| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appears in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Thomas Bretz, 6/2019 <mailto:tbretz@physik.rwth-aachen.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: CheObs Software Development, 2000-2019
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MFresnelLens
|
|---|
| 28 | //
|
|---|
| 29 | // For some details on definitions please refer to
|
|---|
| 30 | // https://application.wiley-vch.de/berlin/journals/op/07-04/OP0704_S52_S55.pdf
|
|---|
| 31 | //
|
|---|
| 32 | // The HAWC's Eye lens is an Orafol SC943
|
|---|
| 33 | // https://www.orafol.com/en/europe/products/optic-solutions/productlines#pl1
|
|---|
| 34 | //
|
|---|
| 35 | // A good description on ray-tracing can be found here
|
|---|
| 36 | // https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
|
|---|
| 37 | //
|
|---|
| 38 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 39 | #include "MFresnelLens.h"
|
|---|
| 40 |
|
|---|
| 41 | #include <fstream>
|
|---|
| 42 | #include <errno.h>
|
|---|
| 43 |
|
|---|
| 44 | #include <TRandom.h>
|
|---|
| 45 |
|
|---|
| 46 | #include "MQuaternion.h"
|
|---|
| 47 | #include "MReflection.h"
|
|---|
| 48 |
|
|---|
| 49 | #include "MMath.h"
|
|---|
| 50 |
|
|---|
| 51 | #include "MLog.h"
|
|---|
| 52 | #include "MLogManip.h"
|
|---|
| 53 |
|
|---|
| 54 | ClassImp(MFresnelLens);
|
|---|
| 55 |
|
|---|
| 56 | using namespace std;
|
|---|
| 57 |
|
|---|
| 58 | // ==========================================================================
|
|---|
| 59 |
|
|---|
| 60 | enum exception_t
|
|---|
| 61 | {
|
|---|
| 62 | kValidRay = 0,
|
|---|
| 63 |
|
|---|
| 64 | kStrayUpgoing,
|
|---|
| 65 | kOutsideRadius,
|
|---|
| 66 | kNoSurfaceFound,
|
|---|
| 67 | kStrayDowngoing,
|
|---|
| 68 | kAbsorbed,
|
|---|
| 69 |
|
|---|
| 70 | kFoundSurfaceUnavailable,
|
|---|
| 71 |
|
|---|
| 72 | kInvalidOrigin,
|
|---|
| 73 | kTransitionError,
|
|---|
| 74 |
|
|---|
| 75 | kEnter = 1000,
|
|---|
| 76 | kLeave = 2000,
|
|---|
| 77 | };
|
|---|
| 78 |
|
|---|
| 79 | enum surface_t
|
|---|
| 80 | {
|
|---|
| 81 | kPhotonHasLeft = 0,
|
|---|
| 82 |
|
|---|
| 83 | kEntrySurface,
|
|---|
| 84 | kSlopeSurface,
|
|---|
| 85 | kDraftSurface,
|
|---|
| 86 | kExitSurface,
|
|---|
| 87 |
|
|---|
| 88 | kMaterial = 5,
|
|---|
| 89 |
|
|---|
| 90 | kNoSurface = 9
|
|---|
| 91 | };
|
|---|
| 92 |
|
|---|
| 93 |
|
|---|
| 94 | class raytrace_exception : public runtime_error
|
|---|
| 95 | {
|
|---|
| 96 | protected:
|
|---|
| 97 | int fError;
|
|---|
| 98 | int fOrigin;
|
|---|
| 99 | int fSurface;
|
|---|
| 100 |
|
|---|
| 101 | public:
|
|---|
| 102 | raytrace_exception(const int &_id, const int &_origin, const int &_surface, const string& what_arg) :
|
|---|
| 103 | runtime_error(what_arg), fError(_id), fOrigin(_origin), fSurface(_surface)
|
|---|
| 104 | {
|
|---|
| 105 | }
|
|---|
| 106 |
|
|---|
| 107 | raytrace_exception(const int &_id, const int &_origin, const int &_surface, const char* what_arg) :
|
|---|
| 108 | runtime_error(what_arg), fError(_id), fOrigin(_origin), fSurface(_surface)
|
|---|
| 109 | {
|
|---|
| 110 | }
|
|---|
| 111 |
|
|---|
| 112 | int id() const { return fError + fSurface*10 + fOrigin*100; }
|
|---|
| 113 | int error() const { return fError; }
|
|---|
| 114 | int origin() const { return fOrigin; }
|
|---|
| 115 | int surface() const { return fSurface; }
|
|---|
| 116 | };
|
|---|
| 117 |
|
|---|
| 118 | class raytrace_error : public raytrace_exception
|
|---|
| 119 | {
|
|---|
| 120 | public:
|
|---|
| 121 | raytrace_error(const int &_id, const int &_origin, const int &_surface, const string& what_arg) :
|
|---|
| 122 | raytrace_exception(_id, _origin, _surface, what_arg) { }
|
|---|
| 123 | raytrace_error(const int &_id, const int &_origin, const int &_surface, const char* what_arg) :
|
|---|
| 124 | raytrace_exception(_id, _origin, _surface, what_arg) { }
|
|---|
| 125 | };
|
|---|
| 126 | class raytrace_info : public raytrace_exception
|
|---|
| 127 | {
|
|---|
| 128 | public:
|
|---|
| 129 | raytrace_info(const int &_id, const int &_origin, const int &_surface, const string& what_arg) :
|
|---|
| 130 | raytrace_exception(_id, _origin, _surface, what_arg) { }
|
|---|
| 131 | raytrace_info(const int &_id, const int &_origin, const int &_surface, const char* what_arg) :
|
|---|
| 132 | raytrace_exception(_id, _origin, _surface, what_arg) { }
|
|---|
| 133 | };
|
|---|
| 134 | class raytrace_user : public raytrace_exception
|
|---|
| 135 | {
|
|---|
| 136 | public:
|
|---|
| 137 | raytrace_user(const int &_id, const int &_origin, const int &_surface, const string& what_arg) :
|
|---|
| 138 | raytrace_exception(_id, _origin, _surface, what_arg) { }
|
|---|
| 139 | raytrace_user(const int &_id, const int &_origin, const int &_surface, const char* what_arg) :
|
|---|
| 140 | raytrace_exception(_id, _origin, _surface, what_arg) { }
|
|---|
| 141 | };
|
|---|
| 142 |
|
|---|
| 143 | // ==========================================================================
|
|---|
| 144 |
|
|---|
| 145 |
|
|---|
| 146 | // --------------------------------------------------------------------------
|
|---|
| 147 | //
|
|---|
| 148 | // Default constructor
|
|---|
| 149 | //
|
|---|
| 150 | MFresnelLens::MFresnelLens(const char *name, const char *title) :
|
|---|
| 151 | fPSF(0), fSlopeAbsorption(false), fDraftAbsorption(false),
|
|---|
| 152 | fBottomReflection(true), fDisableMultiEntry(false), fFresnelReflection(true),
|
|---|
| 153 | fMinHits(0), fMaxHits(0)
|
|---|
| 154 | {
|
|---|
| 155 | fName = name ? name : "MFresnelLens";
|
|---|
| 156 | fTitle = title ? title : "Parameter container storing a collection of several mirrors (reflector)";
|
|---|
| 157 |
|
|---|
| 158 | // Default: Orafol SC943
|
|---|
| 159 |
|
|---|
| 160 | DefineLens();
|
|---|
| 161 | }
|
|---|
| 162 |
|
|---|
| 163 | // ==========================================================================
|
|---|
| 164 |
|
|---|
| 165 | // --------------------------------------------------------------------------
|
|---|
| 166 | //
|
|---|
| 167 | // Default ORAFOL SC943
|
|---|
| 168 | //
|
|---|
| 169 | // Focal Length: F = 50.21 cm
|
|---|
| 170 | // Diameter: D = 54.92 cm
|
|---|
| 171 | // Groove width: w = 0.01 cm
|
|---|
| 172 | // Lens thickness: h = 0.25 cm
|
|---|
| 173 | //
|
|---|
| 174 | // Default wavelength: 546 nm
|
|---|
| 175 | //
|
|---|
| 176 | void MFresnelLens::DefineLens(double F, double D, double w, double h, double lambda)
|
|---|
| 177 | {
|
|---|
| 178 | fR = D/2; // [cm] Lens radius
|
|---|
| 179 | fW = w; // [cm] Width of a single groove
|
|---|
| 180 | fH = h; // [cm] Thickness of lens
|
|---|
| 181 | fF = F; // [cm] focal length (see also MGeomCamFAMOUS!)
|
|---|
| 182 |
|
|---|
| 183 | fLambda = lambda;
|
|---|
| 184 |
|
|---|
| 185 | fN = MFresnelLens::RefractiveIndex(fLambda); // Lens
|
|---|
| 186 |
|
|---|
| 187 | // Velocity of light within the lens material [cm/ns]
|
|---|
| 188 | // FIXME: Note that for the correct conversion in Transmission()
|
|---|
| 189 | // also the speed in the surrounding medium has to be taken correctly
|
|---|
| 190 | // into account (here it is assumed to be air with N=1
|
|---|
| 191 | fVc = fN/(TMath::C()*100/1e9); // cm/ns
|
|---|
| 192 |
|
|---|
| 193 | InitGeometry(fR, fW, fN, fF, fH);
|
|---|
| 194 | }
|
|---|
| 195 |
|
|---|
| 196 | // --------------------------------------------------------------------------
|
|---|
| 197 | //
|
|---|
| 198 | // Precalculate values such as the intersection points inside the grooves,
|
|---|
| 199 | // the angle of the slope and draft surface and the corresponding tangents.
|
|---|
| 200 | //
|
|---|
| 201 | void MFresnelLens::InitGeometry(double maxr, double width, double N0, double F, double d)
|
|---|
| 202 | {
|
|---|
| 203 | const uint32_t num = TMath::CeilNint(maxr/width);
|
|---|
| 204 |
|
|---|
| 205 | fGrooves.resize(num);
|
|---|
| 206 |
|
|---|
| 207 | for (uint32_t i=0; i<num; i++)
|
|---|
| 208 | {
|
|---|
| 209 | const double r0 = i*width;
|
|---|
| 210 | const double rc = i*width + width/2;
|
|---|
| 211 | const double r1 = i*width + width;
|
|---|
| 212 |
|
|---|
| 213 | // Slope angle of the reflecting surface alpha
|
|---|
| 214 | // Angle of the draft surface psi
|
|---|
| 215 | const double alpha = -MFresnelLens::SlopeAngle(rc, F, N0, d); // w.r.t. x [30]
|
|---|
| 216 | const double psi = MFresnelLens::DraftAngle(r1); // w.r.t. z [ 5]
|
|---|
| 217 |
|
|---|
| 218 | const double tan_alpha = tan(alpha);
|
|---|
| 219 | const double tan_psi = tan(psi);
|
|---|
| 220 |
|
|---|
| 221 | fGrooves[i].slope.z = r0*tan_alpha;
|
|---|
| 222 | fGrooves[i].draft.z = -r1/tan_psi;
|
|---|
| 223 |
|
|---|
| 224 | fGrooves[i].slope.theta = TMath::Pi()/2-alpha; // w.r.t. +z [ 60]
|
|---|
| 225 | fGrooves[i].draft.theta = -psi; // w.r.t. +z [- 5]
|
|---|
| 226 |
|
|---|
| 227 | fGrooves[i].slope.tan_theta = tan(fGrooves[i].slope.theta);
|
|---|
| 228 | fGrooves[i].draft.tan_theta = tan(fGrooves[i].draft.theta);
|
|---|
| 229 |
|
|---|
| 230 | fGrooves[i].slope.tan_theta2 = fGrooves[i].slope.tan_theta*fGrooves[i].slope.tan_theta;
|
|---|
| 231 | fGrooves[i].draft.tan_theta2 = fGrooves[i].draft.tan_theta*fGrooves[i].draft.tan_theta;
|
|---|
| 232 |
|
|---|
| 233 | fGrooves[i].slope.theta_norm = TMath::Pi()/2-fGrooves[i].slope.theta; // [ 30]
|
|---|
| 234 | fGrooves[i].draft.theta_norm = TMath::Pi()/2-fGrooves[i].draft.theta; // [ 95]
|
|---|
| 235 |
|
|---|
| 236 | const double dr = width/(tan_alpha*tan_psi+1);
|
|---|
| 237 |
|
|---|
| 238 | fGrooves[i].r = r0 + dr;
|
|---|
| 239 |
|
|---|
| 240 | const double z = -dr*tan_alpha;
|
|---|
| 241 |
|
|---|
| 242 | fGrooves[i].slope.h = z;
|
|---|
| 243 | fGrooves[i].draft.h = z;
|
|---|
| 244 |
|
|---|
| 245 | if (z<-fH)
|
|---|
| 246 | *fLog << warn << "Groove " << i << " deeper (" << z << ") than thickness of lens material (" << fH << ")." << endl;
|
|---|
| 247 | }
|
|---|
| 248 |
|
|---|
| 249 | fMaxR = (num+1)*width;
|
|---|
| 250 | }
|
|---|
| 251 |
|
|---|
| 252 | // --------------------------------------------------------------------------
|
|---|
| 253 | //
|
|---|
| 254 | // Reads the transmission curve from a file
|
|---|
| 255 | // (tranmission in percent versus wavelength in nanometers)
|
|---|
| 256 | //
|
|---|
| 257 | // The transmission curve is used to calculate the absorption lengths.
|
|---|
| 258 | // Therefore the thickness for which the tranission curve is valid is
|
|---|
| 259 | // required (in cm).
|
|---|
| 260 | //
|
|---|
| 261 | // The conversion can correct for fresnel reflection at the entry and exit
|
|---|
| 262 | // surface assuming that the outside material during the measurement was air
|
|---|
| 263 | // (n=1.0003) and the material in PMMA. Correction is applied when
|
|---|
| 264 | // correction is set to true <default>.
|
|---|
| 265 | //
|
|---|
| 266 | // If no valid data was read, 0 is returned. -1 is returned if any tranmission
|
|---|
| 267 | // value read from the file is >1. If the fresnel correction leads to a value >1,
|
|---|
| 268 | // the value is set to 1. The number of valid data points is returned.
|
|---|
| 269 | //
|
|---|
| 270 | Int_t MFresnelLens::ReadTransmission(const TString &file, float thickness, bool correction)
|
|---|
| 271 | {
|
|---|
| 272 | TGraph transmission(file);
|
|---|
| 273 |
|
|---|
| 274 | /*
|
|---|
| 275 | double gx_min, gx_max, gy_min, gy_max;
|
|---|
| 276 | absorption.ComputeRange(gx_min, gy_min, gx_max, gy_max);
|
|---|
| 277 | if (lambda<gx_min || lambda>gx_max)
|
|---|
| 278 | {
|
|---|
| 279 | cout << "Invalid wavelength" << endl;
|
|---|
| 280 | return;
|
|---|
| 281 | }*/
|
|---|
| 282 |
|
|---|
| 283 | if (transmission.GetN()==0)
|
|---|
| 284 | return 0;
|
|---|
| 285 |
|
|---|
| 286 | for (int i=0; i<transmission.GetN(); i++)
|
|---|
| 287 | {
|
|---|
| 288 | // Correct transmission for Fresnel reflection on the surface
|
|---|
| 289 | const double lambda = transmission.GetX()[i];;
|
|---|
| 290 |
|
|---|
| 291 | double trans = transmission.GetY()[i];
|
|---|
| 292 | if (trans>1)
|
|---|
| 293 | {
|
|---|
| 294 | *fLog << err << "Transmission larger than 1." << endl;
|
|---|
| 295 | return -1;
|
|---|
| 296 | }
|
|---|
| 297 |
|
|---|
| 298 | if (correction)
|
|---|
| 299 | {
|
|---|
| 300 | // Something like this is requried if correction
|
|---|
| 301 | // for optical boundaries is necessary
|
|---|
| 302 | const double n0 = MFresnelLens::RefractiveIndex(lambda);
|
|---|
| 303 |
|
|---|
| 304 | // FIXME: Make N_air a variable
|
|---|
| 305 | const double r0 = (n0-1.0003)/(n0+1.0003);
|
|---|
| 306 | const double r2 = r0*r0;
|
|---|
| 307 |
|
|---|
| 308 | trans *= (1+r2)*(1+r2);
|
|---|
| 309 |
|
|---|
| 310 | if (trans>1)
|
|---|
| 311 | {
|
|---|
| 312 | *fLog << warn << "Transmission at " << lambda << "nm (" << trans << ") after Fresnel correction larger than 1." << endl;
|
|---|
| 313 | trans = 1;
|
|---|
| 314 | }
|
|---|
| 315 | }
|
|---|
| 316 |
|
|---|
| 317 | // convert to absorption length (FIMXE: Sanity check)
|
|---|
| 318 | transmission.GetY()[i] = -thickness/log(trans>0.999 ? 0.999 : trans);
|
|---|
| 319 | }
|
|---|
| 320 |
|
|---|
| 321 | fAbsorptionLength = MSpline3(transmission);
|
|---|
| 322 |
|
|---|
| 323 | return fAbsorptionLength.GetNp();
|
|---|
| 324 | }
|
|---|
| 325 |
|
|---|
| 326 | Int_t MFresnelLens::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
|---|
| 327 | {
|
|---|
| 328 | Bool_t rc = kFALSE;
|
|---|
| 329 |
|
|---|
| 330 | if (IsEnvDefined(env, prefix, "SurfaceRoughness", print))
|
|---|
| 331 | {
|
|---|
| 332 | rc = kTRUE;
|
|---|
| 333 | if (!GetEnvValue(env, prefix, "SurfaceRoughness", fPSF))
|
|---|
| 334 | return kERROR;
|
|---|
| 335 | }
|
|---|
| 336 |
|
|---|
| 337 | const int correction = GetEnvValue(env, prefix, "Transmission.FresnelCorrection", -1);
|
|---|
| 338 | const float thickness = GetEnvValue(env, prefix, "Transmission.Thickness", -1.0); // [cm]
|
|---|
| 339 | const TString fname = GetEnvValue(env, prefix, "Transmission.FileName", "");
|
|---|
| 340 |
|
|---|
| 341 | const bool correction_valid = correction>=0;
|
|---|
| 342 | const bool thickness_valid = thickness>0;
|
|---|
| 343 | const bool fname_valid = !fname.IsNull();
|
|---|
| 344 |
|
|---|
| 345 | if (!correction_valid && !thickness_valid && !fname_valid)
|
|---|
| 346 | return rc;
|
|---|
| 347 |
|
|---|
| 348 | if (correction_valid && thickness_valid && fname_valid)
|
|---|
| 349 | return ReadTransmission(fname, thickness, correction) >= 0 || rc;
|
|---|
| 350 |
|
|---|
| 351 | *fLog << err << "Reading transmission file required FileName, Thickness and FresnelCorrection." << endl;
|
|---|
| 352 | return kERROR;
|
|---|
| 353 | }
|
|---|
| 354 |
|
|---|
| 355 | // ==========================================================================
|
|---|
| 356 |
|
|---|
| 357 | // --------------------------------------------------------------------------
|
|---|
| 358 | //
|
|---|
| 359 | // Refractive Index of PMMA, according to
|
|---|
| 360 | // https://refractiveindex.info/?shelf=organic&book=poly(methyl_methacrylate)&page=Szczurowski
|
|---|
| 361 | //
|
|---|
| 362 | // n^2-1=\frac{0.99654 l^2}{l^2-0.00787}+\frac{0.18964 l^2}{l^2-0.02191}+\frac{0.00411 l^2}{l^2-3.85727}
|
|---|
| 363 | //
|
|---|
| 364 | // Returns the refractive index n as a function of wavelength (in nanometers)
|
|---|
| 365 | //
|
|---|
| 366 | double MFresnelLens::RefractiveIndex(double lambda)
|
|---|
| 367 | {
|
|---|
| 368 | const double l2 = lambda*lambda;
|
|---|
| 369 |
|
|---|
| 370 | const double c0 = 0.99654/(1-0.00787e6/l2);
|
|---|
| 371 | const double c1 = 0.18964/(1-0.02191e6/l2);
|
|---|
| 372 | const double c2 = 0.00411/(1-3.85727e6/l2);
|
|---|
| 373 |
|
|---|
| 374 | return sqrt(1+c0+c1+c2);
|
|---|
| 375 | }
|
|---|
| 376 |
|
|---|
| 377 | // --------------------------------------------------------------------------
|
|---|
| 378 | //
|
|---|
| 379 | // A Fresnel lens with parabolic surface calculated with the sagittag
|
|---|
| 380 | // function (k=-1) and a correction for the thickness of the lens
|
|---|
| 381 | // on the curvature. See also PhD thesis, Tim Niggemann ch. 7.1.1.
|
|---|
| 382 | //
|
|---|
| 383 | // see also W.J.Smith, Modern Optical Engineering, 2.8 The "Thin Lens"
|
|---|
| 384 | // 1/f = (n-1)/radius Eq. 2.36 with thickness t = 0
|
|---|
| 385 | // bfl = f Eq. 2.37 and R2 = inf (c2 = 0)
|
|---|
| 386 | //
|
|---|
| 387 | // Parameters are:
|
|---|
| 388 | // The distance from the center r
|
|---|
| 389 | // The focal length to be achieved F
|
|---|
| 390 | // The refractive index of the outer medium (usually air) n0
|
|---|
| 391 | // The refractive index of the lens material (e.g. PMMA) n1
|
|---|
| 392 | // The thichness of the lens d
|
|---|
| 393 | //
|
|---|
| 394 | // r, F and d have to be in the same units.
|
|---|
| 395 | //
|
|---|
| 396 | // Return the slope angle alpha [rad]. The Slope angle is defined with
|
|---|
| 397 | // respect to the plane of the lens. (0 at the center, decreasing
|
|---|
| 398 | // with increasing radial distance)
|
|---|
| 399 | //
|
|---|
| 400 | double MFresnelLens::SlopeAngleParabolic(double r, double F, double n0, double n1, double d)
|
|---|
| 401 | {
|
|---|
| 402 | // In the datasheet, it looks as if F is calculated
|
|---|
| 403 | // towards the center of the lens. It seems things are more
|
|---|
| 404 | // consistent if the thickness correction in caluating the
|
|---|
| 405 | // slope angle is omitted and the focal distance is measured
|
|---|
| 406 | // from the entrance of the lens => FIXME: To be checked
|
|---|
| 407 | const double rn = n1/n0;
|
|---|
| 408 | const double c = (rn - 1) * (F + d/rn); // FIXME: try and error with a large d
|
|---|
| 409 | return -atan(r/c);
|
|---|
| 410 |
|
|---|
| 411 | // F = 50.21
|
|---|
| 412 | // d= 10 d=20
|
|---|
| 413 | // -: 47 43.7
|
|---|
| 414 | // 0: 53.5 57.0
|
|---|
| 415 | // +: 60.3 70.3
|
|---|
| 416 | }
|
|---|
| 417 |
|
|---|
| 418 | // --------------------------------------------------------------------------
|
|---|
| 419 | //
|
|---|
| 420 | // A Fresnel lens with an optimized parabolic surface calculated with
|
|---|
| 421 | // the sagittag function (k=-1) and fitted coefficients according
|
|---|
| 422 | // to Master thesis, Eichler.
|
|---|
| 423 | //
|
|---|
| 424 | // Note that for this setup other parameters must be fixed
|
|---|
| 425 | //
|
|---|
| 426 | // Parameters are:
|
|---|
| 427 | // The distance from the center r
|
|---|
| 428 | //
|
|---|
| 429 | // r is in cm.
|
|---|
| 430 | //
|
|---|
| 431 | // Return the slope angle alpha [rad]. The Slope angle is defined with
|
|---|
| 432 | // respect to the plane of the lens. (0 at the center, decreasing
|
|---|
| 433 | // with increasing radial distance)
|
|---|
| 434 | //
|
|---|
| 435 | double MFresnelLens::SlopeAngleAspherical(double r)
|
|---|
| 436 | {
|
|---|
| 437 | // Master, Eichler [r/cm]
|
|---|
| 438 | return -atan( r/26.47
|
|---|
| 439 | +2*1.18e-4 * 1e1*r
|
|---|
| 440 | +4*1.34e-9 * 1e3*r*r*r
|
|---|
| 441 | +6*9.52e-15 * 1e5*r*r*r*r*r
|
|---|
| 442 | -8*2.04e-19 * 1e7*r*r*r*r*r*r*r);
|
|---|
| 443 | }
|
|---|
| 444 |
|
|---|
| 445 | // --------------------------------------------------------------------------
|
|---|
| 446 | //
|
|---|
| 447 | // Ideal angle of the Fresnel surfaces at a distance r from the center
|
|---|
| 448 | // to achieve a focal distance F for a positive Fresnel lens made
|
|---|
| 449 | // from a material with a refractive index n.
|
|---|
| 450 | // A positive Fresnel lens is one which focuses light from infinity
|
|---|
| 451 | // (the side with the grooves) to a point (the flat side of the lens).
|
|---|
| 452 | //
|
|---|
| 453 | // The calculation follows
|
|---|
| 454 | // https://shodhganga.inflibnet.ac.in/bitstream/10603/131007/13/09_chapter%202.pdf
|
|---|
| 455 | // Here, a thin lens is assumed
|
|---|
| 456 | //
|
|---|
| 457 | // sin(omega) = r / sqrt(r^2+F^2)
|
|---|
| 458 | // tan(alpha) = sin(omega) / [ 1 - sqrt(n^2-sin(omega)^2) ]
|
|---|
| 459 | //
|
|---|
| 460 | // Return alpha [rad] as a function of the radial distance r, the
|
|---|
| 461 | // focal length F and the refractive index n. r and F have to have
|
|---|
| 462 | // the same units. The Slope angle is defined with respect to the plane
|
|---|
| 463 | // of the lens. (0 at the center, decreasing with increasing radial
|
|---|
| 464 | // distance)
|
|---|
| 465 | //
|
|---|
| 466 | double MFresnelLens::SlopeAngleOptimized(double r, double F, double n)
|
|---|
| 467 | {
|
|---|
| 468 | // Use F+d/2
|
|---|
| 469 | double so = r / sqrt(r*r + F*F);
|
|---|
| 470 | return atan(so / (1-sqrt(n*n - so*so))); // alpha<0, Range [0deg; -50deg]
|
|---|
| 471 | }
|
|---|
| 472 |
|
|---|
| 473 | // --------------------------------------------------------------------------
|
|---|
| 474 | //
|
|---|
| 475 | // Currently calles SlopeAngleParabolic(r, F, 1, n, d)
|
|---|
| 476 | //
|
|---|
| 477 | double MFresnelLens::SlopeAngle(double r, double F, double n, double d)
|
|---|
| 478 | {
|
|---|
| 479 | return SlopeAngleParabolic(r, F, 1.0003, n, d);
|
|---|
| 480 | }
|
|---|
| 481 |
|
|---|
| 482 |
|
|---|
| 483 | //
|
|---|
| 484 | // Draft angle of the Orafol SC943 According to the thesis of Eichler
|
|---|
| 485 | // and NiggemannTim Niggemann:
|
|---|
| 486 | //
|
|---|
| 487 | // The surface of the lens follows the shape of a parabolic lens to compensate spherical aberration
|
|---|
| 488 | // Draft angle: psi(r) = 3deg + r * 0.0473deg/mm
|
|---|
| 489 | //
|
|---|
| 490 | // The draft angle is returned in radians and is defined w.r.t. to the
|
|---|
| 491 | // normal of the lens surface. (almost 90deg at the center,
|
|---|
| 492 | // decreasing with increasing radial distance)
|
|---|
| 493 | //
|
|---|
| 494 | double MFresnelLens::DraftAngle(double r)
|
|---|
| 495 | {
|
|---|
| 496 | return (3 + r*0.473)*TMath::DegToRad(); // Range [0deg; 15deg]
|
|---|
| 497 | }
|
|---|
| 498 |
|
|---|
| 499 | // ==========================================================================
|
|---|
| 500 |
|
|---|
| 501 | // --------------------------------------------------------------------------
|
|---|
| 502 | //
|
|---|
| 503 | // Return the total Area of all mirrors. Note, that it is recalculated
|
|---|
| 504 | // with any call.
|
|---|
| 505 | //
|
|---|
| 506 | Double_t MFresnelLens::GetA() const
|
|---|
| 507 | {
|
|---|
| 508 | return fMaxR*fMaxR*TMath::Pi();
|
|---|
| 509 | }
|
|---|
| 510 |
|
|---|
| 511 | // --------------------------------------------------------------------------
|
|---|
| 512 | //
|
|---|
| 513 | // Check with a rough estimate whether a photon can hit the reflector.
|
|---|
| 514 | //
|
|---|
| 515 | Bool_t MFresnelLens::CanHit(const MQuaternion &p) const
|
|---|
| 516 | {
|
|---|
| 517 | // p is given in the reflectory coordinate frame. This is meant as a
|
|---|
| 518 | // fast check without lengthy calculations to omit all photons which
|
|---|
| 519 | // cannot hit the reflector at all
|
|---|
| 520 | return p.R2()<fMaxR*fMaxR;
|
|---|
| 521 | }
|
|---|
| 522 |
|
|---|
| 523 | // ==========================================================================
|
|---|
| 524 |
|
|---|
| 525 | // FIXME: The rays could be 'reflected' inside the material
|
|---|
| 526 | // (even though its going out) or vice versa
|
|---|
| 527 | static double RandomTheta(double psf)
|
|---|
| 528 | {
|
|---|
| 529 | return psf>0 ? MMath::RndmPSF(psf)/2 : 0;
|
|---|
| 530 | }
|
|---|
| 531 |
|
|---|
| 532 | // FIXME: The rays could be 'reflected' inside the material
|
|---|
| 533 | // (even though its going out) or vice versa
|
|---|
| 534 | static double RandomPhi(double r, double psf)
|
|---|
| 535 | {
|
|---|
| 536 | return psf>0 ? MMath::RndmPSF(psf)/2 : 0;
|
|---|
| 537 | }
|
|---|
| 538 |
|
|---|
| 539 |
|
|---|
| 540 | // --------------------------------------------------------------------------
|
|---|
| 541 | //
|
|---|
| 542 | // Calculate the intersection point beweteen a line defined by the position p
|
|---|
| 543 | // and the direction u and a cone defined by the object cone.
|
|---|
| 544 | //
|
|---|
| 545 | // Z: position of peak of cone
|
|---|
| 546 | // theta: opening angle of cone
|
|---|
| 547 | //
|
|---|
| 548 | // Distance r of cone surface at given z from z-axis
|
|---|
| 549 | // r_cone(z) = (Z-z)*tan(theta)
|
|---|
| 550 | //
|
|---|
| 551 | // Equalition of line
|
|---|
| 552 | // (x) (p.x) (u.x/u.z)
|
|---|
| 553 | // (y) = (p.y) + dz * (u.y/u.z)
|
|---|
| 554 | // (z) (p.z) ( 1 )
|
|---|
| 555 | //
|
|---|
| 556 | // Normalization
|
|---|
| 557 | // U.x := u.x/u.z
|
|---|
| 558 | // U.y := u.y/u.z
|
|---|
| 559 | //
|
|---|
| 560 | // Distance of line at given z from z-axis
|
|---|
| 561 | // r_line(z) = sqrt(x^2 + y^2) = sqrt( (p.x+dz*u.x)^2 + (p.y+dz*u.y)^2) with dz = z-p.z
|
|---|
| 562 | //
|
|---|
| 563 | // Equation to be solved
|
|---|
| 564 | // r_cone(z) = r_line(z)
|
|---|
| 565 | //
|
|---|
| 566 | // Solved with wxmaxima:
|
|---|
| 567 | //
|
|---|
| 568 | // [0] solve((px+(z-pz)*Ux)^2+(py+(z-pz)*Uy)^2= ((Z-z)*t)^2, z);
|
|---|
| 569 | //
|
|---|
| 570 | // z= (sqrt(((Uy^2+Ux^2)*pz^2+(-2*Uy*py-2*Ux*px-2*Z*Uy^2-2*Z*Ux^2)*pz+py^2+2*Z*Uy*py+px^2+2*Z*Ux*px+Z^2*Uy^2+Z^2*Ux^2)*t^2-Ux^2*py^2+2*Ux*Uy*px*py-Uy^2*px^2)+Z*t^2+(-Uy^2-Ux^2)*pz+Uy*py+Ux*px)/(t^2-Uy^2-Ux^2),
|
|---|
| 571 | // z=-(sqrt(((Uy^2+Ux^2)*pz^2+(-2*Uy*py-2*Ux*px-2*Z*Uy^2-2*Z*Ux^2)*pz+py^2+2*Z*Uy*py+px^2+2*Z*Ux*px+Z^2*Uy^2+Z^2*Ux^2)*t^2-Ux^2*py^2+2*Ux*Uy*px*py-Uy^2*px^2)-Z*t^2+( Uy^2+Ux^2)*pz-Uy*py-Ux*px)/(t^2-Uy^2-Ux^2)
|
|---|
| 572 | //
|
|---|
| 573 | double MFresnelLens::CalcIntersection(const MQuaternion &p, const MQuaternion &u, const Cone &cone) const
|
|---|
| 574 | {
|
|---|
| 575 | const double &Z = cone.z;
|
|---|
| 576 |
|
|---|
| 577 | const double Ux = u.X()/u.Z();
|
|---|
| 578 | const double Uy = u.Y()/u.Z();
|
|---|
| 579 |
|
|---|
| 580 | const double px = p.X();
|
|---|
| 581 | const double py = p.Y();
|
|---|
| 582 | const double pz = p.Z();
|
|---|
| 583 |
|
|---|
| 584 | //const double &t = cone.tan_theta;
|
|---|
| 585 | const double &t2 = cone.tan_theta2;
|
|---|
| 586 |
|
|---|
| 587 | const double Ur2 = Ux*Ux + Uy*Uy;
|
|---|
| 588 | const double pr2 = px*px + py*py;
|
|---|
| 589 | const double Up2 = Ux*px + Uy*py;
|
|---|
| 590 |
|
|---|
| 591 | const double cr2 = Ux*py - Uy*px;
|
|---|
| 592 |
|
|---|
| 593 | const double a = t2 - Ur2;
|
|---|
| 594 | const double b = Ur2*pz - Up2 - Z*t2;
|
|---|
| 595 |
|
|---|
| 596 | const double h = Z-pz;
|
|---|
| 597 | const double h2 = h*h;
|
|---|
| 598 |
|
|---|
| 599 | // [ -b +-sqrt(b^2 - 4 ac) ] / [ 2a ]
|
|---|
| 600 |
|
|---|
| 601 | const double radix = (Ur2*h2 + 2*Up2*h + pr2)*t2 - cr2*cr2;
|
|---|
| 602 | if (radix<0)
|
|---|
| 603 | return 0;
|
|---|
| 604 |
|
|---|
| 605 | const double sqrt_radix = sqrt(radix);
|
|---|
| 606 |
|
|---|
| 607 | const double dz[2] =
|
|---|
| 608 | {
|
|---|
| 609 | (+sqrt_radix - b)/a,
|
|---|
| 610 | (-sqrt_radix - b)/a
|
|---|
| 611 | };
|
|---|
| 612 |
|
|---|
| 613 | // Return the closest solution inside the allowed range
|
|---|
| 614 | // which is in the direction of movement
|
|---|
| 615 |
|
|---|
| 616 | const double &H = cone.h;
|
|---|
| 617 |
|
|---|
| 618 | const bool is_inside0 = dz[0]>=H && dz[0]<0;
|
|---|
| 619 | const bool is_inside1 = dz[1]>=H && dz[1]<0;
|
|---|
| 620 |
|
|---|
| 621 | // FIXME: Simplify!
|
|---|
| 622 | if (!is_inside0 && !is_inside1)
|
|---|
| 623 | return 0;
|
|---|
| 624 |
|
|---|
| 625 | // Only dz[0] is in the right z-range
|
|---|
| 626 | if (is_inside0 && !is_inside1)
|
|---|
| 627 | {
|
|---|
| 628 | // Check if dz[0] is in the right direction
|
|---|
| 629 | if ((u.Z()>=0 && dz[0]>=p.Z()) ||
|
|---|
| 630 | (u.Z()< 0 && dz[0]< p.Z()))
|
|---|
| 631 | return dz[0];
|
|---|
| 632 |
|
|---|
| 633 | return 0;
|
|---|
| 634 | }
|
|---|
| 635 |
|
|---|
| 636 | // Only dz[1] is in the right z-range
|
|---|
| 637 | if (!is_inside0 && is_inside1)
|
|---|
| 638 | {
|
|---|
| 639 | // Check if dz[1] is in the right direction
|
|---|
| 640 | if ((u.Z()>=0 && dz[1]>=p.Z()) ||
|
|---|
| 641 | (u.Z()< 0 && dz[1]< p.Z()))
|
|---|
| 642 | return dz[1];
|
|---|
| 643 |
|
|---|
| 644 | return 0;
|
|---|
| 645 | }
|
|---|
| 646 |
|
|---|
| 647 | /*
|
|---|
| 648 | if (is_inside0^is_inside1)
|
|---|
| 649 | {
|
|---|
| 650 | if (u.Z()>=0)
|
|---|
| 651 | return dz[0]>p.Z() ? dz[0] : dz[1];
|
|---|
| 652 | else
|
|---|
| 653 | return dz[0]<p.Z() ? dz[0] : dz[1];
|
|---|
| 654 | }*/
|
|---|
| 655 |
|
|---|
| 656 |
|
|---|
| 657 | // dz[0] and dz[1] are in the right range
|
|---|
| 658 | // return the surface which is hit first
|
|---|
| 659 |
|
|---|
| 660 | // moving upwards
|
|---|
| 661 | if (u.Z()>=0)
|
|---|
| 662 | {
|
|---|
| 663 | // Both solution could be correct
|
|---|
| 664 | if (dz[0]>=p.Z() && dz[1]>=p.Z())
|
|---|
| 665 | return std::min(dz[0], dz[1]);
|
|---|
| 666 |
|
|---|
| 667 | // only one solution can be correct
|
|---|
| 668 | return dz[0]>=p.Z() ? dz[0] : dz[1];
|
|---|
| 669 | }
|
|---|
| 670 | else
|
|---|
| 671 | {
|
|---|
| 672 | // Both solution could be correct
|
|---|
| 673 | if (dz[0]<p.Z() && dz[1]<p.Z())
|
|---|
| 674 | return std::max(dz[0], dz[1]);
|
|---|
| 675 |
|
|---|
| 676 | // only one solution can be correct
|
|---|
| 677 | return dz[0]<p.Z() ? dz[0] : dz[1];
|
|---|
| 678 | }
|
|---|
| 679 | }
|
|---|
| 680 |
|
|---|
| 681 | // --------------------------------------------------------------------------
|
|---|
| 682 | //
|
|---|
| 683 | // Find the peak (draft+slope) which will be hit by the photon which
|
|---|
| 684 | // is defined by position p and direction u. ix gives the index of the groove
|
|---|
| 685 | // to originate the search from.
|
|---|
| 686 | //
|
|---|
| 687 | // Returns the index of the groove to which the surface belongs, -1 if no
|
|---|
| 688 | // matching surface was found.
|
|---|
| 689 | //
|
|---|
| 690 | int MFresnelLens::FindPeak(size_t ix, const MQuaternion &p, const MQuaternion &u) const
|
|---|
| 691 | {
|
|---|
| 692 | // ---------------------------
|
|---|
| 693 | // check for first groove first
|
|---|
| 694 | if (ix==0)
|
|---|
| 695 | {
|
|---|
| 696 | const auto test = p.fVectorPart + (fGrooves[0].slope.h-p.Z())/u.Z()*u.fVectorPart;
|
|---|
| 697 | if (test.XYvector().Mod()<fGrooves[0].r)
|
|---|
| 698 | return 0;
|
|---|
| 699 | }
|
|---|
| 700 |
|
|---|
| 701 | // r = sqrt( (px + t*ux) + (py + t*uy)^2 )
|
|---|
| 702 | // dr/dt = (2*uy*(dz*uy+py)+2*ux*(dz*ux+px))/(2*sqrt((dz*uy+py)^2+(dz*ux+px)^2))
|
|---|
| 703 | // dr/dt = (uy*py + ux*px)/sqrt(py^2+px^2)
|
|---|
| 704 | const bool outgoing = u.X()*p.X() + u.Y()*p.Y() > 0; // r is (at least locally) increasing
|
|---|
| 705 |
|
|---|
| 706 | // ---------------------------
|
|---|
| 707 | const double Ux = u.X()/u.Z();
|
|---|
| 708 | const double Uy = u.Y()/u.Z();
|
|---|
| 709 |
|
|---|
| 710 | const double px = p.X();
|
|---|
| 711 | const double py = p.Y();
|
|---|
| 712 | const double pz = p.Z();
|
|---|
| 713 |
|
|---|
| 714 | const double Ur2 = Ux*Ux + Uy*Uy;
|
|---|
| 715 | const double cr2 = Ux*py - Uy*px;
|
|---|
| 716 | const double pr2 = px*px + py*py;
|
|---|
| 717 | const double Up2 = Ux*px + Uy*py;
|
|---|
| 718 |
|
|---|
| 719 | //for (int i=1; i<fGrooves.size(); i++)
|
|---|
| 720 |
|
|---|
| 721 | // To speed up the search, search first along the radial moving direction of
|
|---|
| 722 | // the photon. If that was not successfull, try in the opposite direction.
|
|---|
| 723 | // FIXME: This could still fail in some very rare cases, for some extremely flat trajectories
|
|---|
| 724 | for (int j=0; j<2; j++)
|
|---|
| 725 | {
|
|---|
| 726 | const bool first = j==0;
|
|---|
| 727 |
|
|---|
| 728 | const int step = outgoing ^ !first ? 1 : -1;
|
|---|
| 729 | const int end = outgoing ^ !first ? fGrooves.size() : 1;
|
|---|
| 730 | const int beg = std::max<size_t>(j==0 ? ix : ix+step, 1);
|
|---|
| 731 |
|
|---|
| 732 | for (int i=beg; i!=end; i+=step)
|
|---|
| 733 | {
|
|---|
| 734 | const Groove &groove1 = fGrooves[i-1];
|
|---|
| 735 | const Groove &groove2 = fGrooves[i];
|
|---|
| 736 |
|
|---|
| 737 | const double &z1 = groove1.draft.h;
|
|---|
| 738 | const double &z2 = groove2.slope.h;
|
|---|
| 739 |
|
|---|
| 740 | const double &r1 = groove1.r;
|
|---|
| 741 | const double &r2 = groove2.r;
|
|---|
| 742 |
|
|---|
| 743 | Cone cone;
|
|---|
| 744 | cone.tan_theta = -(r2-r1)/(z2-z1);
|
|---|
| 745 | cone.tan_theta2 = cone.tan_theta*cone.tan_theta;
|
|---|
| 746 | cone.z = z1 + r1/cone.tan_theta;
|
|---|
| 747 |
|
|---|
| 748 | const double &Z = cone.z;
|
|---|
| 749 | const double &t2 = cone.tan_theta2;
|
|---|
| 750 |
|
|---|
| 751 | const double a = t2 - Ur2;
|
|---|
| 752 | const double b = Ur2*pz - Up2 - Z*t2;
|
|---|
| 753 |
|
|---|
| 754 | const double h = Z-pz;
|
|---|
| 755 | const double h2 = h*h;
|
|---|
| 756 |
|
|---|
| 757 | // [ -b +-sqrt(b^2 - 4 ac) ] / [ 2a ]
|
|---|
| 758 |
|
|---|
| 759 | const double radix = (Ur2*h2 + 2*Up2*h + pr2)*t2 - cr2*cr2;
|
|---|
| 760 | if (radix<0)
|
|---|
| 761 | continue;
|
|---|
| 762 |
|
|---|
| 763 | const double sqrt_radix = sqrt(radix);
|
|---|
| 764 |
|
|---|
| 765 | const double dz[2] =
|
|---|
| 766 | {
|
|---|
| 767 | (+sqrt_radix - b)/a,
|
|---|
| 768 | (-sqrt_radix - b)/a
|
|---|
| 769 | };
|
|---|
| 770 |
|
|---|
| 771 | if (dz[0]>=z2 && dz[0]<=z1)
|
|---|
| 772 | return i;
|
|---|
| 773 |
|
|---|
| 774 | if (dz[1]>=z2 && dz[1]<=z1)
|
|---|
| 775 | return i;
|
|---|
| 776 | }
|
|---|
| 777 | }
|
|---|
| 778 |
|
|---|
| 779 | return -1;
|
|---|
| 780 | }
|
|---|
| 781 |
|
|---|
| 782 | // --------------------------------------------------------------------------
|
|---|
| 783 | //
|
|---|
| 784 | // If no transmission was given returns true. Otherwaise calculates the
|
|---|
| 785 | // absorption length for a flight time dt in the material and a photon
|
|---|
| 786 | // with wavelength lambda. The flight time is converted to a geometrical
|
|---|
| 787 | // using the speed of light in the medium.
|
|---|
| 788 | //
|
|---|
| 789 | // Returns true if the poton passed, false if it was absorbed.
|
|---|
| 790 | //
|
|---|
| 791 | bool MFresnelLens::Transmission(double dt, double lambda) const
|
|---|
| 792 | {
|
|---|
| 793 | if (fAbsorptionLength.GetNp()==0)
|
|---|
| 794 | return true;
|
|---|
| 795 |
|
|---|
| 796 | // FIXME: Speed up!
|
|---|
| 797 | const double alpha = fAbsorptionLength.Eval(lambda);
|
|---|
| 798 |
|
|---|
| 799 | // We only have the travel time, thus we have to convert back to distance
|
|---|
| 800 | // Note that the transmission coefficients are w.r.t. to geometrical
|
|---|
| 801 | // distance not light-travel distance. Thus the distance has to be corrected
|
|---|
| 802 | // for the corresponding refractive index of the material.
|
|---|
| 803 | const double cm = dt/fVc;
|
|---|
| 804 |
|
|---|
| 805 | const double trans = exp(-cm/alpha);
|
|---|
| 806 | return gRandom->Uniform()<trans;
|
|---|
| 807 | }
|
|---|
| 808 |
|
|---|
| 809 | /*
|
|---|
| 810 | // surface=0 : incoming ray
|
|---|
| 811 | // surface=1 : slope
|
|---|
| 812 | // surface=2 : draft
|
|---|
| 813 | // surface=3 : bottom
|
|---|
| 814 | int MFresnelLens::EnterGroove(int surface, double n0, double lambda, MQuaternion &pos, MQuaternion &dir) const
|
|---|
| 815 | {
|
|---|
| 816 | const double rx = pos.R();
|
|---|
| 817 |
|
|---|
| 818 | if (surface==3)
|
|---|
| 819 | {
|
|---|
| 820 | //cout << "Bottom as origin invalid" << endl;
|
|---|
| 821 | throw -1;
|
|---|
| 822 |
|
|---|
| 823 | }
|
|---|
| 824 | if (rx>=fR)
|
|---|
| 825 | {
|
|---|
| 826 | //cout << "Left the lens radius (enter)" << endl;
|
|---|
| 827 | throw -2;
|
|---|
| 828 | }
|
|---|
| 829 | //if (dir.Z()>0)
|
|---|
| 830 | //{
|
|---|
| 831 | // cout << "Upgoing, outside of the material" << endl;
|
|---|
| 832 | // PropagateZ(pos, dir, dir.Z()>0 ? 3 : -3);
|
|---|
| 833 | // return -1;
|
|---|
| 834 | //}
|
|---|
| 835 |
|
|---|
| 836 |
|
|---|
| 837 | // Calculate the ordinal number of the groove correpsonding to rx
|
|---|
| 838 | const int ix = TMath::FloorNint(rx/fW);
|
|---|
| 839 |
|
|---|
| 840 | // Photons was just injected (test both surfaces) or came from the other surface
|
|---|
| 841 | if (surface==0 || surface==2)
|
|---|
| 842 | {
|
|---|
| 843 | // Get the possible intersection point with the slope angle
|
|---|
| 844 | const double z1 = CalcIntersection(pos, dir, fGrooves[ix].slope);
|
|---|
| 845 |
|
|---|
| 846 | // We hit the slope angle
|
|---|
| 847 | if (z1!=0)
|
|---|
| 848 | {
|
|---|
| 849 | // Move photon to new hit position
|
|---|
| 850 | pos.PropagateZ(dir, z1);
|
|---|
| 851 |
|
|---|
| 852 | if (fSlopeAbsorption)
|
|---|
| 853 | throw -100;
|
|---|
| 854 |
|
|---|
| 855 | // Get the normal vector of the surface which was hit
|
|---|
| 856 | const VectorNorm norm(fGrooves[ix].slope.theta_norm+RandomTheta(fPSF),
|
|---|
| 857 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
|---|
| 858 |
|
|---|
| 859 | // Get the optical transition of the direction vector
|
|---|
| 860 | const int ret = MOptics::ApplyTransition(dir, norm, 1, n0);
|
|---|
| 861 |
|
|---|
| 862 | // Transition was Reflection - try again
|
|---|
| 863 | if (ret==1 || ret==2)
|
|---|
| 864 | return EnterGroove(1, n0, lambda, pos, dir)+1;
|
|---|
| 865 |
|
|---|
| 866 | // Transition was Refraction - enter
|
|---|
| 867 | if (ret>=3)
|
|---|
| 868 | return LeavePeak(1, n0, lambda, pos, dir, pos.T())+1;
|
|---|
| 869 |
|
|---|
| 870 | // Error occured (see ApplyTransition for details)
|
|---|
| 871 | //cout << "ERR[TIR1]" << endl;
|
|---|
| 872 | throw -3;
|
|---|
| 873 | }
|
|---|
| 874 | }
|
|---|
| 875 |
|
|---|
| 876 | // Photons was just injected (test both surfaces) or came from the other surface
|
|---|
| 877 | if (surface==0 || surface==1)
|
|---|
| 878 | {
|
|---|
| 879 | const double z2 = CalcIntersection(pos, dir, fGrooves[ix].draft);
|
|---|
| 880 |
|
|---|
| 881 | // We hit the draft angle
|
|---|
| 882 | if (z2!=0)
|
|---|
| 883 | {
|
|---|
| 884 | // Move photon to new hit position
|
|---|
| 885 | pos.PropagateZ(dir, z2);
|
|---|
| 886 |
|
|---|
| 887 | if (fDraftAbsorption)
|
|---|
| 888 | throw -101;
|
|---|
| 889 |
|
|---|
| 890 | // Get the normal vector of the surface which was hit
|
|---|
| 891 | const VectorNorm norm(fGrooves[ix].draft.theta_norm+RandomTheta(fPSF),
|
|---|
| 892 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
|---|
| 893 |
|
|---|
| 894 | // Get the optical transition of the direction vector
|
|---|
| 895 | const int ret = MOptics::ApplyTransition(dir, norm, 1, n0);
|
|---|
| 896 |
|
|---|
| 897 | // Transition was Reflection - try again
|
|---|
| 898 | if (ret==1 || ret==2)
|
|---|
| 899 | return EnterGroove(2, n0, lambda, pos, dir)+1;
|
|---|
| 900 |
|
|---|
| 901 | // Transition was Refraction - enter
|
|---|
| 902 | if (ret>=3)
|
|---|
| 903 | return -LeavePeak(2, n0, lambda, pos, dir, pos.T())+1;
|
|---|
| 904 |
|
|---|
| 905 | // Error occured (see ApplyTransition for details)
|
|---|
| 906 | //cout << "ERR[TIR2]" << endl;
|
|---|
| 907 | throw -4;
|
|---|
| 908 | }
|
|---|
| 909 | }
|
|---|
| 910 |
|
|---|
| 911 | if (dir.Z()>0)
|
|---|
| 912 | {
|
|---|
| 913 | //cout << "Upgoing, outside of the material" << endl;
|
|---|
| 914 | //pos.PropagateZ(dir, dir.Z()>0 ? 3 : -3);
|
|---|
| 915 | throw -5;
|
|---|
| 916 | }
|
|---|
| 917 |
|
|---|
| 918 | // The ray has left the peak at the bottom(?)
|
|---|
| 919 | //cout << "ERR[N/A]" << endl;
|
|---|
| 920 | throw -6;
|
|---|
| 921 | }
|
|---|
| 922 | */
|
|---|
| 923 |
|
|---|
| 924 |
|
|---|
| 925 | // surface=0 : incoming ray
|
|---|
| 926 | // surface=1 : slope
|
|---|
| 927 | // surface=2 : draft
|
|---|
| 928 | // surface=3 : bottom
|
|---|
| 929 | int MFresnelLens::EnterGroove(int surface, double n0, MQuaternion &pos, MQuaternion &dir) const
|
|---|
| 930 | {
|
|---|
| 931 | const double rx = pos.R();
|
|---|
| 932 |
|
|---|
| 933 | if (surface==kExitSurface)
|
|---|
| 934 | throw raytrace_error(kEnter+kInvalidOrigin, surface, -1,
|
|---|
| 935 | "EnterGroove - Bottom as origin invalid");
|
|---|
| 936 |
|
|---|
| 937 | if (rx>=fR) // This is an error as the direction vector is now invalid
|
|---|
| 938 | throw raytrace_error(kEnter+kOutsideRadius, surface, -1,
|
|---|
| 939 | "EnterGroove - Surface hit outside allowed radius");
|
|---|
| 940 |
|
|---|
| 941 | /*
|
|---|
| 942 | if (dir.Z()>0)
|
|---|
| 943 | return -1;
|
|---|
| 944 | }*/
|
|---|
| 945 |
|
|---|
| 946 |
|
|---|
| 947 | // FIXME: There is a very tiny chance that a ray hits the same surface twice for
|
|---|
| 948 | // very horizontal rays. Checking this needs to make sure that the same
|
|---|
| 949 | // solution is not just found again.
|
|---|
| 950 |
|
|---|
| 951 | // Calculate the ordinal number of the groove correpsonding to rx
|
|---|
| 952 | const int ix = TMath::FloorNint(rx/fW);
|
|---|
| 953 |
|
|---|
| 954 | // Photons was just injected (test both surfaces) or came from the other surface
|
|---|
| 955 | if (surface==kEntrySurface || surface==kDraftSurface)
|
|---|
| 956 | {
|
|---|
| 957 | // Get the possible intersection point with the slope angle
|
|---|
| 958 | const double z1 = CalcIntersection(pos, dir, fGrooves[ix].slope);
|
|---|
| 959 |
|
|---|
| 960 | // We hit the slope angle
|
|---|
| 961 | if (z1!=0)
|
|---|
| 962 | {
|
|---|
| 963 | // Move photon to new hit position
|
|---|
| 964 | pos.PropagateZ(dir, z1);
|
|---|
| 965 | if (fSlopeAbsorption)
|
|---|
| 966 | throw raytrace_user(kEnter+kAbsorbed, surface, kSlopeSurface,
|
|---|
| 967 | "EnterGroove - Photon absorbed by slope surface");
|
|---|
| 968 |
|
|---|
| 969 | // Get the normal vector of the surface which was hit
|
|---|
| 970 | const VectorNorm norm(fGrooves[ix].slope.theta_norm+RandomTheta(fPSF),
|
|---|
| 971 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
|---|
| 972 |
|
|---|
| 973 | // Get the optical transition of the direction vector
|
|---|
| 974 | const int ret = MOptics::ApplyTransition(dir, norm, 1, n0, fFresnelReflection);
|
|---|
| 975 |
|
|---|
| 976 | // Transition was Reflection - try again
|
|---|
| 977 | if (ret==1 || ret==2)
|
|---|
| 978 | return kSlopeSurface;//EnterGroove(1, n0, lambda, pos, dir)+1;
|
|---|
| 979 |
|
|---|
| 980 | // Transition was Refraction - enter
|
|---|
| 981 | if (ret>=3)
|
|---|
| 982 | return -kSlopeSurface;//LeavePeak(1, n0, lambda, pos, dir, pos.T())+1;
|
|---|
| 983 |
|
|---|
| 984 | // Error occured (see ApplyTransition for details)
|
|---|
| 985 | throw raytrace_error(kEnter+kTransitionError, surface, kSlopeSurface,
|
|---|
| 986 | "EnterGroove - MOptics::ApplyTransition failed for slope surface");
|
|---|
| 987 | }
|
|---|
| 988 | }
|
|---|
| 989 |
|
|---|
| 990 | // Photons was just injected (test both surfaces) or came from the other surface
|
|---|
| 991 | if (surface==kEntrySurface || surface==kSlopeSurface)
|
|---|
| 992 | {
|
|---|
| 993 | const double z2 = CalcIntersection(pos, dir, fGrooves[ix].draft);
|
|---|
| 994 |
|
|---|
| 995 | // We hit the draft angle
|
|---|
| 996 | if (z2!=0)
|
|---|
| 997 | {
|
|---|
| 998 | // Move photon to new hit position
|
|---|
| 999 | pos.PropagateZ(dir, z2);
|
|---|
| 1000 | if (fDraftAbsorption)
|
|---|
| 1001 | throw raytrace_user(kEnter+kAbsorbed, surface, kDraftSurface,
|
|---|
| 1002 | "EnterGroove - Photon absorbed by draft surface");
|
|---|
| 1003 |
|
|---|
| 1004 | // Get the normal vector of the surface which was hit
|
|---|
| 1005 | const VectorNorm norm(fGrooves[ix].draft.theta_norm+RandomTheta(fPSF),
|
|---|
| 1006 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
|---|
| 1007 |
|
|---|
| 1008 | // Get the optical transition of the direction vector
|
|---|
| 1009 | const int ret = MOptics::ApplyTransition(dir, norm, 1, n0, fFresnelReflection);
|
|---|
| 1010 |
|
|---|
| 1011 | // Transition was Reflection - try again
|
|---|
| 1012 | if (ret==1 || ret==2)
|
|---|
| 1013 | return kDraftSurface;//EnterGroove(2, n0, lambda, pos, dir)+1;
|
|---|
| 1014 |
|
|---|
| 1015 | // Transition was Refraction - enter
|
|---|
| 1016 | if (ret>=3)
|
|---|
| 1017 | return -kDraftSurface;//LeavePeak(2, n0, lambda, pos, dir, pos.T())+1;
|
|---|
| 1018 |
|
|---|
| 1019 | // Error occured (see ApplyTransition for details)
|
|---|
| 1020 | throw raytrace_error(kEnter+kTransitionError, surface, kDraftSurface,
|
|---|
| 1021 | "EnterGroove - MOptics::ApplyTransition failed for draft surface");
|
|---|
| 1022 | }
|
|---|
| 1023 | }
|
|---|
| 1024 |
|
|---|
| 1025 | if (dir.Z()>0)
|
|---|
| 1026 | {
|
|---|
| 1027 | // We have missed both surfaces and we are upgoing...
|
|---|
| 1028 | // ... ray can be discarded
|
|---|
| 1029 | throw raytrace_info(kEnter+kStrayUpgoing, surface, kNoSurface,
|
|---|
| 1030 | "EnterGroove - Particle is upgoing and has hit no surface");
|
|---|
| 1031 | }
|
|---|
| 1032 |
|
|---|
| 1033 | // The ray has left the peak at the bottom(?)
|
|---|
| 1034 | throw raytrace_error(kEnter+kStrayDowngoing, surface, kNoSurface,
|
|---|
| 1035 | "EnterGroove - Particle is downgoing and has hit no surface");
|
|---|
| 1036 | }
|
|---|
| 1037 |
|
|---|
| 1038 | /*
|
|---|
| 1039 | // Leave the peak from inside the material, either thought the draft surface or the
|
|---|
| 1040 | // slope surface or the bottom connecting the valley of both
|
|---|
| 1041 | int MFresnelLens::LeavePeak(int surface, double n0, double lambda, MQuaternion &pos, MQuaternion &dir, double T0) const
|
|---|
| 1042 | {
|
|---|
| 1043 | const double rx = pos.R();
|
|---|
| 1044 |
|
|---|
| 1045 | if (rx>=fR)
|
|---|
| 1046 | {
|
|---|
| 1047 | //cout << "Left the lens radius (leave)" << endl;
|
|---|
| 1048 | throw -10;
|
|---|
| 1049 | }
|
|---|
| 1050 |
|
|---|
| 1051 | if (dir.Z()>0 && surface!=3) // && surface!=4)
|
|---|
| 1052 | {
|
|---|
| 1053 | //cout << "Upgoing, inside of the material" << endl;
|
|---|
| 1054 | //pos.PropagateZ(dir, dir.Z()>0 ? 3 : -3);
|
|---|
| 1055 | throw -11;
|
|---|
| 1056 | }
|
|---|
| 1057 |
|
|---|
| 1058 | if (surface!=1 && surface!=2 && surface!=3) // && surface!=4)
|
|---|
| 1059 | {
|
|---|
| 1060 | //cout << "Surface of origin invalid" << endl;
|
|---|
| 1061 | throw -12;
|
|---|
| 1062 | }
|
|---|
| 1063 |
|
|---|
| 1064 |
|
|---|
| 1065 | // Calculate the ordinal number of the groove correpsonding to rx
|
|---|
| 1066 | const int ix = TMath::FloorNint(rx/fW);
|
|---|
| 1067 |
|
|---|
| 1068 | // FIXME: The Z-coordinate (cone.h) is actually a line through two points!!!
|
|---|
| 1069 |
|
|---|
| 1070 | Cone slope = fGrooves[ix].slope;
|
|---|
| 1071 | Cone draft = fGrooves[ix].draft;
|
|---|
| 1072 |
|
|---|
| 1073 | const bool is_draft = rx>fGrooves[ix].r;
|
|---|
| 1074 | if (is_draft)
|
|---|
| 1075 | {
|
|---|
| 1076 | // We are in the volume under the draft angle... taking the slope from ix+1
|
|---|
| 1077 | if (ix<fGrooves.size()-1) // FIXME: Does that make sense?
|
|---|
| 1078 | slope = fGrooves[ix+1].slope;
|
|---|
| 1079 | }
|
|---|
| 1080 | else
|
|---|
| 1081 | {
|
|---|
| 1082 | // We are in the volume under the slope angle... taking the draft from ix-1
|
|---|
| 1083 | if (ix>0) // FIXME: Check whether this is correct
|
|---|
| 1084 | draft = fGrooves[ix-1].draft;
|
|---|
| 1085 | }
|
|---|
| 1086 |
|
|---|
| 1087 | if (is_draft+1!=surface && (surface==1 || surface==2))
|
|---|
| 1088 | cout << "SURFACE: " << is_draft+1 << " " << surface << endl;
|
|---|
| 1089 |
|
|---|
| 1090 | if (surface==3)
|
|---|
| 1091 | {
|
|---|
| 1092 | //cout << "Upgoing, coming from the bottom of the lens" << endl;
|
|---|
| 1093 | // Find out which triangle (peak) the photon is going to enter
|
|---|
| 1094 | // then proceed...
|
|---|
| 1095 | throw -13;
|
|---|
| 1096 | }
|
|---|
| 1097 |
|
|---|
| 1098 |
|
|---|
| 1099 | // We are inside the material and downgoing, so if we come from a slope surface,
|
|---|
| 1100 | // we can only hit a draft surface after and vice versa
|
|---|
| 1101 | if (is_draft || surface==3)
|
|---|
| 1102 | {
|
|---|
| 1103 | const double z1 = CalcIntersection(pos, dir, slope);
|
|---|
| 1104 |
|
|---|
| 1105 | // We hit the slope angle and are currently in the volume under the draft surface
|
|---|
| 1106 | if (z1!=0)
|
|---|
| 1107 | {
|
|---|
| 1108 | // Move photon to new hit position
|
|---|
| 1109 | pos.PropagateZ(dir, z1);
|
|---|
| 1110 |
|
|---|
| 1111 | if (fSlopeAbsorption)
|
|---|
| 1112 | throw -200;
|
|---|
| 1113 |
|
|---|
| 1114 | // Get the normal vector of the surface which was hit
|
|---|
| 1115 | const VectorNorm norm(slope.theta_norm+RandomTheta(fPSF),
|
|---|
| 1116 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
|---|
| 1117 |
|
|---|
| 1118 | // Get the optical transition of the direction vector
|
|---|
| 1119 | const int ret = MOptics::ApplyTransition(dir, norm, n0, 1);
|
|---|
| 1120 |
|
|---|
| 1121 | // Transition was Reflection - try again
|
|---|
| 1122 | if (ret==1 || ret==2)
|
|---|
| 1123 | return LeavePeak(1, n0, lambda, pos, dir, T0)+1;
|
|---|
| 1124 |
|
|---|
| 1125 | // Transition was Refraction - leave
|
|---|
| 1126 | if (ret>=3)
|
|---|
| 1127 | {
|
|---|
| 1128 | if (!Transmission(pos.T()-T0, lambda))
|
|---|
| 1129 | throw -14;
|
|---|
| 1130 |
|
|---|
| 1131 | return EnterGroove(1, n0, lambda, pos, dir)+1;
|
|---|
| 1132 | }
|
|---|
| 1133 |
|
|---|
| 1134 | // Error occured (see ApplyTransition for details)
|
|---|
| 1135 | //cout << "ERR[TIR3]" << endl;
|
|---|
| 1136 | throw -15;
|
|---|
| 1137 | }
|
|---|
| 1138 | }
|
|---|
| 1139 |
|
|---|
| 1140 | if (!is_draft || surface==3)
|
|---|
| 1141 | {
|
|---|
| 1142 | const double z2 = CalcIntersection(pos, dir, draft);
|
|---|
| 1143 |
|
|---|
| 1144 | // We hit the draft angle from the inside and are currently in the volume under the slope angle
|
|---|
| 1145 | if (z2!=0)
|
|---|
| 1146 | {
|
|---|
| 1147 | // Move photon to new hit position
|
|---|
| 1148 | pos.PropagateZ(dir, z2);
|
|---|
| 1149 |
|
|---|
| 1150 | if (fDraftAbsorption)
|
|---|
| 1151 | throw -201;
|
|---|
| 1152 |
|
|---|
| 1153 | // Get the normal vector of the surface which was hit
|
|---|
| 1154 | const VectorNorm norm(draft.theta_norm+RandomTheta(fPSF),
|
|---|
| 1155 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
|---|
| 1156 |
|
|---|
| 1157 | // Get the optical transition of the direction vector
|
|---|
| 1158 | const int ret = MOptics::ApplyTransition(dir, norm, n0, 1);
|
|---|
| 1159 |
|
|---|
| 1160 | // Transition was Reflection - try again
|
|---|
| 1161 | if (ret==1 || ret==2)
|
|---|
| 1162 | return LeavePeak(2, n0, lambda, pos, dir, T0)+1;
|
|---|
| 1163 |
|
|---|
| 1164 | // Transition was Refraction - leave
|
|---|
| 1165 | if (ret>=3)
|
|---|
| 1166 | {
|
|---|
| 1167 | if (!Transmission(pos.T()-T0, lambda))
|
|---|
| 1168 | throw -16;
|
|---|
| 1169 |
|
|---|
| 1170 | return EnterGroove(2, n0, lambda, pos, dir)+1;
|
|---|
| 1171 | }
|
|---|
| 1172 |
|
|---|
| 1173 | // Error occured (see ApplyTransition for details)
|
|---|
| 1174 | //cout << "ERR[TIR4]" << endl;
|
|---|
| 1175 | throw -17;
|
|---|
| 1176 | }
|
|---|
| 1177 | }
|
|---|
| 1178 |
|
|---|
| 1179 | if (surface==3)// || surface==4)
|
|---|
| 1180 | {
|
|---|
| 1181 | //cout << ix << " Lost bottom reflected ray " << surface << endl;
|
|---|
| 1182 | throw -18;
|
|---|
| 1183 | }
|
|---|
| 1184 |
|
|---|
| 1185 | // The ray has left the peak at the bottom
|
|---|
| 1186 |
|
|---|
| 1187 | // FIXME: There is a tiny chance to escape to the side
|
|---|
| 1188 | // As there is a slope in the bottom surface of the peak
|
|---|
| 1189 |
|
|---|
| 1190 | // Move photon to new hit position
|
|---|
| 1191 | pos.PropagateZ(dir, -fH);
|
|---|
| 1192 |
|
|---|
| 1193 | if (pos.R()>fR)
|
|---|
| 1194 | {
|
|---|
| 1195 | //cout << "Left the lens radius (bottom)" << endl;
|
|---|
| 1196 | throw -19;
|
|---|
| 1197 | }
|
|---|
| 1198 |
|
|---|
| 1199 | // Get the normal vector of the surface which was hit
|
|---|
| 1200 | const VectorNorm norm(RandomTheta(fPSF), gRandom->Uniform(0, TMath::TwoPi()));
|
|---|
| 1201 |
|
|---|
| 1202 | // Get the optical transition of the direction vector
|
|---|
| 1203 | const int ret = MOptics::ApplyTransition(dir, norm, n0, 1);
|
|---|
| 1204 |
|
|---|
| 1205 | // Transition was Reflection
|
|---|
| 1206 | // (Photon scattered back from the bottom of the lens)
|
|---|
| 1207 | if (ret==1 || ret==2)
|
|---|
| 1208 | return LeavePeak(3, n0, lambda, pos, dir, T0)+1;
|
|---|
| 1209 |
|
|---|
| 1210 | // Transition was Refraction
|
|---|
| 1211 | // (Photon left at the bottom of the lens)
|
|---|
| 1212 | if (ret>=3)
|
|---|
| 1213 | {
|
|---|
| 1214 | if (!Transmission(pos.T()-T0, lambda))
|
|---|
| 1215 | throw -20;
|
|---|
| 1216 |
|
|---|
| 1217 | return 0;
|
|---|
| 1218 | }
|
|---|
| 1219 |
|
|---|
| 1220 | // Error occured (see ApplyTransition for details)
|
|---|
| 1221 | //cout << "ERR[TIR5]" << endl;
|
|---|
| 1222 | throw -21;
|
|---|
| 1223 | }*/
|
|---|
| 1224 |
|
|---|
| 1225 | // Leave the peak from inside the material, either thought the draft surface or the
|
|---|
| 1226 | // slope surface or the bottom connecting the valley of both
|
|---|
| 1227 | int MFresnelLens::LeavePeak(int surface, double n0, MQuaternion &pos, MQuaternion &dir, double T0) const
|
|---|
| 1228 | {
|
|---|
| 1229 | const double rx = pos.R();
|
|---|
| 1230 |
|
|---|
| 1231 | if (rx>=fR) // This is an error as the direction vector is now invalid
|
|---|
| 1232 | throw raytrace_error(kLeave+kOutsideRadius, surface, kNoSurface,
|
|---|
| 1233 | "LeavePeak - Surface hit outside allowed radius");
|
|---|
| 1234 |
|
|---|
| 1235 | // FIXME: Can we track them further?
|
|---|
| 1236 | if (fDisableMultiEntry && dir.Z()>0 && surface!=3/* && surface!=4*/)
|
|---|
| 1237 | throw raytrace_info(kLeave+kStrayUpgoing, surface, kNoSurface,
|
|---|
| 1238 | "LeavePeak - Particle is upgoing inside the material and does not come from the bottom");
|
|---|
| 1239 |
|
|---|
| 1240 | if (surface!=kSlopeSurface && surface!=kDraftSurface && surface!=kExitSurface/* && surface!=4*/)
|
|---|
| 1241 | throw raytrace_error(kLeave+kInvalidOrigin, surface, kNoSurface,
|
|---|
| 1242 | "LeavePeak - Invalid surface of origin");
|
|---|
| 1243 |
|
|---|
| 1244 |
|
|---|
| 1245 | // Calculate the ordinal number of the groove correpsonding to rx
|
|---|
| 1246 | const uint32_t ix = TMath::FloorNint(rx/fW);
|
|---|
| 1247 |
|
|---|
| 1248 | // FIXME: The Z-coordinate (cone.h) is actually a line through two points!!!
|
|---|
| 1249 |
|
|---|
| 1250 | Cone slope = fGrooves[ix].slope;
|
|---|
| 1251 | Cone draft = fGrooves[ix].draft;
|
|---|
| 1252 |
|
|---|
| 1253 | //if (is_draft+1!=surface && (surface==1 || surface==2))
|
|---|
| 1254 | // cout << "SURFACE: " << is_draft+1 << " " << surface << endl;
|
|---|
| 1255 |
|
|---|
| 1256 | const bool is_draft = rx>fGrooves[ix].r;
|
|---|
| 1257 | if (is_draft)
|
|---|
| 1258 | {
|
|---|
| 1259 | // We are in the volume under the draft angle... taking the slope from ix+1
|
|---|
| 1260 | if (ix<fGrooves.size()-1) // FIXME: Does that make sense?
|
|---|
| 1261 | slope = fGrooves[ix+1].slope;
|
|---|
| 1262 | }
|
|---|
| 1263 | else
|
|---|
| 1264 | {
|
|---|
| 1265 | // We are in the volume under the slope angle... taking the draft from ix-1
|
|---|
| 1266 | if (ix>0) // FIXME: Check whether this is correct
|
|---|
| 1267 | draft = fGrooves[ix-1].draft;
|
|---|
| 1268 | }
|
|---|
| 1269 |
|
|---|
| 1270 | if (surface==kExitSurface)
|
|---|
| 1271 | {
|
|---|
| 1272 | if (!fBottomReflection)
|
|---|
| 1273 | throw raytrace_user(kLeave+kAbsorbed, surface, kExitSurface,
|
|---|
| 1274 | "LeavePeak - Particle absorbed on the bottom");
|
|---|
| 1275 |
|
|---|
| 1276 | const int in = FindPeak(ix, pos, dir);
|
|---|
| 1277 |
|
|---|
| 1278 | // This might happen if the ray is very flat and leaving
|
|---|
| 1279 | // the lens before hitting the border boundary of the grooves
|
|---|
| 1280 | if (in<0)
|
|---|
| 1281 | throw raytrace_error(kLeave+kNoSurfaceFound, kExitSurface, kNoSurface,
|
|---|
| 1282 | "LeavePeak - No hit surface found for particle reflected at the bottom");
|
|---|
| 1283 |
|
|---|
| 1284 | slope = fGrooves[in].slope;
|
|---|
| 1285 | draft = fGrooves[in==0 ? 0 : in-1].draft;
|
|---|
| 1286 | }
|
|---|
| 1287 |
|
|---|
| 1288 | // FIXME: There is a chance that we can hit the same surface twice (for very horizontal rays
|
|---|
| 1289 | // but this requires a proper selection of the hit point
|
|---|
| 1290 |
|
|---|
| 1291 | // We are inside the material and downgoing, so if we come from a slope surface,
|
|---|
| 1292 | // we can only hit a draft surface after and vice versa
|
|---|
| 1293 | if (is_draft || surface==kExitSurface)
|
|---|
| 1294 | {
|
|---|
| 1295 | const double z1 = CalcIntersection(pos, dir, slope);
|
|---|
| 1296 |
|
|---|
| 1297 | // We hit the slope angle and are currently in the volume under the draft surface
|
|---|
| 1298 | if (z1!=0)
|
|---|
| 1299 | {
|
|---|
| 1300 | // Move photon to new hit position
|
|---|
| 1301 | pos.PropagateZ(dir, z1);
|
|---|
| 1302 |
|
|---|
| 1303 | if (fSlopeAbsorption)
|
|---|
| 1304 | throw raytrace_user(kLeave+kAbsorbed, surface, kSlopeSurface,
|
|---|
| 1305 | "LeavePeak - Photon absorbed by slope surface");
|
|---|
| 1306 |
|
|---|
| 1307 | // Get the normal vector of the surface which was hit
|
|---|
| 1308 | const VectorNorm norm(slope.theta_norm+RandomTheta(fPSF),
|
|---|
| 1309 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
|---|
| 1310 |
|
|---|
| 1311 | // Get the optical transition of the direction vector
|
|---|
| 1312 | const int ret = MOptics::ApplyTransition(dir, norm, n0, 1, fFresnelReflection);
|
|---|
| 1313 |
|
|---|
| 1314 | // Transition was Reflection - try again
|
|---|
| 1315 | if (ret==1 || ret==2)
|
|---|
| 1316 | return -kSlopeSurface;//LeavePeak(1, n0, lambda, pos, dir, T0)+1;
|
|---|
| 1317 |
|
|---|
| 1318 | // Transition was Refraction - leave
|
|---|
| 1319 | if (ret>=3) // Transmission
|
|---|
| 1320 | return kSlopeSurface;//EnterGroove(1, n0, lambda, pos, dir)+1;
|
|---|
| 1321 |
|
|---|
| 1322 | // Error occured (see ApplyTransition for details)
|
|---|
| 1323 | throw raytrace_error(kLeave+kTransitionError, surface, kSlopeSurface,
|
|---|
| 1324 | "LeavePeak - MOptics::ApplyTransition failed for slope surface");
|
|---|
| 1325 | }
|
|---|
| 1326 | }
|
|---|
| 1327 |
|
|---|
| 1328 | if (!is_draft || surface==kExitSurface)
|
|---|
| 1329 | {
|
|---|
| 1330 | const double z2 = CalcIntersection(pos, dir, draft);
|
|---|
| 1331 |
|
|---|
| 1332 | // We hit the draft angle from the inside and are currently in the volume under the slope angle
|
|---|
| 1333 | if (z2!=0)
|
|---|
| 1334 | {
|
|---|
| 1335 | // Move photon to new hit position
|
|---|
| 1336 | pos.PropagateZ(dir, z2);
|
|---|
| 1337 |
|
|---|
| 1338 | if (fDraftAbsorption)
|
|---|
| 1339 | throw raytrace_user(kLeave+kAbsorbed, surface, kDraftSurface,
|
|---|
| 1340 | "LeavePeak - Photon absorbed by draft surface");
|
|---|
| 1341 |
|
|---|
| 1342 | // Get the normal vector of the surface which was hit
|
|---|
| 1343 | const VectorNorm norm(draft.theta_norm+RandomTheta(fPSF),
|
|---|
| 1344 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
|---|
| 1345 |
|
|---|
| 1346 | // Get the optical transition of the direction vector
|
|---|
| 1347 | const int ret = MOptics::ApplyTransition(dir, norm, n0, 1, fFresnelReflection);
|
|---|
| 1348 |
|
|---|
| 1349 | // Transition was Reflection - try again
|
|---|
| 1350 | if (ret==1 || ret==2)
|
|---|
| 1351 | return -kDraftSurface;//LeavePeak(2, n0, lambda, pos, dir, T0)+1;
|
|---|
| 1352 |
|
|---|
| 1353 | // Transition was Refraction - leave
|
|---|
| 1354 | if (ret>=3) // Transmission
|
|---|
| 1355 | return kDraftSurface;//EnterGroove(2, n0, lambda, pos, dir)+1;
|
|---|
| 1356 |
|
|---|
| 1357 | // Error occured (see ApplyTransition for details)
|
|---|
| 1358 | //cout << "ERR[TIR4]" << endl;
|
|---|
| 1359 | throw raytrace_error(kLeave+kTransitionError, surface, kDraftSurface,
|
|---|
| 1360 | "LeavePeak - MOptics::ApplyTransition failed for draft surface");
|
|---|
| 1361 | }
|
|---|
| 1362 | }
|
|---|
| 1363 |
|
|---|
| 1364 | if (surface==kExitSurface/* || surface==4*/)
|
|---|
| 1365 | throw raytrace_error(kLeave+kFoundSurfaceUnavailable, kExitSurface, is_draft?kSlopeSurface:kDraftSurface,
|
|---|
| 1366 | "LeavePeak - Ray reflected on the bottom did not hit the found surface");
|
|---|
| 1367 |
|
|---|
| 1368 | // The ray has left the peak at the bottom
|
|---|
| 1369 |
|
|---|
| 1370 | // FIXME: There is a tiny chance to escape to the side
|
|---|
| 1371 | // As there is a slope in the bottom surface of the peak
|
|---|
| 1372 |
|
|---|
| 1373 | // FIXME: Theoretically, a ray can hit the same surface twice
|
|---|
| 1374 |
|
|---|
| 1375 | // Move photon to new hit position
|
|---|
| 1376 | pos.PropagateZ(dir, -fH);
|
|---|
| 1377 |
|
|---|
| 1378 | if (pos.R()>fR)
|
|---|
| 1379 | throw raytrace_info(kLeave+kOutsideRadius, surface, kExitSurface,
|
|---|
| 1380 | "LeavePeak - Hit point at the bottom surface is beyond allowed radius");
|
|---|
| 1381 |
|
|---|
| 1382 | // Get the normal vector of the surface which was hit
|
|---|
| 1383 | const VectorNorm norm(RandomTheta(fPSF), gRandom->Uniform(0, TMath::TwoPi()));
|
|---|
| 1384 |
|
|---|
| 1385 | // Get the optical transition of the direction vector
|
|---|
| 1386 | const int ret = MOptics::ApplyTransition(dir, norm, n0, 1, fFresnelReflection);
|
|---|
| 1387 |
|
|---|
| 1388 | // Transition was Reflection
|
|---|
| 1389 | // (Photon scattered back from the bottom of the lens)
|
|---|
| 1390 | if (ret==1 || ret==2)
|
|---|
| 1391 | return -kExitSurface;//LeavePeak(3, n0, lambda, pos, dir, T0)+1;
|
|---|
| 1392 |
|
|---|
| 1393 | // Transition was Refraction
|
|---|
| 1394 | // (Photon left at the bottom of the lens)
|
|---|
| 1395 | if (ret>=3) // Transmission
|
|---|
| 1396 | return kPhotonHasLeft;
|
|---|
| 1397 |
|
|---|
| 1398 | // Error occured (see ApplyTransition for details)
|
|---|
| 1399 | throw raytrace_error(kLeave+kTransitionError, surface, kExitSurface, "LeavePeak - MOptics::ApplyTransition failed for bottom surface");
|
|---|
| 1400 | }
|
|---|
| 1401 |
|
|---|
| 1402 |
|
|---|
| 1403 | // Differences:
|
|---|
| 1404 | // Returns a 'reflected' vector at z=0
|
|---|
| 1405 | // Does not propagate to z=0 at the beginning
|
|---|
| 1406 | Int_t MFresnelLens::ExecuteOptics(MQuaternion &p, MQuaternion &u, const Short_t &wavelength) const
|
|---|
| 1407 | {
|
|---|
| 1408 | // Corsika Coordinates are in cm!
|
|---|
| 1409 |
|
|---|
| 1410 | const double lambda = wavelength==0 ? fLambda : wavelength;
|
|---|
| 1411 | if (fAbsorptionLength.GetNp()!=0 &&
|
|---|
| 1412 | (lambda<fAbsorptionLength.GetXmin() || lambda>fAbsorptionLength.GetXmax()))
|
|---|
| 1413 | {
|
|---|
| 1414 | *fLog << err << "Wavelength " << lambda << "nm out of absorption range [" << fAbsorptionLength.GetXmin() << "nm;" << fAbsorptionLength.GetXmax() << "nm]" << endl;
|
|---|
| 1415 | return -1;
|
|---|
| 1416 | }
|
|---|
| 1417 |
|
|---|
| 1418 | const double n0 = MFresnelLens::RefractiveIndex(lambda);
|
|---|
| 1419 |
|
|---|
| 1420 | try
|
|---|
| 1421 | {
|
|---|
| 1422 | int last_surface = kEntrySurface;//EnterGroove(kEntrySurface, n0, p, u);
|
|---|
| 1423 |
|
|---|
| 1424 | // last_surface that was hit (photon originates from)
|
|---|
| 1425 | // 0 entrance (Z=0) or exit (Z=-fH) surface
|
|---|
| 1426 | // 1 slope
|
|---|
| 1427 | // 2 draft
|
|---|
| 1428 | // 3 bottom
|
|---|
| 1429 | // positive: photon is outside of material --> Try to enter
|
|---|
| 1430 | // nagative: photon is inside of material --> Try to leave
|
|---|
| 1431 |
|
|---|
| 1432 | double T0 = 0;//last_surface<0 ? p.T() : 0;
|
|---|
| 1433 |
|
|---|
| 1434 | // The general assumption is: no surface can be hit twice in a row
|
|---|
| 1435 |
|
|---|
| 1436 | int cnt = -1;
|
|---|
| 1437 | while (last_surface!=0)
|
|---|
| 1438 | {
|
|---|
| 1439 | cnt ++;
|
|---|
| 1440 |
|
|---|
| 1441 | // photon is outside of material --> try to enter
|
|---|
| 1442 | if (last_surface>0)
|
|---|
| 1443 | {
|
|---|
| 1444 | last_surface = EnterGroove(last_surface, n0, p, u);
|
|---|
| 1445 |
|
|---|
| 1446 | // successfully entered --> remember time of entrance to calculate transimission
|
|---|
| 1447 | if (last_surface<0)
|
|---|
| 1448 | T0 = p.T();
|
|---|
| 1449 |
|
|---|
| 1450 | continue;
|
|---|
| 1451 | }
|
|---|
| 1452 |
|
|---|
| 1453 | // photon is inside of material --> try to leave
|
|---|
| 1454 | if (last_surface<0)
|
|---|
| 1455 | {
|
|---|
| 1456 | last_surface = LeavePeak(-last_surface, n0, p, u, T0);
|
|---|
| 1457 |
|
|---|
| 1458 | // successfully left --> apply transmission
|
|---|
| 1459 | if (last_surface>=0)
|
|---|
| 1460 | {
|
|---|
| 1461 | if (!Transmission(p.T()-T0, lambda))
|
|---|
| 1462 | throw raytrace_error(kAbsorbed, last_surface, kMaterial,
|
|---|
| 1463 | "TraceRay - Ray absorbed in material");
|
|---|
| 1464 | }
|
|---|
| 1465 |
|
|---|
| 1466 | continue;
|
|---|
| 1467 | }
|
|---|
| 1468 | }
|
|---|
| 1469 |
|
|---|
| 1470 | // To make this consistent with a mirror system,
|
|---|
| 1471 | // we now change our coordinate system
|
|---|
| 1472 | // Rays from the lens to the camera are up-going (positive sign)
|
|---|
| 1473 | u.fVectorPart.SetZ(-u.Z());
|
|---|
| 1474 |
|
|---|
| 1475 | // In the datasheet, it looks as if F is calculated
|
|---|
| 1476 | // towards the center of the lens. It seems things are more
|
|---|
| 1477 | // consistent if the thickness correction in caluating the
|
|---|
| 1478 | // slope angle is omitted and the focal distance is measured
|
|---|
| 1479 | // from the entrance of the lens => FIXME: To be checked
|
|---|
| 1480 | // (Propagating to F means not propagating a distance of F-H from the exit)
|
|---|
| 1481 | //p.fVectorPart.SetZ(fH-fH/2/fN);//fH/2); Found by try-and-error
|
|---|
| 1482 |
|
|---|
| 1483 | // We are already at -H, adding F and setting Z=0 means going to -(F+H)
|
|---|
| 1484 | p.fVectorPart.SetZ(0);//fH/2); Found by try-and-error
|
|---|
| 1485 |
|
|---|
| 1486 | return uint32_t(cnt)>=fMinHits && (fMaxHits==0 || uint32_t(cnt)<=fMaxHits) ? cnt : -1;;
|
|---|
| 1487 | }
|
|---|
| 1488 | catch (const raytrace_exception &e)
|
|---|
| 1489 | {
|
|---|
| 1490 | return -e.id();
|
|---|
| 1491 | }
|
|---|
| 1492 |
|
|---|
| 1493 | /*
|
|---|
| 1494 | try
|
|---|
| 1495 | {
|
|---|
| 1496 | const int cnt = EnterGroove(0, n0, lambda, p, u);
|
|---|
| 1497 |
|
|---|
| 1498 | // To make this consistent with a mirror system,
|
|---|
| 1499 | // we now change our coordinate system
|
|---|
| 1500 | // Rays from the lens to the camera are up-going (positive sign)
|
|---|
| 1501 | u.fVectorPart.SetZ(-u.Z());
|
|---|
| 1502 |
|
|---|
| 1503 | // In the datasheet, it looks as if F is calculated
|
|---|
| 1504 | // towards the center of the lens
|
|---|
| 1505 | // (Propagating to F means not propagating a distance of F-H/2)
|
|---|
| 1506 | p.fVectorPart.SetZ(0);
|
|---|
| 1507 |
|
|---|
| 1508 | return cnt>=fMinHits && (fMaxHits==0 || cnt<=fMaxHits) ? cnt : -1;
|
|---|
| 1509 |
|
|---|
| 1510 | }
|
|---|
| 1511 | catch (const int &rc)
|
|---|
| 1512 | {
|
|---|
| 1513 | return rc;
|
|---|
| 1514 | }
|
|---|
| 1515 | */
|
|---|
| 1516 | }
|
|---|
| 1517 |
|
|---|
| 1518 | // Differences:
|
|---|
| 1519 | // Does propagate to z=0 at the beginning
|
|---|
| 1520 | Int_t MFresnelLens::TraceRay(vector<MQuaternion> &vec, MQuaternion &p, MQuaternion &u, const Short_t &wavelength, bool verbose) const
|
|---|
| 1521 | {
|
|---|
| 1522 | // Corsika Coordinates are in cm!
|
|---|
| 1523 |
|
|---|
| 1524 | const double lambda = wavelength==0 ? fLambda : wavelength;
|
|---|
| 1525 | if (fAbsorptionLength.GetNp()!=0 &&
|
|---|
| 1526 | (lambda<fAbsorptionLength.GetXmin() || lambda>fAbsorptionLength.GetXmax()))
|
|---|
| 1527 | {
|
|---|
| 1528 | *fLog << err << "Wavelength " << lambda << "nm out of absorption range [" << fAbsorptionLength.GetXmin() << "nm;" << fAbsorptionLength.GetXmax() << "nm]" << endl;
|
|---|
| 1529 | return -1;
|
|---|
| 1530 | }
|
|---|
| 1531 |
|
|---|
| 1532 | const double n0 = MFresnelLens::RefractiveIndex(lambda);
|
|---|
| 1533 |
|
|---|
| 1534 | // Photon must be at the lens surface
|
|---|
| 1535 | p.PropagateZ(u, 0);
|
|---|
| 1536 | vec.push_back(p);
|
|---|
| 1537 |
|
|---|
| 1538 | try
|
|---|
| 1539 | {
|
|---|
| 1540 | int last_surface = kEntrySurface;//EnterGroove(kEntrySurface, n0, p, u);
|
|---|
| 1541 |
|
|---|
| 1542 | // last_surface that was hit (photon originates from)
|
|---|
| 1543 | // 0 entrance (Z=0) or exit (Z=-fH) surface
|
|---|
| 1544 | // 1 slope
|
|---|
| 1545 | // 2 draft
|
|---|
| 1546 | // 3 bottom
|
|---|
| 1547 | // positive: photon is outside of material --> Try to enter
|
|---|
| 1548 | // nagative: photon is inside of material --> Try to leave
|
|---|
| 1549 |
|
|---|
| 1550 | double T0 = 0;
|
|---|
| 1551 |
|
|---|
| 1552 | // The general assumption is: no surface can be hit twice in a row
|
|---|
| 1553 |
|
|---|
| 1554 | int cnt = -1;
|
|---|
| 1555 | while (last_surface!=0)
|
|---|
| 1556 | {
|
|---|
| 1557 | cnt ++;
|
|---|
| 1558 | vec.push_back(p);
|
|---|
| 1559 |
|
|---|
| 1560 | // photon is outside of material --> try to enter
|
|---|
| 1561 | if (last_surface>0)
|
|---|
| 1562 | {
|
|---|
| 1563 | last_surface = EnterGroove( last_surface, n0, p, u);
|
|---|
| 1564 | //cout << "enter = " << last_surface << endl;
|
|---|
| 1565 |
|
|---|
| 1566 | // successfully entered --> remember time of entrance to calculate transimission
|
|---|
| 1567 | if (last_surface<0)
|
|---|
| 1568 | T0 = p.T();
|
|---|
| 1569 |
|
|---|
| 1570 | continue;
|
|---|
| 1571 | }
|
|---|
| 1572 |
|
|---|
| 1573 | // photon is inside of material --> try to leave
|
|---|
| 1574 | if (last_surface<0)
|
|---|
| 1575 | {
|
|---|
| 1576 | last_surface = LeavePeak(-last_surface, n0, p, u, T0);
|
|---|
| 1577 | //cout << "leave = " << last_surface << endl;
|
|---|
| 1578 |
|
|---|
| 1579 | // successfully left --> apply transmission
|
|---|
| 1580 | if (last_surface>=0)
|
|---|
| 1581 | {
|
|---|
| 1582 | if (!Transmission(p.T()-T0, lambda))
|
|---|
| 1583 | throw raytrace_error(kAbsorbed, last_surface, kMaterial,
|
|---|
| 1584 | "TraceRay - Ray absorbed in material");
|
|---|
| 1585 | }
|
|---|
| 1586 |
|
|---|
| 1587 | continue;
|
|---|
| 1588 | }
|
|---|
| 1589 | }
|
|---|
| 1590 |
|
|---|
| 1591 | vec.push_back(p);
|
|---|
| 1592 | return cnt;
|
|---|
| 1593 | }
|
|---|
| 1594 | catch (const raytrace_exception &e)
|
|---|
| 1595 | {
|
|---|
| 1596 | if (verbose)
|
|---|
| 1597 | *fLog << all << e.id() << ": " << e.what() << endl;
|
|---|
| 1598 |
|
|---|
| 1599 | // Hit point at bottom surface beyond allowed range
|
|---|
| 1600 | // FIXME: Only if surface is kExitSurface
|
|---|
| 1601 | if (e.id()==2342)
|
|---|
| 1602 | vec.push_back(p);
|
|---|
| 1603 |
|
|---|
| 1604 | return -e.id();
|
|---|
| 1605 | }
|
|---|
| 1606 | }
|
|---|