition was Refraction
1202 // (Photon left at the bottom of the lens)
1203 if (ret>=3)
1204 {
1205 if (!Transmission(pos.T()-T0, lambda))
1206 throw -20;
1207
1208 return 0;
1209 }
1210
1211 // Error occured (see ApplyTransition for details)
1212 //cout << "ERR[TIR5]" << endl;
1213 throw -21;
1214}*/
1215
1216// Leave the peak from inside the material, either thought the draft surface or the
1217// slope surface or the bottom connecting the valley of both
1218int MFresnelLens::LeavePeak(int surface, double n0, MQuaternion &pos, MQuaternion &dir, double T0) const
1219{
1220 const double rx = pos.R();
1221
1222 if (rx>=fR) // This is an error as the direction vector is now invalid
1223 throw raytrace_error(kLeave+kOutsideRadius, surface, kNoSurface,
1224 "LeavePeak - Surface hit outside allowed radius");
1225
1226 // FIXME: Can we track them further?
1227 if (fDisableMultiEntry && dir.Z()>0 && surface!=3/* && surface!=4*/)
1228 throw raytrace_info(kLeave+kStrayUpgoing, surface, kNoSurface,
1229 "LeavePeak - Particle is upgoing inside the material and does not come from the bottom");
1230
1231 if (surface!=kSlopeSurface && surface!=kDraftSurface && surface!=kExitSurface/* && surface!=4*/)
1232 throw raytrace_error(kLeave+kInvalidOrigin, surface, kNoSurface,
1233 "LeavePeak - Invalid surface of origin");
1234
1235
1236 // Calculate the ordinal number of the groove correpsonding to rx
1237 const int ix = TMath::FloorNint(rx/fW);
1238
1239 // FIXME: The Z-coordinate (cone.h) is actually a line through two points!!!
1240
1241 Cone slope = fGrooves[ix].slope;
1242 Cone draft = fGrooves[ix].draft;
1243
1244 //if (is_draft+1!=surface && (surface==1 || surface==2))
1245 // cout << "SURFACE: " << is_draft+1 << " " << surface << endl;
1246
1247 const bool is_draft = rx>fGrooves[ix].r;
1248 if (is_draft)
1249 {
1250 // We are in the volume under the draft angle... taking the slope from ix+1
1251 if (ix<fGrooves.size()-1) // FIXME: Does that make sense?
1252 slope = fGrooves[ix+1].slope;
1253 }
1254 else
1255 {
1256 // We are in the volume under the slope angle... taking the draft from ix-1
1257 if (ix>0) // FIXME: Check whether this is correct
1258 draft = fGrooves[ix-1].draft;
1259 }
1260
1261 if (surface==kExitSurface)
1262 {
1263 if (!fBottomReflection)
1264 throw raytrace_user(kLeave+kAbsorbed, surface, kExitSurface,
1265 "LeavePeak - Particle absorbed on the bottom");
1266
1267 const int in = FindPeak(ix, pos, dir);
1268
1269 // This might happen if the ray is very flat and leaving
1270 // the lens before hitting the border boundary of the grooves
1271 if (in<0)
1272 throw raytrace_error(kLeave+kNoSurfaceFound, kExitSurface, kNoSurface,
1273 "LeavePeak - No hit surface found for particle reflected at the bottom");
1274
1275 slope = fGrooves[in].slope;
1276 draft = fGrooves[in==0 ? 0 : in-1].draft;
1277 }
1278
1279 // FIXME: There is a chance that we can hit the same surface twice (for very horizontal rays
1280 // but this requires a proper selection of the hit point
1281
1282 // We are inside the material and downgoing, so if we come from a slope surface,
1283 // we can only hit a draft surface after and vice versa
1284 if (is_draft || surface==kExitSurface)
1285 {
1286 const double z1 = CalcIntersection(pos, dir, slope);
1287
1288 // We hit the slope angle and are currently in the volume under the draft surface
1289 if (z1!=0)
1290 {
1291 // Move photon to new hit position
1292 pos.PropagateZ(dir, z1);
1293
1294 if (fSlopeAbsorption)
1295 throw raytrace_user(kLeave+kAbsorbed, surface, kSlopeSurface,
1296 "LeavePeak - Photon absorbed by slope surface");
1297
1298 // Get the normal vector of the surface which was hit
1299 const VectorNorm norm(slope.theta_norm+RandomTheta(fPSF),
1300 pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
1301
1302 // Get the optical transition of the direction vector
1303 const int ret = MOptics::ApplyTransition(dir, norm, n0, 1, fFresnelReflection);
1304
1305 // Transition was Reflection - try again
1306 if (ret==1 || ret==2)
1307 return -kSlopeSurface;//LeavePeak(1, n0, lambda, pos, dir, T0)+1;
1308
1309 // Transition was Refraction - leave
1310 if (ret>=3) // Transmission
1311 return kSlopeSurface;//EnterGroove(1, n0, lambda, pos, dir)+1;
1312
1313 // Error occured (see ApplyTransition for details)
1314 throw raytrace_error(kLeave+kTransitionError, surface, kSlopeSurface,
1315 "LeavePeak - MOptics::ApplyTransition failed for slope surface");
1316 }
1317 }
1318
1319 if (!is_draft || surface==kExitSurface)
1320 {
1321 const double z2 = CalcIntersection(pos, dir, draft);
1322
1323 // We hit the draft angle from the inside and are currently in the volume under the slope angle
1324 if (z2!=0)
1325 {
1326 // Move photon to new hit position
1327 pos.PropagateZ(dir, z2);
1328
1329 if (fDraftAbsorption)
1330 throw raytrace_user(kLeave+kAbsorbed, surface, kDraftSurface,
1331 "LeavePeak - Photon absorbed by draft surface");
1332
1333 // Get the normal vector of the surface which was hit
1334 const VectorNorm norm(draft.theta_norm+RandomTheta(fPSF),
1335 pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
1336
1337 // Get the optical transition of the direction vector
1338 const int ret = MOptics::ApplyTransition(dir, norm, n0, 1, fFresnelReflection);
1339
1340 // Transition was Reflection - try again
1341 if (ret==1 || ret==2)
1342 return -kDraftSurface;//LeavePeak(2, n0, lambda, pos, dir, T0)+1;
1343
1344 // Transition was Refraction - leave
1345 if (ret>=3) // Transmission
1346 return kDraftSurface;//EnterGroove(2, n0, lambda, pos, dir)+1;
1347
1348 // Error occured (see ApplyTransition for details)
1349 //cout << "ERR[TIR4]" << endl;
1350 throw raytrace_error(kLeave+kTransitionError, surface, kDraftSurface,
1351 "LeavePeak - MOptics::ApplyTransition failed for draft surface");
1352 }
1353 }
1354
1355 if (surface==kExitSurface/* || surface==4*/)
1356 throw raytrace_error(kLeave+kFoundSurfaceUnavailable, kExitSurface, is_draft?kSlopeSurface:kDraftSurface,
1357 "LeavePeak - Ray reflected on the bottom did not hit the found surface");
1358
1359 // The ray has left the peak at the bottom
1360
1361 // FIXME: There is a tiny chance to escape to the side
1362 // As there is a slope in the bottom surface of the peak
1363
1364 // FIXME: Theoretically, a ray can hit the same surface twice
1365
1366 // Move photon to new hit position
1367 pos.PropagateZ(dir, -fH);
1368
1369 if (pos.R()>fR)
1370 throw raytrace_info(kLeave+kOutsideRadius, surface, kExitSurface,
1371 "LeavePeak - Hit point at the bottom surface is beyond allowed radius");
1372
1373 // Get the normal vector of the surface which was hit
1374 const VectorNorm norm(RandomTheta(fPSF), gRandom->Uniform(0, TMath::TwoPi()));
1375
1376 // Get the optical transition of the direction vector
1377 const int ret = MOptics::ApplyTransition(dir, norm, n0, 1, fFresnelReflection);
1378
1379 // Transition was Reflection
1380 // (Photon scattered back from the bottom of the lens)
1381 if (ret==1 || ret==2)
1382 return -kExitSurface;//LeavePeak(3, n0, lambda, pos, dir, T0)+1;
1383
1384 // Transition was Refraction
1385 // (Photon left at the bottom of the lens)
1386 if (ret>=3) // Transmission
1387 return kPhotonHasLeft;
1388
1389 // Error occured (see ApplyTransition for details)
1390 throw raytrace_error(kLeave+kTransitionError, surface, kExitSurface, "LeavePeak - MOptics::ApplyTransition failed for bottom surface");
1391}
1392
1393
1394// Differences:
1395// Returns a 'reflected' vector at z=0
1396// Does not propagate to z=0 at the beginning
1397Int_t MFresnelLens::ExecuteOptics(MQuaternion &p, MQuaternion &u, const Short_t &wavelength) const
1398{
1399 // Corsika Coordinates are in cm!
1400
1401 const double lambda = wavelength==0 ? fLambda : wavelength;
1402 if (fAbsorptionLength.GetNp()!=0 &&
1403 (lambda<fAbsorptionLength.GetXmin() || lambda>fAbsorptionLength.GetXmax()))
1404 {
1405 *fLog << err << "Wavelength " << lambda << "nm out of absorption range [" << fAbsorptionLength.GetXmin() << "nm;" << fAbsorptionLength.GetXmax() << "nm]" << endl;
1406 return -1;
1407 }
1408
1409 const double n0 = MFresnelLens::RefractiveIndex(lambda);
1410
1411 try
1412 {
1413 int last_surface = kEntrySurface;//EnterGroove(kEntrySurface, n0, p, u);
1414
1415 // last_surface that was hit (photon originates from)
1416 // 0 entrance (Z=0) or exit (Z=-fH) surface
1417 // 1 slope
1418 // 2 draft
1419 // 3 bottom
1420 // positive: photon is outside of material --> Try to enter
1421 // nagative: photon is inside of material --> Try to leave
1422
1423 double T0 = 0;//last_surface<0 ? p.T() : 0;
1424
1425 // The general assumption is: no surface can be hit twice in a row
1426
1427 int cnt = -1;
1428 while (last_surface!=0)
1429 {
1430 cnt ++;
1431
1432 // photon is outside of material --> try to enter
1433 if (last_surface>0)
1434 {
1435 last_surface = EnterGroove(last_surface, n0, p, u);
1436
1437 // successfully entered --> remember time of entrance to calculate transimission
1438 if (last_surface<0)
1439 T0 = p.T();
1440
1441 continue;
1442 }
1443
1444 // photon is inside of material --> try to leave
1445 if (last_surface<0)
1446 {
1447 last_surface = LeavePeak(-last_surface, n0, p, u, T0);
1448
1449 // successfully left --> apply transmission
1450 if (last_surface>=0)
1451 {
1452 if (!Transmission(p.T()-T0, lambda))
1453 throw raytrace_error(kAbsorbed, last_surface, kMaterial,
1454 "TraceRay - Ray absorbed in material");
1455 }
1456
1457 continue;
1458 }
1459 }
1460
1461 // To make this consistent with a mirror system,
1462 // we now change our coordinate system
1463 // Rays from the lens to the camera are up-going (positive sign)
1464 u.fVectorPart.SetZ(-u.Z());
1465
1466 // In the datasheet, it looks as if F is calculated
1467 // towards the center of the lens. It seems things are more
1468 // consistent if the thickness correction in caluating the
1469 // slope angle is omitted and the focal distance is measured
1470 // from the entrance of the lens => FIXME: To be checked
1471 // (Propagating to F means not propagating a distance of F-H from the exit)
1472 //p.fVectorPart.SetZ(fH-fH/2/fN);//fH/2); Found by try-and-error
1473
1474 // We are already at -H, adding F and setting Z=0 means going to -(F+H)
1475 p.fVectorPart.SetZ(0);//fH/2); Found by try-and-error
1476
1477 return cnt>=fMinHits && (fMaxHits==0 || cnt<=fMaxHits) ? cnt : -1;;
1478 }
1479 catch (const raytrace_exception &e)
1480 {
1481 return -e.id();
1482 }
1483
1484/*
1485 try
1486 {
1487 const int cnt = EnterGroove(0, n0, lambda, p, u);
1488
1489 // To make this consistent with a mirror system,
1490 // we now change our coordinate system
1491 // Rays from the lens to the camera are up-going (positive sign)
1492 u.fVectorPart.SetZ(-u.Z());
1493
1494 // In the datasheet, it looks as if F is calculated
1495 // towards the center of the lens
1496 // (Propagating to F means not propagating a distance of F-H/2)
1497 p.fVectorPart.SetZ(0);
1498
1499 return cnt>=fMinHits && (fMaxHits==0 || cnt<=fMaxHits) ? cnt : -1;
1500
1501 }
1502 catch (const int &rc)
1503 {
1504 return rc;
1505 }
1506*/
1507}
1508
1509// Differences:
1510// Does propagate to z=0 at the beginning
1511Int_t MFresnelLens::TraceRay(vector<MQuaternion> &vec, MQuaternion &p, MQuaternion &u, const Short_t &wavelength, bool verbose) const
1512{
1513 // Corsika Coordinates are in cm!
1514
1515 const double lambda = wavelength==0 ? fLambda : wavelength;
1516 if (fAbsorptionLength.GetNp()!=0 &&
1517 (lambda<fAbsorptionLength.GetXmin() || lambda>fAbsorptionLength.GetXmax()))
1518 {
1519 *fLog << err << "Wavelength " << lambda << "nm out of absorption range [" << fAbsorptionLength.GetXmin() << "nm;" << fAbsorptionLength.GetXmax() << "nm]" << endl;
1520 return -1;
1521 }
1522
1523 const double n0 = MFresnelLens::RefractiveIndex(lambda);
1524
1525 // Photon must be at the lens surface
1526 p.PropagateZ(u, 0);
1527 vec.push_back(p);
1528
1529 try
1530 {
1531 int last_surface = kEntrySurface;//EnterGroove(kEntrySurface, n0, p, u);
1532
1533 // last_surface that was hit (photon originates from)
1534 // 0 entrance (Z=0) or exit (Z=-fH) surface
1535 // 1 slope
1536 // 2 draft
1537 // 3 bottom
1538 // positive: photon is outside of material --> Try to enter
1539 // nagative: photon is inside of material --> Try to leave
1540
1541 double T0 = 0;
1542
1543 // The general assumption is: no surface can be hit twice in a row
1544
1545 int cnt = -1;
1546 while (last_surface!=0)
1547 {
1548 cnt ++;
1549 vec.push_back(p);
1550
1551 // photon is outside of material --> try to enter
1552 if (last_surface>0)
1553 {
1554 last_surface = EnterGroove( last_surface, n0, p, u);
1555 //cout << "enter = " << last_surface << endl;
1556
1557 // successfully entered --> remember time of entrance to calculate transimission
1558 if (last_surface<0)
1559 T0 = p.T();
1560
1561 continue;
1562 }
1563
1564 // photon is inside of material --> try to leave
1565 if (last_surface<0)
1566 {
1567 last_surface = LeavePeak(-last_surface, n0, p, u, T0);
1568 //cout << "leave = " << last_surface << endl;
1569
1570 // successfully left --> apply transmission
1571 if (last_surface>=0)
1572 {
1573 if (!Transmission(p.T()-T0, lambda))
1574 throw raytrace_error(kAbsorbed, last_surface, kMaterial,
1575 "TraceRay - Ray absorbed in material");
1576 }
1577
1578 continue;
1579 }
1580 }
1581
1582 vec.push_back(p);
1583 return cnt;
1584 }
1585 catch (const raytrace_exception &e)
1586 {
1587 if (verbose)
1588 *fLog << all << e.id() << ": " << e.what() << endl;
1589
1590 // Hit point at bottom surface beyond allowed range
1591 // FIXME: Only if surface is kExitSurface
1592 if (e.id()==2342)
1593 vec.push_back(p);
1594
1595 return -e.id();
1596 }
1597}
Note: See TracBrowser for help on using the repository browser.