1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appears in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz, 6/2019 <mailto:tbretz@physik.rwth-aachen.de>
|
---|
19 | !
|
---|
20 | ! Copyright: CheObs Software Development, 2000-2019
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MFresnelLens
|
---|
28 | //
|
---|
29 | // For some details on definitions please refer to
|
---|
30 | // https://application.wiley-vch.de/berlin/journals/op/07-04/OP0704_S52_S55.pdf
|
---|
31 | //
|
---|
32 | // The HAWC's Eye lens is an Orafol SC943
|
---|
33 | // https://www.orafol.com/en/europe/products/optic-solutions/productlines#pl1
|
---|
34 | //
|
---|
35 | // A good description on ray-tracing can be found here
|
---|
36 | // https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
|
---|
37 | //
|
---|
38 | //////////////////////////////////////////////////////////////////////////////
|
---|
39 | #include "MFresnelLens.h"
|
---|
40 |
|
---|
41 | #include <fstream>
|
---|
42 | #include <errno.h>
|
---|
43 |
|
---|
44 | #include <TRandom.h>
|
---|
45 |
|
---|
46 | #include "MQuaternion.h"
|
---|
47 | #include "MReflection.h"
|
---|
48 |
|
---|
49 | #include "MMath.h"
|
---|
50 |
|
---|
51 | #include "MLog.h"
|
---|
52 | #include "MLogManip.h"
|
---|
53 |
|
---|
54 | ClassImp(MFresnelLens);
|
---|
55 |
|
---|
56 | using namespace std;
|
---|
57 |
|
---|
58 | // ==========================================================================
|
---|
59 |
|
---|
60 | enum exception_t
|
---|
61 | {
|
---|
62 | kValidRay = 0,
|
---|
63 |
|
---|
64 | kStrayUpgoing,
|
---|
65 | kOutsideRadius,
|
---|
66 | kNoSurfaceFound,
|
---|
67 | kStrayDowngoing,
|
---|
68 | kAbsorbed,
|
---|
69 |
|
---|
70 | kFoundSurfaceUnavailable,
|
---|
71 |
|
---|
72 | kInvalidOrigin,
|
---|
73 | kTransitionError,
|
---|
74 |
|
---|
75 | kEnter = 1000,
|
---|
76 | kLeave = 2000,
|
---|
77 | };
|
---|
78 |
|
---|
79 | enum surface_t
|
---|
80 | {
|
---|
81 | kPhotonHasLeft = 0,
|
---|
82 |
|
---|
83 | kEntrySurface,
|
---|
84 | kSlopeSurface,
|
---|
85 | kDraftSurface,
|
---|
86 | kExitSurface,
|
---|
87 |
|
---|
88 | kMaterial = 5,
|
---|
89 |
|
---|
90 | kNoSurface = 9
|
---|
91 | };
|
---|
92 |
|
---|
93 |
|
---|
94 | class raytrace_exception : public runtime_error
|
---|
95 | {
|
---|
96 | protected:
|
---|
97 | int fError;
|
---|
98 | int fOrigin;
|
---|
99 | int fSurface;
|
---|
100 |
|
---|
101 | public:
|
---|
102 | raytrace_exception(const int &_id, const int &_origin, const int &_surface, const string& what_arg) :
|
---|
103 | runtime_error(what_arg), fError(_id), fOrigin(_origin), fSurface(_surface)
|
---|
104 | {
|
---|
105 | }
|
---|
106 |
|
---|
107 | raytrace_exception(const int &_id, const int &_origin, const int &_surface, const char* what_arg) :
|
---|
108 | runtime_error(what_arg), fError(_id), fOrigin(_origin), fSurface(_surface)
|
---|
109 | {
|
---|
110 | }
|
---|
111 |
|
---|
112 | int id() const { return fError + fSurface*10 + fOrigin*100; }
|
---|
113 | int error() const { return fError; }
|
---|
114 | int origin() const { return fOrigin; }
|
---|
115 | int surface() const { return fSurface; }
|
---|
116 | };
|
---|
117 |
|
---|
118 | class raytrace_error : public raytrace_exception
|
---|
119 | {
|
---|
120 | public:
|
---|
121 | raytrace_error(const int &_id, const int &_origin, const int &_surface, const string& what_arg) :
|
---|
122 | raytrace_exception(_id, _origin, _surface, what_arg) { }
|
---|
123 | raytrace_error(const int &_id, const int &_origin, const int &_surface, const char* what_arg) :
|
---|
124 | raytrace_exception(_id, _origin, _surface, what_arg) { }
|
---|
125 | };
|
---|
126 | class raytrace_info : public raytrace_exception
|
---|
127 | {
|
---|
128 | public:
|
---|
129 | raytrace_info(const int &_id, const int &_origin, const int &_surface, const string& what_arg) :
|
---|
130 | raytrace_exception(_id, _origin, _surface, what_arg) { }
|
---|
131 | raytrace_info(const int &_id, const int &_origin, const int &_surface, const char* what_arg) :
|
---|
132 | raytrace_exception(_id, _origin, _surface, what_arg) { }
|
---|
133 | };
|
---|
134 | class raytrace_user : public raytrace_exception
|
---|
135 | {
|
---|
136 | public:
|
---|
137 | raytrace_user(const int &_id, const int &_origin, const int &_surface, const string& what_arg) :
|
---|
138 | raytrace_exception(_id, _origin, _surface, what_arg) { }
|
---|
139 | raytrace_user(const int &_id, const int &_origin, const int &_surface, const char* what_arg) :
|
---|
140 | raytrace_exception(_id, _origin, _surface, what_arg) { }
|
---|
141 | };
|
---|
142 |
|
---|
143 | // ==========================================================================
|
---|
144 |
|
---|
145 |
|
---|
146 | // --------------------------------------------------------------------------
|
---|
147 | //
|
---|
148 | // Default constructor
|
---|
149 | //
|
---|
150 | MFresnelLens::MFresnelLens(const char *name, const char *title) :
|
---|
151 | fPSF(0), fSlopeAbsorption(false), fDraftAbsorption(false),
|
---|
152 | fBottomReflection(true), fDisableMultiEntry(false), fFresnelReflection(true),
|
---|
153 | fMinHits(0), fMaxHits(0)
|
---|
154 | {
|
---|
155 | fName = name ? name : "MFresnelLens";
|
---|
156 | fTitle = title ? title : "Parameter container storing a collection of several mirrors (reflector)";
|
---|
157 |
|
---|
158 | // Default: Orafol SC943
|
---|
159 |
|
---|
160 | DefineLens();
|
---|
161 | }
|
---|
162 |
|
---|
163 | // ==========================================================================
|
---|
164 |
|
---|
165 | // --------------------------------------------------------------------------
|
---|
166 | //
|
---|
167 | // Default ORAFOL SC943
|
---|
168 | //
|
---|
169 | // Focal Length: F = 50.21 cm
|
---|
170 | // Diameter: D = 54.92 cm
|
---|
171 | // Groove width: w = 0.01 cm
|
---|
172 | // Lens thickness: h = 0.25 cm
|
---|
173 | //
|
---|
174 | // Default wavelength: 546 nm
|
---|
175 | //
|
---|
176 | void MFresnelLens::DefineLens(double F, double D, double w, double h, double lambda)
|
---|
177 | {
|
---|
178 | fR = D/2; // [cm] Lens radius
|
---|
179 | fW = w; // [cm] Width of a single groove
|
---|
180 | fH = h; // [cm] Thickness of lens
|
---|
181 | fF = F; // [cm] focal length (see also MGeomCamFAMOUS!)
|
---|
182 |
|
---|
183 | fLambda = lambda;
|
---|
184 |
|
---|
185 | fN = MFresnelLens::RefractiveIndex(fLambda); // Lens
|
---|
186 |
|
---|
187 | // Velocity of light within the lens material [cm/ns]
|
---|
188 | // FIXME: Note that for the correct conversion in Transmission()
|
---|
189 | // also the speed in the surrounding medium has to be taken correctly
|
---|
190 | // into account (here it is assumed to be air with N=1
|
---|
191 | fVc = fN/(TMath::C()*100/1e9); // cm/ns
|
---|
192 |
|
---|
193 | InitGeometry(fR, fW, fN, fF, fH);
|
---|
194 | }
|
---|
195 |
|
---|
196 | // --------------------------------------------------------------------------
|
---|
197 | //
|
---|
198 | // Precalculate values such as the intersection points inside the grooves,
|
---|
199 | // the angle of the slope and draft surface and the corresponding tangents.
|
---|
200 | //
|
---|
201 | void MFresnelLens::InitGeometry(double maxr, double width, double N0, double F, double d)
|
---|
202 | {
|
---|
203 | const uint32_t num = TMath::CeilNint(maxr/width);
|
---|
204 |
|
---|
205 | fGrooves.resize(num);
|
---|
206 |
|
---|
207 | for (uint32_t i=0; i<num; i++)
|
---|
208 | {
|
---|
209 | const double r0 = i*width;
|
---|
210 | const double rc = i*width + width/2;
|
---|
211 | const double r1 = i*width + width;
|
---|
212 |
|
---|
213 | // Slope angle of the reflecting surface alpha
|
---|
214 | // Angle of the draft surface psi
|
---|
215 | const double alpha = -MFresnelLens::SlopeAngle(rc, F, N0, d); // w.r.t. x [30]
|
---|
216 | const double psi = MFresnelLens::DraftAngle(r1); // w.r.t. z [ 5]
|
---|
217 |
|
---|
218 | const double tan_alpha = tan(alpha);
|
---|
219 | const double tan_psi = tan(psi);
|
---|
220 |
|
---|
221 | fGrooves[i].slope.z = r0*tan_alpha;
|
---|
222 | fGrooves[i].draft.z = -r1/tan_psi;
|
---|
223 |
|
---|
224 | fGrooves[i].slope.theta = TMath::Pi()/2-alpha; // w.r.t. +z [ 60]
|
---|
225 | fGrooves[i].draft.theta = -psi; // w.r.t. +z [- 5]
|
---|
226 |
|
---|
227 | fGrooves[i].slope.tan_theta = tan(fGrooves[i].slope.theta);
|
---|
228 | fGrooves[i].draft.tan_theta = tan(fGrooves[i].draft.theta);
|
---|
229 |
|
---|
230 | fGrooves[i].slope.tan_theta2 = fGrooves[i].slope.tan_theta*fGrooves[i].slope.tan_theta;
|
---|
231 | fGrooves[i].draft.tan_theta2 = fGrooves[i].draft.tan_theta*fGrooves[i].draft.tan_theta;
|
---|
232 |
|
---|
233 | fGrooves[i].slope.theta_norm = TMath::Pi()/2-fGrooves[i].slope.theta; // [ 30]
|
---|
234 | fGrooves[i].draft.theta_norm = TMath::Pi()/2-fGrooves[i].draft.theta; // [ 95]
|
---|
235 |
|
---|
236 | const double dr = width/(tan_alpha*tan_psi+1);
|
---|
237 |
|
---|
238 | fGrooves[i].r = r0 + dr;
|
---|
239 |
|
---|
240 | const double z = -dr*tan_alpha;
|
---|
241 |
|
---|
242 | fGrooves[i].slope.h = z;
|
---|
243 | fGrooves[i].draft.h = z;
|
---|
244 |
|
---|
245 | if (z<-fH)
|
---|
246 | *fLog << warn << "Groove " << i << " deeper (" << z << ") than thickness of lens material (" << fH << ")." << endl;
|
---|
247 | }
|
---|
248 |
|
---|
249 | fMaxR = (num+1)*width;
|
---|
250 | }
|
---|
251 |
|
---|
252 | // --------------------------------------------------------------------------
|
---|
253 | //
|
---|
254 | // Reads the transmission curve from a file
|
---|
255 | // (tranmission in percent versus wavelength in nanometers)
|
---|
256 | //
|
---|
257 | // The transmission curve is used to calculate the absorption lengths.
|
---|
258 | // Therefore the thickness for which the tranission curve is valid is
|
---|
259 | // required (in cm).
|
---|
260 | //
|
---|
261 | // The conversion can correct for fresnel reflection at the entry and exit
|
---|
262 | // surface assuming that the outside material during the measurement was air
|
---|
263 | // (n=1.0003) and the material in PMMA. Correction is applied when
|
---|
264 | // correction is set to true <default>.
|
---|
265 | //
|
---|
266 | // If no valid data was read, 0 is returned. -1 is returned if any tranmission
|
---|
267 | // value read from the file is >1. If the fresnel correction leads to a value >1,
|
---|
268 | // the value is set to 1. The number of valid data points is returned.
|
---|
269 | //
|
---|
270 | Int_t MFresnelLens::ReadTransmission(const TString &file, float thickness, bool correction)
|
---|
271 | {
|
---|
272 | TGraph transmission(file);
|
---|
273 |
|
---|
274 | /*
|
---|
275 | double gx_min, gx_max, gy_min, gy_max;
|
---|
276 | absorption.ComputeRange(gx_min, gy_min, gx_max, gy_max);
|
---|
277 | if (lambda<gx_min || lambda>gx_max)
|
---|
278 | {
|
---|
279 | cout << "Invalid wavelength" << endl;
|
---|
280 | return;
|
---|
281 | }*/
|
---|
282 |
|
---|
283 | if (transmission.GetN()==0)
|
---|
284 | return 0;
|
---|
285 |
|
---|
286 | for (int i=0; i<transmission.GetN(); i++)
|
---|
287 | {
|
---|
288 | // Correct transmission for Fresnel reflection on the surface
|
---|
289 | const double lambda = transmission.GetX()[i];;
|
---|
290 |
|
---|
291 | double trans = transmission.GetY()[i];
|
---|
292 | if (trans>1)
|
---|
293 | {
|
---|
294 | *fLog << err << "Transmission larger than 1." << endl;
|
---|
295 | return -1;
|
---|
296 | }
|
---|
297 |
|
---|
298 | if (correction)
|
---|
299 | {
|
---|
300 | // Something like this is requried if correction
|
---|
301 | // for optical boundaries is necessary
|
---|
302 | const double n0 = MFresnelLens::RefractiveIndex(lambda);
|
---|
303 |
|
---|
304 | // FIXME: Make N_air a variable
|
---|
305 | const double r0 = (n0-1.0003)/(n0+1.0003);
|
---|
306 | const double r2 = r0*r0;
|
---|
307 |
|
---|
308 | trans *= (1+r2)*(1+r2);
|
---|
309 |
|
---|
310 | if (trans>1)
|
---|
311 | {
|
---|
312 | *fLog << warn << "Transmission at " << lambda << "nm (" << trans << ") after Fresnel correction larger than 1." << endl;
|
---|
313 | trans = 1;
|
---|
314 | }
|
---|
315 | }
|
---|
316 |
|
---|
317 | // convert to absorption length (FIMXE: Sanity check)
|
---|
318 | transmission.GetY()[i] = -thickness/log(trans>0.999 ? 0.999 : trans);
|
---|
319 | }
|
---|
320 |
|
---|
321 | fAbsorptionLength = MSpline3(transmission);
|
---|
322 |
|
---|
323 | return fAbsorptionLength.GetNp();
|
---|
324 | }
|
---|
325 |
|
---|
326 | Int_t MFresnelLens::ReadEnv(const TEnv &env, TString prefix, Bool_t print)
|
---|
327 | {
|
---|
328 | Bool_t rc = kFALSE;
|
---|
329 |
|
---|
330 | if (IsEnvDefined(env, prefix, "SurfaceRoughness", print))
|
---|
331 | {
|
---|
332 | rc = kTRUE;
|
---|
333 | if (!GetEnvValue(env, prefix, "SurfaceRoughness", fPSF))
|
---|
334 | return kERROR;
|
---|
335 | }
|
---|
336 |
|
---|
337 | const int correction = GetEnvValue(env, prefix, "Transmission.FresnelCorrection", -1);
|
---|
338 | const float thickness = GetEnvValue(env, prefix, "Transmission.Thickness", -1.0); // [cm]
|
---|
339 | const TString fname = GetEnvValue(env, prefix, "Transmission.FileName", "");
|
---|
340 |
|
---|
341 | const bool correction_valid = correction>=0;
|
---|
342 | const bool thickness_valid = thickness>0;
|
---|
343 | const bool fname_valid = !fname.IsNull();
|
---|
344 |
|
---|
345 | if (!correction_valid && !thickness_valid && !fname_valid)
|
---|
346 | return rc;
|
---|
347 |
|
---|
348 | if (correction_valid && thickness_valid && fname_valid)
|
---|
349 | return ReadTransmission(fname, thickness, correction) >= 0 || rc;
|
---|
350 |
|
---|
351 | *fLog << err << "Reading transmission file required FileName, Thickness and FresnelCorrection." << endl;
|
---|
352 | return kERROR;
|
---|
353 | }
|
---|
354 |
|
---|
355 | // ==========================================================================
|
---|
356 |
|
---|
357 | // --------------------------------------------------------------------------
|
---|
358 | //
|
---|
359 | // Refractive Index of PMMA, according to
|
---|
360 | // https://refractiveindex.info/?shelf=organic&book=poly(methyl_methacrylate)&page=Szczurowski
|
---|
361 | //
|
---|
362 | // n^2-1=\frac{0.99654 l^2}{l^2-0.00787}+\frac{0.18964 l^2}{l^2-0.02191}+\frac{0.00411 l^2}{l^2-3.85727}
|
---|
363 | //
|
---|
364 | // Returns the refractive index n as a function of wavelength (in nanometers)
|
---|
365 | //
|
---|
366 | double MFresnelLens::RefractiveIndex(double lambda)
|
---|
367 | {
|
---|
368 | const double l2 = lambda*lambda;
|
---|
369 |
|
---|
370 | const double c0 = 0.99654/(1-0.00787e6/l2);
|
---|
371 | const double c1 = 0.18964/(1-0.02191e6/l2);
|
---|
372 | const double c2 = 0.00411/(1-3.85727e6/l2);
|
---|
373 |
|
---|
374 | return sqrt(1+c0+c1+c2);
|
---|
375 | }
|
---|
376 |
|
---|
377 | // --------------------------------------------------------------------------
|
---|
378 | //
|
---|
379 | // A Fresnel lens with parabolic surface calculated with the sagittag
|
---|
380 | // function (k=-1) and a correction for the thickness of the lens
|
---|
381 | // on the curvature. See also PhD thesis, Tim Niggemann ch. 7.1.1.
|
---|
382 | //
|
---|
383 | // see also W.J.Smith, Modern Optical Engineering, 2.8 The "Thin Lens"
|
---|
384 | // 1/f = (n-1)/radius Eq. 2.36 with thickness t = 0
|
---|
385 | // bfl = f Eq. 2.37 and R2 = inf (c2 = 0)
|
---|
386 | //
|
---|
387 | // Parameters are:
|
---|
388 | // The distance from the center r
|
---|
389 | // The focal length to be achieved F
|
---|
390 | // The refractive index of the outer medium (usually air) n0
|
---|
391 | // The refractive index of the lens material (e.g. PMMA) n1
|
---|
392 | // The thichness of the lens d
|
---|
393 | //
|
---|
394 | // r, F and d have to be in the same units.
|
---|
395 | //
|
---|
396 | // Return the slope angle alpha [rad]. The Slope angle is defined with
|
---|
397 | // respect to the plane of the lens. (0 at the center, decreasing
|
---|
398 | // with increasing radial distance)
|
---|
399 | //
|
---|
400 | double MFresnelLens::SlopeAngleParabolic(double r, double F, double n0, double n1, double d)
|
---|
401 | {
|
---|
402 | // In the datasheet, it looks as if F is calculated
|
---|
403 | // towards the center of the lens. It seems things are more
|
---|
404 | // consistent if the thickness correction in caluating the
|
---|
405 | // slope angle is omitted and the focal distance is measured
|
---|
406 | // from the entrance of the lens => FIXME: To be checked
|
---|
407 | const double rn = n1/n0;
|
---|
408 | const double c = (rn - 1) * (F + d/rn); // FIXME: try and error with a large d
|
---|
409 | return -atan(r/c);
|
---|
410 |
|
---|
411 | // F = 50.21
|
---|
412 | // d= 10 d=20
|
---|
413 | // -: 47 43.7
|
---|
414 | // 0: 53.5 57.0
|
---|
415 | // +: 60.3 70.3
|
---|
416 | }
|
---|
417 |
|
---|
418 | // --------------------------------------------------------------------------
|
---|
419 | //
|
---|
420 | // A Fresnel lens with an optimized parabolic surface calculated with
|
---|
421 | // the sagittag function (k=-1) and fitted coefficients according
|
---|
422 | // to Master thesis, Eichler.
|
---|
423 | //
|
---|
424 | // Note that for this setup other parameters must be fixed
|
---|
425 | //
|
---|
426 | // Parameters are:
|
---|
427 | // The distance from the center r
|
---|
428 | //
|
---|
429 | // r is in cm.
|
---|
430 | //
|
---|
431 | // Return the slope angle alpha [rad]. The Slope angle is defined with
|
---|
432 | // respect to the plane of the lens. (0 at the center, decreasing
|
---|
433 | // with increasing radial distance)
|
---|
434 | //
|
---|
435 | double MFresnelLens::SlopeAngleAspherical(double r)
|
---|
436 | {
|
---|
437 | // Master, Eichler [r/cm]
|
---|
438 | return -atan( r/26.47
|
---|
439 | +2*1.18e-4 * 1e1*r
|
---|
440 | +4*1.34e-9 * 1e3*r*r*r
|
---|
441 | +6*9.52e-15 * 1e5*r*r*r*r*r
|
---|
442 | -8*2.04e-19 * 1e7*r*r*r*r*r*r*r);
|
---|
443 | }
|
---|
444 |
|
---|
445 | // --------------------------------------------------------------------------
|
---|
446 | //
|
---|
447 | // Ideal angle of the Fresnel surfaces at a distance r from the center
|
---|
448 | // to achieve a focal distance F for a positive Fresnel lens made
|
---|
449 | // from a material with a refractive index n.
|
---|
450 | // A positive Fresnel lens is one which focuses light from infinity
|
---|
451 | // (the side with the grooves) to a point (the flat side of the lens).
|
---|
452 | //
|
---|
453 | // The calculation follows
|
---|
454 | // https://shodhganga.inflibnet.ac.in/bitstream/10603/131007/13/09_chapter%202.pdf
|
---|
455 | // Here, a thin lens is assumed
|
---|
456 | //
|
---|
457 | // sin(omega) = r / sqrt(r^2+F^2)
|
---|
458 | // tan(alpha) = sin(omega) / [ 1 - sqrt(n^2-sin(omega)^2) ]
|
---|
459 | //
|
---|
460 | // Return alpha [rad] as a function of the radial distance r, the
|
---|
461 | // focal length F and the refractive index n. r and F have to have
|
---|
462 | // the same units. The Slope angle is defined with respect to the plane
|
---|
463 | // of the lens. (0 at the center, decreasing with increasing radial
|
---|
464 | // distance)
|
---|
465 | //
|
---|
466 | double MFresnelLens::SlopeAngleOptimized(double r, double F, double n)
|
---|
467 | {
|
---|
468 | // Use F+d/2
|
---|
469 | double so = r / sqrt(r*r + F*F);
|
---|
470 | return atan(so / (1-sqrt(n*n - so*so))); // alpha<0, Range [0deg; -50deg]
|
---|
471 | }
|
---|
472 |
|
---|
473 | // --------------------------------------------------------------------------
|
---|
474 | //
|
---|
475 | // Currently calles SlopeAngleParabolic(r, F, 1, n, d)
|
---|
476 | //
|
---|
477 | double MFresnelLens::SlopeAngle(double r, double F, double n, double d)
|
---|
478 | {
|
---|
479 | return SlopeAngleParabolic(r, F, 1.0003, n, d);
|
---|
480 | }
|
---|
481 |
|
---|
482 |
|
---|
483 | //
|
---|
484 | // Draft angle of the Orafol SC943 According to the thesis of Eichler
|
---|
485 | // and NiggemannTim Niggemann:
|
---|
486 | //
|
---|
487 | // The surface of the lens follows the shape of a parabolic lens to compensate spherical aberration
|
---|
488 | // Draft angle: psi(r) = 3deg + r * 0.0473deg/mm
|
---|
489 | //
|
---|
490 | // The draft angle is returned in radians and is defined w.r.t. to the
|
---|
491 | // normal of the lens surface. (almost 90deg at the center,
|
---|
492 | // decreasing with increasing radial distance)
|
---|
493 | //
|
---|
494 | double MFresnelLens::DraftAngle(double r)
|
---|
495 | {
|
---|
496 | return (3 + r*0.473)*TMath::DegToRad(); // Range [0deg; 15deg]
|
---|
497 | }
|
---|
498 |
|
---|
499 | // ==========================================================================
|
---|
500 |
|
---|
501 | // --------------------------------------------------------------------------
|
---|
502 | //
|
---|
503 | // Return the total Area of all mirrors. Note, that it is recalculated
|
---|
504 | // with any call.
|
---|
505 | //
|
---|
506 | Double_t MFresnelLens::GetA() const
|
---|
507 | {
|
---|
508 | return fMaxR*fMaxR*TMath::Pi();
|
---|
509 | }
|
---|
510 |
|
---|
511 | // --------------------------------------------------------------------------
|
---|
512 | //
|
---|
513 | // Check with a rough estimate whether a photon can hit the reflector.
|
---|
514 | //
|
---|
515 | Bool_t MFresnelLens::CanHit(const MQuaternion &p) const
|
---|
516 | {
|
---|
517 | // p is given in the reflectory coordinate frame. This is meant as a
|
---|
518 | // fast check without lengthy calculations to omit all photons which
|
---|
519 | // cannot hit the reflector at all
|
---|
520 | return p.R2()<fMaxR*fMaxR;
|
---|
521 | }
|
---|
522 |
|
---|
523 | // ==========================================================================
|
---|
524 |
|
---|
525 | // FIXME: The rays could be 'reflected' inside the material
|
---|
526 | // (even though its going out) or vice versa
|
---|
527 | static double RandomTheta(double psf)
|
---|
528 | {
|
---|
529 | return psf>0 ? MMath::RndmPSF(psf)/2 : 0;
|
---|
530 | }
|
---|
531 |
|
---|
532 | // FIXME: The rays could be 'reflected' inside the material
|
---|
533 | // (even though its going out) or vice versa
|
---|
534 | static double RandomPhi(double r, double psf)
|
---|
535 | {
|
---|
536 | return psf>0 ? MMath::RndmPSF(psf)/2 : 0;
|
---|
537 | }
|
---|
538 |
|
---|
539 |
|
---|
540 | // --------------------------------------------------------------------------
|
---|
541 | //
|
---|
542 | // Calculate the intersection point beweteen a line defined by the position p
|
---|
543 | // and the direction u and a cone defined by the object cone.
|
---|
544 | //
|
---|
545 | // Z: position of peak of cone
|
---|
546 | // theta: opening angle of cone
|
---|
547 | //
|
---|
548 | // Distance r of cone surface at given z from z-axis
|
---|
549 | // r_cone(z) = (Z-z)*tan(theta)
|
---|
550 | //
|
---|
551 | // Equalition of line
|
---|
552 | // (x) (p.x) (u.x/u.z)
|
---|
553 | // (y) = (p.y) + dz * (u.y/u.z)
|
---|
554 | // (z) (p.z) ( 1 )
|
---|
555 | //
|
---|
556 | // Normalization
|
---|
557 | // U.x := u.x/u.z
|
---|
558 | // U.y := u.y/u.z
|
---|
559 | //
|
---|
560 | // Distance of line at given z from z-axis
|
---|
561 | // r_line(z) = sqrt(x^2 + y^2) = sqrt( (p.x+dz*u.x)^2 + (p.y+dz*u.y)^2) with dz = z-p.z
|
---|
562 | //
|
---|
563 | // Equation to be solved
|
---|
564 | // r_cone(z) = r_line(z)
|
---|
565 | //
|
---|
566 | // Solved with wxmaxima:
|
---|
567 | //
|
---|
568 | // [0] solve((px+(z-pz)*Ux)^2+(py+(z-pz)*Uy)^2= ((Z-z)*t)^2, z);
|
---|
569 | //
|
---|
570 | // z= (sqrt(((Uy^2+Ux^2)*pz^2+(-2*Uy*py-2*Ux*px-2*Z*Uy^2-2*Z*Ux^2)*pz+py^2+2*Z*Uy*py+px^2+2*Z*Ux*px+Z^2*Uy^2+Z^2*Ux^2)*t^2-Ux^2*py^2+2*Ux*Uy*px*py-Uy^2*px^2)+Z*t^2+(-Uy^2-Ux^2)*pz+Uy*py+Ux*px)/(t^2-Uy^2-Ux^2),
|
---|
571 | // z=-(sqrt(((Uy^2+Ux^2)*pz^2+(-2*Uy*py-2*Ux*px-2*Z*Uy^2-2*Z*Ux^2)*pz+py^2+2*Z*Uy*py+px^2+2*Z*Ux*px+Z^2*Uy^2+Z^2*Ux^2)*t^2-Ux^2*py^2+2*Ux*Uy*px*py-Uy^2*px^2)-Z*t^2+( Uy^2+Ux^2)*pz-Uy*py-Ux*px)/(t^2-Uy^2-Ux^2)
|
---|
572 | //
|
---|
573 | double MFresnelLens::CalcIntersection(const MQuaternion &p, const MQuaternion &u, const Cone &cone) const
|
---|
574 | {
|
---|
575 | const double &Z = cone.z;
|
---|
576 |
|
---|
577 | const double Ux = u.X()/u.Z();
|
---|
578 | const double Uy = u.Y()/u.Z();
|
---|
579 |
|
---|
580 | const double px = p.X();
|
---|
581 | const double py = p.Y();
|
---|
582 | const double pz = p.Z();
|
---|
583 |
|
---|
584 | //const double &t = cone.tan_theta;
|
---|
585 | const double &t2 = cone.tan_theta2;
|
---|
586 |
|
---|
587 | const double Ur2 = Ux*Ux + Uy*Uy;
|
---|
588 | const double pr2 = px*px + py*py;
|
---|
589 | const double Up2 = Ux*px + Uy*py;
|
---|
590 |
|
---|
591 | const double cr2 = Ux*py - Uy*px;
|
---|
592 |
|
---|
593 | const double a = t2 - Ur2;
|
---|
594 | const double b = Ur2*pz - Up2 - Z*t2;
|
---|
595 |
|
---|
596 | const double h = Z-pz;
|
---|
597 | const double h2 = h*h;
|
---|
598 |
|
---|
599 | // [ -b +-sqrt(b^2 - 4 ac) ] / [ 2a ]
|
---|
600 |
|
---|
601 | const double radix = (Ur2*h2 + 2*Up2*h + pr2)*t2 - cr2*cr2;
|
---|
602 | if (radix<0)
|
---|
603 | return 0;
|
---|
604 |
|
---|
605 | const double sqrt_radix = sqrt(radix);
|
---|
606 |
|
---|
607 | const double dz[2] =
|
---|
608 | {
|
---|
609 | (+sqrt_radix - b)/a,
|
---|
610 | (-sqrt_radix - b)/a
|
---|
611 | };
|
---|
612 |
|
---|
613 | // Return the closest solution inside the allowed range
|
---|
614 | // which is in the direction of movement
|
---|
615 |
|
---|
616 | const double &H = cone.h;
|
---|
617 |
|
---|
618 | const bool is_inside0 = dz[0]>=H && dz[0]<0;
|
---|
619 | const bool is_inside1 = dz[1]>=H && dz[1]<0;
|
---|
620 |
|
---|
621 | // FIXME: Simplify!
|
---|
622 | if (!is_inside0 && !is_inside1)
|
---|
623 | return 0;
|
---|
624 |
|
---|
625 | // Only dz[0] is in the right z-range
|
---|
626 | if (is_inside0 && !is_inside1)
|
---|
627 | {
|
---|
628 | // Check if dz[0] is in the right direction
|
---|
629 | if ((u.Z()>=0 && dz[0]>=p.Z()) ||
|
---|
630 | (u.Z()< 0 && dz[0]< p.Z()))
|
---|
631 | return dz[0];
|
---|
632 |
|
---|
633 | return 0;
|
---|
634 | }
|
---|
635 |
|
---|
636 | // Only dz[1] is in the right z-range
|
---|
637 | if (!is_inside0 && is_inside1)
|
---|
638 | {
|
---|
639 | // Check if dz[1] is in the right direction
|
---|
640 | if ((u.Z()>=0 && dz[1]>=p.Z()) ||
|
---|
641 | (u.Z()< 0 && dz[1]< p.Z()))
|
---|
642 | return dz[1];
|
---|
643 |
|
---|
644 | return 0;
|
---|
645 | }
|
---|
646 |
|
---|
647 | /*
|
---|
648 | if (is_inside0^is_inside1)
|
---|
649 | {
|
---|
650 | if (u.Z()>=0)
|
---|
651 | return dz[0]>p.Z() ? dz[0] : dz[1];
|
---|
652 | else
|
---|
653 | return dz[0]<p.Z() ? dz[0] : dz[1];
|
---|
654 | }*/
|
---|
655 |
|
---|
656 |
|
---|
657 | // dz[0] and dz[1] are in the right range
|
---|
658 | // return the surface which is hit first
|
---|
659 |
|
---|
660 | // moving upwards
|
---|
661 | if (u.Z()>=0)
|
---|
662 | {
|
---|
663 | // Both solution could be correct
|
---|
664 | if (dz[0]>=p.Z() && dz[1]>=p.Z())
|
---|
665 | return std::min(dz[0], dz[1]);
|
---|
666 |
|
---|
667 | // only one solution can be correct
|
---|
668 | return dz[0]>=p.Z() ? dz[0] : dz[1];
|
---|
669 | }
|
---|
670 | else
|
---|
671 | {
|
---|
672 | // Both solution could be correct
|
---|
673 | if (dz[0]<p.Z() && dz[1]<p.Z())
|
---|
674 | return std::max(dz[0], dz[1]);
|
---|
675 |
|
---|
676 | // only one solution can be correct
|
---|
677 | return dz[0]<p.Z() ? dz[0] : dz[1];
|
---|
678 | }
|
---|
679 | }
|
---|
680 |
|
---|
681 | // --------------------------------------------------------------------------
|
---|
682 | //
|
---|
683 | // Find the peak (draft+slope) which will be hit by the photon which
|
---|
684 | // is defined by position p and direction u. ix gives the index of the groove
|
---|
685 | // to originate the search from.
|
---|
686 | //
|
---|
687 | // Returns the index of the groove to which the surface belongs, -1 if no
|
---|
688 | // matching surface was found.
|
---|
689 | //
|
---|
690 | int MFresnelLens::FindPeak(size_t ix, const MQuaternion &p, const MQuaternion &u) const
|
---|
691 | {
|
---|
692 | // ---------------------------
|
---|
693 | // check for first groove first
|
---|
694 | if (ix==0)
|
---|
695 | {
|
---|
696 | const auto test = p.fVectorPart + (fGrooves[0].slope.h-p.Z())/u.Z()*u.fVectorPart;
|
---|
697 | if (test.XYvector().Mod()<fGrooves[0].r)
|
---|
698 | return 0;
|
---|
699 | }
|
---|
700 |
|
---|
701 | // r = sqrt( (px + t*ux) + (py + t*uy)^2 )
|
---|
702 | // dr/dt = (2*uy*(dz*uy+py)+2*ux*(dz*ux+px))/(2*sqrt((dz*uy+py)^2+(dz*ux+px)^2))
|
---|
703 | // dr/dt = (uy*py + ux*px)/sqrt(py^2+px^2)
|
---|
704 | const bool outgoing = u.X()*p.X() + u.Y()*p.Y() > 0; // r is (at least locally) increasing
|
---|
705 |
|
---|
706 | // ---------------------------
|
---|
707 | const double Ux = u.X()/u.Z();
|
---|
708 | const double Uy = u.Y()/u.Z();
|
---|
709 |
|
---|
710 | const double px = p.X();
|
---|
711 | const double py = p.Y();
|
---|
712 | const double pz = p.Z();
|
---|
713 |
|
---|
714 | const double Ur2 = Ux*Ux + Uy*Uy;
|
---|
715 | const double cr2 = Ux*py - Uy*px;
|
---|
716 | const double pr2 = px*px + py*py;
|
---|
717 | const double Up2 = Ux*px + Uy*py;
|
---|
718 |
|
---|
719 | //for (int i=1; i<fGrooves.size(); i++)
|
---|
720 |
|
---|
721 | // To speed up the search, search first along the radial moving direction of
|
---|
722 | // the photon. If that was not successfull, try in the opposite direction.
|
---|
723 | // FIXME: This could still fail in some very rare cases, for some extremely flat trajectories
|
---|
724 | for (int j=0; j<2; j++)
|
---|
725 | {
|
---|
726 | const bool first = j==0;
|
---|
727 |
|
---|
728 | const int step = outgoing ^ !first ? 1 : -1;
|
---|
729 | const int end = outgoing ^ !first ? fGrooves.size() : 1;
|
---|
730 | const int beg = std::max<size_t>(j==0 ? ix : ix+step, 1);
|
---|
731 |
|
---|
732 | for (int i=beg; i!=end; i+=step)
|
---|
733 | {
|
---|
734 | const Groove &groove1 = fGrooves[i-1];
|
---|
735 | const Groove &groove2 = fGrooves[i];
|
---|
736 |
|
---|
737 | const double &z1 = groove1.draft.h;
|
---|
738 | const double &z2 = groove2.slope.h;
|
---|
739 |
|
---|
740 | const double &r1 = groove1.r;
|
---|
741 | const double &r2 = groove2.r;
|
---|
742 |
|
---|
743 | Cone cone;
|
---|
744 | cone.tan_theta = -(r2-r1)/(z2-z1);
|
---|
745 | cone.tan_theta2 = cone.tan_theta*cone.tan_theta;
|
---|
746 | cone.z = z1 + r1/cone.tan_theta;
|
---|
747 |
|
---|
748 | const double &Z = cone.z;
|
---|
749 | const double &t2 = cone.tan_theta2;
|
---|
750 |
|
---|
751 | const double a = t2 - Ur2;
|
---|
752 | const double b = Ur2*pz - Up2 - Z*t2;
|
---|
753 |
|
---|
754 | const double h = Z-pz;
|
---|
755 | const double h2 = h*h;
|
---|
756 |
|
---|
757 | // [ -b +-sqrt(b^2 - 4 ac) ] / [ 2a ]
|
---|
758 |
|
---|
759 | const double radix = (Ur2*h2 + 2*Up2*h + pr2)*t2 - cr2*cr2;
|
---|
760 | if (radix<0)
|
---|
761 | continue;
|
---|
762 |
|
---|
763 | const double sqrt_radix = sqrt(radix);
|
---|
764 |
|
---|
765 | const double dz[2] =
|
---|
766 | {
|
---|
767 | (+sqrt_radix - b)/a,
|
---|
768 | (-sqrt_radix - b)/a
|
---|
769 | };
|
---|
770 |
|
---|
771 | if (dz[0]>=z2 && dz[0]<=z1)
|
---|
772 | return i;
|
---|
773 |
|
---|
774 | if (dz[1]>=z2 && dz[1]<=z1)
|
---|
775 | return i;
|
---|
776 | }
|
---|
777 | }
|
---|
778 |
|
---|
779 | return -1;
|
---|
780 | }
|
---|
781 |
|
---|
782 | // --------------------------------------------------------------------------
|
---|
783 | //
|
---|
784 | // If no transmission was given returns true. Otherwaise calculates the
|
---|
785 | // absorption length for a flight time dt in the material and a photon
|
---|
786 | // with wavelength lambda. The flight time is converted to a geometrical
|
---|
787 | // using the speed of light in the medium.
|
---|
788 | //
|
---|
789 | // Returns true if the poton passed, false if it was absorbed.
|
---|
790 | //
|
---|
791 | bool MFresnelLens::Transmission(double dt, double lambda) const
|
---|
792 | {
|
---|
793 | if (fAbsorptionLength.GetNp()==0)
|
---|
794 | return true;
|
---|
795 |
|
---|
796 | // FIXME: Speed up!
|
---|
797 | const double alpha = fAbsorptionLength.Eval(lambda);
|
---|
798 |
|
---|
799 | // We only have the travel time, thus we have to convert back to distance
|
---|
800 | // Note that the transmission coefficients are w.r.t. to geometrical
|
---|
801 | // distance not light-travel distance. Thus the distance has to be corrected
|
---|
802 | // for the corresponding refractive index of the material.
|
---|
803 | const double cm = dt/fVc;
|
---|
804 |
|
---|
805 | const double trans = exp(-cm/alpha);
|
---|
806 | return gRandom->Uniform()<trans;
|
---|
807 | }
|
---|
808 |
|
---|
809 | /*
|
---|
810 | // surface=0 : incoming ray
|
---|
811 | // surface=1 : slope
|
---|
812 | // surface=2 : draft
|
---|
813 | // surface=3 : bottom
|
---|
814 | int MFresnelLens::EnterGroove(int surface, double n0, double lambda, MQuaternion &pos, MQuaternion &dir) const
|
---|
815 | {
|
---|
816 | const double rx = pos.R();
|
---|
817 |
|
---|
818 | if (surface==3)
|
---|
819 | {
|
---|
820 | //cout << "Bottom as origin invalid" << endl;
|
---|
821 | throw -1;
|
---|
822 |
|
---|
823 | }
|
---|
824 | if (rx>=fR)
|
---|
825 | {
|
---|
826 | //cout << "Left the lens radius (enter)" << endl;
|
---|
827 | throw -2;
|
---|
828 | }
|
---|
829 | //if (dir.Z()>0)
|
---|
830 | //{
|
---|
831 | // cout << "Upgoing, outside of the material" << endl;
|
---|
832 | // PropagateZ(pos, dir, dir.Z()>0 ? 3 : -3);
|
---|
833 | // return -1;
|
---|
834 | //}
|
---|
835 |
|
---|
836 |
|
---|
837 | // Calculate the ordinal number of the groove correpsonding to rx
|
---|
838 | const int ix = TMath::FloorNint(rx/fW);
|
---|
839 |
|
---|
840 | // Photons was just injected (test both surfaces) or came from the other surface
|
---|
841 | if (surface==0 || surface==2)
|
---|
842 | {
|
---|
843 | // Get the possible intersection point with the slope angle
|
---|
844 | const double z1 = CalcIntersection(pos, dir, fGrooves[ix].slope);
|
---|
845 |
|
---|
846 | // We hit the slope angle
|
---|
847 | if (z1!=0)
|
---|
848 | {
|
---|
849 | // Move photon to new hit position
|
---|
850 | pos.PropagateZ(dir, z1);
|
---|
851 |
|
---|
852 | if (fSlopeAbsorption)
|
---|
853 | throw -100;
|
---|
854 |
|
---|
855 | // Get the normal vector of the surface which was hit
|
---|
856 | const VectorNorm norm(fGrooves[ix].slope.theta_norm+RandomTheta(fPSF),
|
---|
857 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
---|
858 |
|
---|
859 | // Get the optical transition of the direction vector
|
---|
860 | const int ret = MOptics::ApplyTransition(dir, norm, 1, n0);
|
---|
861 |
|
---|
862 | // Transition was Reflection - try again
|
---|
863 | if (ret==1 || ret==2)
|
---|
864 | return EnterGroove(1, n0, lambda, pos, dir)+1;
|
---|
865 |
|
---|
866 | // Transition was Refraction - enter
|
---|
867 | if (ret>=3)
|
---|
868 | return LeavePeak(1, n0, lambda, pos, dir, pos.T())+1;
|
---|
869 |
|
---|
870 | // Error occured (see ApplyTransition for details)
|
---|
871 | //cout << "ERR[TIR1]" << endl;
|
---|
872 | throw -3;
|
---|
873 | }
|
---|
874 | }
|
---|
875 |
|
---|
876 | // Photons was just injected (test both surfaces) or came from the other surface
|
---|
877 | if (surface==0 || surface==1)
|
---|
878 | {
|
---|
879 | const double z2 = CalcIntersection(pos, dir, fGrooves[ix].draft);
|
---|
880 |
|
---|
881 | // We hit the draft angle
|
---|
882 | if (z2!=0)
|
---|
883 | {
|
---|
884 | // Move photon to new hit position
|
---|
885 | pos.PropagateZ(dir, z2);
|
---|
886 |
|
---|
887 | if (fDraftAbsorption)
|
---|
888 | throw -101;
|
---|
889 |
|
---|
890 | // Get the normal vector of the surface which was hit
|
---|
891 | const VectorNorm norm(fGrooves[ix].draft.theta_norm+RandomTheta(fPSF),
|
---|
892 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
---|
893 |
|
---|
894 | // Get the optical transition of the direction vector
|
---|
895 | const int ret = MOptics::ApplyTransition(dir, norm, 1, n0);
|
---|
896 |
|
---|
897 | // Transition was Reflection - try again
|
---|
898 | if (ret==1 || ret==2)
|
---|
899 | return EnterGroove(2, n0, lambda, pos, dir)+1;
|
---|
900 |
|
---|
901 | // Transition was Refraction - enter
|
---|
902 | if (ret>=3)
|
---|
903 | return -LeavePeak(2, n0, lambda, pos, dir, pos.T())+1;
|
---|
904 |
|
---|
905 | // Error occured (see ApplyTransition for details)
|
---|
906 | //cout << "ERR[TIR2]" << endl;
|
---|
907 | throw -4;
|
---|
908 | }
|
---|
909 | }
|
---|
910 |
|
---|
911 | if (dir.Z()>0)
|
---|
912 | {
|
---|
913 | //cout << "Upgoing, outside of the material" << endl;
|
---|
914 | //pos.PropagateZ(dir, dir.Z()>0 ? 3 : -3);
|
---|
915 | throw -5;
|
---|
916 | }
|
---|
917 |
|
---|
918 | // The ray has left the peak at the bottom(?)
|
---|
919 | //cout << "ERR[N/A]" << endl;
|
---|
920 | throw -6;
|
---|
921 | }
|
---|
922 | */
|
---|
923 |
|
---|
924 |
|
---|
925 | // surface=0 : incoming ray
|
---|
926 | // surface=1 : slope
|
---|
927 | // surface=2 : draft
|
---|
928 | // surface=3 : bottom
|
---|
929 | int MFresnelLens::EnterGroove(int surface, double n0, MQuaternion &pos, MQuaternion &dir) const
|
---|
930 | {
|
---|
931 | const double rx = pos.R();
|
---|
932 |
|
---|
933 | if (surface==kExitSurface)
|
---|
934 | throw raytrace_error(kEnter+kInvalidOrigin, surface, -1,
|
---|
935 | "EnterGroove - Bottom as origin invalid");
|
---|
936 |
|
---|
937 | if (rx>=fR) // This is an error as the direction vector is now invalid
|
---|
938 | throw raytrace_error(kEnter+kOutsideRadius, surface, -1,
|
---|
939 | "EnterGroove - Surface hit outside allowed radius");
|
---|
940 |
|
---|
941 | /*
|
---|
942 | if (dir.Z()>0)
|
---|
943 | return -1;
|
---|
944 | }*/
|
---|
945 |
|
---|
946 |
|
---|
947 | // FIXME: There is a very tiny chance that a ray hits the same surface twice for
|
---|
948 | // very horizontal rays. Checking this needs to make sure that the same
|
---|
949 | // solution is not just found again.
|
---|
950 |
|
---|
951 | // Calculate the ordinal number of the groove correpsonding to rx
|
---|
952 | const int ix = TMath::FloorNint(rx/fW);
|
---|
953 |
|
---|
954 | // Photons was just injected (test both surfaces) or came from the other surface
|
---|
955 | if (surface==kEntrySurface || surface==kDraftSurface)
|
---|
956 | {
|
---|
957 | // Get the possible intersection point with the slope angle
|
---|
958 | const double z1 = CalcIntersection(pos, dir, fGrooves[ix].slope);
|
---|
959 |
|
---|
960 | // We hit the slope angle
|
---|
961 | if (z1!=0)
|
---|
962 | {
|
---|
963 | // Move photon to new hit position
|
---|
964 | pos.PropagateZ(dir, z1);
|
---|
965 | if (fSlopeAbsorption)
|
---|
966 | throw raytrace_user(kEnter+kAbsorbed, surface, kSlopeSurface,
|
---|
967 | "EnterGroove - Photon absorbed by slope surface");
|
---|
968 |
|
---|
969 | // Get the normal vector of the surface which was hit
|
---|
970 | const VectorNorm norm(fGrooves[ix].slope.theta_norm+RandomTheta(fPSF),
|
---|
971 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
---|
972 |
|
---|
973 | // Get the optical transition of the direction vector
|
---|
974 | const int ret = MOptics::ApplyTransition(dir, norm, 1, n0, fFresnelReflection);
|
---|
975 |
|
---|
976 | // Transition was Reflection - try again
|
---|
977 | if (ret==1 || ret==2)
|
---|
978 | return kSlopeSurface;//EnterGroove(1, n0, lambda, pos, dir)+1;
|
---|
979 |
|
---|
980 | // Transition was Refraction - enter
|
---|
981 | if (ret>=3)
|
---|
982 | return -kSlopeSurface;//LeavePeak(1, n0, lambda, pos, dir, pos.T())+1;
|
---|
983 |
|
---|
984 | // Error occured (see ApplyTransition for details)
|
---|
985 | throw raytrace_error(kEnter+kTransitionError, surface, kSlopeSurface,
|
---|
986 | "EnterGroove - MOptics::ApplyTransition failed for slope surface");
|
---|
987 | }
|
---|
988 | }
|
---|
989 |
|
---|
990 | // Photons was just injected (test both surfaces) or came from the other surface
|
---|
991 | if (surface==kEntrySurface || surface==kSlopeSurface)
|
---|
992 | {
|
---|
993 | const double z2 = CalcIntersection(pos, dir, fGrooves[ix].draft);
|
---|
994 |
|
---|
995 | // We hit the draft angle
|
---|
996 | if (z2!=0)
|
---|
997 | {
|
---|
998 | // Move photon to new hit position
|
---|
999 | pos.PropagateZ(dir, z2);
|
---|
1000 | if (fDraftAbsorption)
|
---|
1001 | throw raytrace_user(kEnter+kAbsorbed, surface, kDraftSurface,
|
---|
1002 | "EnterGroove - Photon absorbed by draft surface");
|
---|
1003 |
|
---|
1004 | // Get the normal vector of the surface which was hit
|
---|
1005 | const VectorNorm norm(fGrooves[ix].draft.theta_norm+RandomTheta(fPSF),
|
---|
1006 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
---|
1007 |
|
---|
1008 | // Get the optical transition of the direction vector
|
---|
1009 | const int ret = MOptics::ApplyTransition(dir, norm, 1, n0, fFresnelReflection);
|
---|
1010 |
|
---|
1011 | // Transition was Reflection - try again
|
---|
1012 | if (ret==1 || ret==2)
|
---|
1013 | return kDraftSurface;//EnterGroove(2, n0, lambda, pos, dir)+1;
|
---|
1014 |
|
---|
1015 | // Transition was Refraction - enter
|
---|
1016 | if (ret>=3)
|
---|
1017 | return -kDraftSurface;//LeavePeak(2, n0, lambda, pos, dir, pos.T())+1;
|
---|
1018 |
|
---|
1019 | // Error occured (see ApplyTransition for details)
|
---|
1020 | throw raytrace_error(kEnter+kTransitionError, surface, kDraftSurface,
|
---|
1021 | "EnterGroove - MOptics::ApplyTransition failed for draft surface");
|
---|
1022 | }
|
---|
1023 | }
|
---|
1024 |
|
---|
1025 | if (dir.Z()>0)
|
---|
1026 | {
|
---|
1027 | // We have missed both surfaces and we are upgoing...
|
---|
1028 | // ... ray can be discarded
|
---|
1029 | throw raytrace_info(kEnter+kStrayUpgoing, surface, kNoSurface,
|
---|
1030 | "EnterGroove - Particle is upgoing and has hit no surface");
|
---|
1031 | }
|
---|
1032 |
|
---|
1033 | // The ray has left the peak at the bottom(?)
|
---|
1034 | throw raytrace_error(kEnter+kStrayDowngoing, surface, kNoSurface,
|
---|
1035 | "EnterGroove - Particle is downgoing and has hit no surface");
|
---|
1036 | }
|
---|
1037 |
|
---|
1038 | /*
|
---|
1039 | // Leave the peak from inside the material, either thought the draft surface or the
|
---|
1040 | // slope surface or the bottom connecting the valley of both
|
---|
1041 | int MFresnelLens::LeavePeak(int surface, double n0, double lambda, MQuaternion &pos, MQuaternion &dir, double T0) const
|
---|
1042 | {
|
---|
1043 | const double rx = pos.R();
|
---|
1044 |
|
---|
1045 | if (rx>=fR)
|
---|
1046 | {
|
---|
1047 | //cout << "Left the lens radius (leave)" << endl;
|
---|
1048 | throw -10;
|
---|
1049 | }
|
---|
1050 |
|
---|
1051 | if (dir.Z()>0 && surface!=3) // && surface!=4)
|
---|
1052 | {
|
---|
1053 | //cout << "Upgoing, inside of the material" << endl;
|
---|
1054 | //pos.PropagateZ(dir, dir.Z()>0 ? 3 : -3);
|
---|
1055 | throw -11;
|
---|
1056 | }
|
---|
1057 |
|
---|
1058 | if (surface!=1 && surface!=2 && surface!=3) // && surface!=4)
|
---|
1059 | {
|
---|
1060 | //cout << "Surface of origin invalid" << endl;
|
---|
1061 | throw -12;
|
---|
1062 | }
|
---|
1063 |
|
---|
1064 |
|
---|
1065 | // Calculate the ordinal number of the groove correpsonding to rx
|
---|
1066 | const int ix = TMath::FloorNint(rx/fW);
|
---|
1067 |
|
---|
1068 | // FIXME: The Z-coordinate (cone.h) is actually a line through two points!!!
|
---|
1069 |
|
---|
1070 | Cone slope = fGrooves[ix].slope;
|
---|
1071 | Cone draft = fGrooves[ix].draft;
|
---|
1072 |
|
---|
1073 | const bool is_draft = rx>fGrooves[ix].r;
|
---|
1074 | if (is_draft)
|
---|
1075 | {
|
---|
1076 | // We are in the volume under the draft angle... taking the slope from ix+1
|
---|
1077 | if (ix<fGrooves.size()-1) // FIXME: Does that make sense?
|
---|
1078 | slope = fGrooves[ix+1].slope;
|
---|
1079 | }
|
---|
1080 | else
|
---|
1081 | {
|
---|
1082 | // We are in the volume under the slope angle... taking the draft from ix-1
|
---|
1083 | if (ix>0) // FIXME: Check whether this is correct
|
---|
1084 | draft = fGrooves[ix-1].draft;
|
---|
1085 | }
|
---|
1086 |
|
---|
1087 | if (is_draft+1!=surface && (surface==1 || surface==2))
|
---|
1088 | cout << "SURFACE: " << is_draft+1 << " " << surface << endl;
|
---|
1089 |
|
---|
1090 | if (surface==3)
|
---|
1091 | {
|
---|
1092 | //cout << "Upgoing, coming from the bottom of the lens" << endl;
|
---|
1093 | // Find out which triangle (peak) the photon is going to enter
|
---|
1094 | // then proceed...
|
---|
1095 | throw -13;
|
---|
1096 | }
|
---|
1097 |
|
---|
1098 |
|
---|
1099 | // We are inside the material and downgoing, so if we come from a slope surface,
|
---|
1100 | // we can only hit a draft surface after and vice versa
|
---|
1101 | if (is_draft || surface==3)
|
---|
1102 | {
|
---|
1103 | const double z1 = CalcIntersection(pos, dir, slope);
|
---|
1104 |
|
---|
1105 | // We hit the slope angle and are currently in the volume under the draft surface
|
---|
1106 | if (z1!=0)
|
---|
1107 | {
|
---|
1108 | // Move photon to new hit position
|
---|
1109 | pos.PropagateZ(dir, z1);
|
---|
1110 |
|
---|
1111 | if (fSlopeAbsorption)
|
---|
1112 | throw -200;
|
---|
1113 |
|
---|
1114 | // Get the normal vector of the surface which was hit
|
---|
1115 | const VectorNorm norm(slope.theta_norm+RandomTheta(fPSF),
|
---|
1116 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
---|
1117 |
|
---|
1118 | // Get the optical transition of the direction vector
|
---|
1119 | const int ret = MOptics::ApplyTransition(dir, norm, n0, 1);
|
---|
1120 |
|
---|
1121 | // Transition was Reflection - try again
|
---|
1122 | if (ret==1 || ret==2)
|
---|
1123 | return LeavePeak(1, n0, lambda, pos, dir, T0)+1;
|
---|
1124 |
|
---|
1125 | // Transition was Refraction - leave
|
---|
1126 | if (ret>=3)
|
---|
1127 | {
|
---|
1128 | if (!Transmission(pos.T()-T0, lambda))
|
---|
1129 | throw -14;
|
---|
1130 |
|
---|
1131 | return EnterGroove(1, n0, lambda, pos, dir)+1;
|
---|
1132 | }
|
---|
1133 |
|
---|
1134 | // Error occured (see ApplyTransition for details)
|
---|
1135 | //cout << "ERR[TIR3]" << endl;
|
---|
1136 | throw -15;
|
---|
1137 | }
|
---|
1138 | }
|
---|
1139 |
|
---|
1140 | if (!is_draft || surface==3)
|
---|
1141 | {
|
---|
1142 | const double z2 = CalcIntersection(pos, dir, draft);
|
---|
1143 |
|
---|
1144 | // We hit the draft angle from the inside and are currently in the volume under the slope angle
|
---|
1145 | if (z2!=0)
|
---|
1146 | {
|
---|
1147 | // Move photon to new hit position
|
---|
1148 | pos.PropagateZ(dir, z2);
|
---|
1149 |
|
---|
1150 | if (fDraftAbsorption)
|
---|
1151 | throw -201;
|
---|
1152 |
|
---|
1153 | // Get the normal vector of the surface which was hit
|
---|
1154 | const VectorNorm norm(draft.theta_norm+RandomTheta(fPSF),
|
---|
1155 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
---|
1156 |
|
---|
1157 | // Get the optical transition of the direction vector
|
---|
1158 | const int ret = MOptics::ApplyTransition(dir, norm, n0, 1);
|
---|
1159 |
|
---|
1160 | // Transition was Reflection - try again
|
---|
1161 | if (ret==1 || ret==2)
|
---|
1162 | return LeavePeak(2, n0, lambda, pos, dir, T0)+1;
|
---|
1163 |
|
---|
1164 | // Transition was Refraction - leave
|
---|
1165 | if (ret>=3)
|
---|
1166 | {
|
---|
1167 | if (!Transmission(pos.T()-T0, lambda))
|
---|
1168 | throw -16;
|
---|
1169 |
|
---|
1170 | return EnterGroove(2, n0, lambda, pos, dir)+1;
|
---|
1171 | }
|
---|
1172 |
|
---|
1173 | // Error occured (see ApplyTransition for details)
|
---|
1174 | //cout << "ERR[TIR4]" << endl;
|
---|
1175 | throw -17;
|
---|
1176 | }
|
---|
1177 | }
|
---|
1178 |
|
---|
1179 | if (surface==3)// || surface==4)
|
---|
1180 | {
|
---|
1181 | //cout << ix << " Lost bottom reflected ray " << surface << endl;
|
---|
1182 | throw -18;
|
---|
1183 | }
|
---|
1184 |
|
---|
1185 | // The ray has left the peak at the bottom
|
---|
1186 |
|
---|
1187 | // FIXME: There is a tiny chance to escape to the side
|
---|
1188 | // As there is a slope in the bottom surface of the peak
|
---|
1189 |
|
---|
1190 | // Move photon to new hit position
|
---|
1191 | pos.PropagateZ(dir, -fH);
|
---|
1192 |
|
---|
1193 | if (pos.R()>fR)
|
---|
1194 | {
|
---|
1195 | //cout << "Left the lens radius (bottom)" << endl;
|
---|
1196 | throw -19;
|
---|
1197 | }
|
---|
1198 |
|
---|
1199 | // Get the normal vector of the surface which was hit
|
---|
1200 | const VectorNorm norm(RandomTheta(fPSF), gRandom->Uniform(0, TMath::TwoPi()));
|
---|
1201 |
|
---|
1202 | // Get the optical transition of the direction vector
|
---|
1203 | const int ret = MOptics::ApplyTransition(dir, norm, n0, 1);
|
---|
1204 |
|
---|
1205 | // Transition was Reflection
|
---|
1206 | // (Photon scattered back from the bottom of the lens)
|
---|
1207 | if (ret==1 || ret==2)
|
---|
1208 | return LeavePeak(3, n0, lambda, pos, dir, T0)+1;
|
---|
1209 |
|
---|
1210 | // Transition was Refraction
|
---|
1211 | // (Photon left at the bottom of the lens)
|
---|
1212 | if (ret>=3)
|
---|
1213 | {
|
---|
1214 | if (!Transmission(pos.T()-T0, lambda))
|
---|
1215 | throw -20;
|
---|
1216 |
|
---|
1217 | return 0;
|
---|
1218 | }
|
---|
1219 |
|
---|
1220 | // Error occured (see ApplyTransition for details)
|
---|
1221 | //cout << "ERR[TIR5]" << endl;
|
---|
1222 | throw -21;
|
---|
1223 | }*/
|
---|
1224 |
|
---|
1225 | // Leave the peak from inside the material, either thought the draft surface or the
|
---|
1226 | // slope surface or the bottom connecting the valley of both
|
---|
1227 | int MFresnelLens::LeavePeak(int surface, double n0, MQuaternion &pos, MQuaternion &dir, double T0) const
|
---|
1228 | {
|
---|
1229 | const double rx = pos.R();
|
---|
1230 |
|
---|
1231 | if (rx>=fR) // This is an error as the direction vector is now invalid
|
---|
1232 | throw raytrace_error(kLeave+kOutsideRadius, surface, kNoSurface,
|
---|
1233 | "LeavePeak - Surface hit outside allowed radius");
|
---|
1234 |
|
---|
1235 | // FIXME: Can we track them further?
|
---|
1236 | if (fDisableMultiEntry && dir.Z()>0 && surface!=3/* && surface!=4*/)
|
---|
1237 | throw raytrace_info(kLeave+kStrayUpgoing, surface, kNoSurface,
|
---|
1238 | "LeavePeak - Particle is upgoing inside the material and does not come from the bottom");
|
---|
1239 |
|
---|
1240 | if (surface!=kSlopeSurface && surface!=kDraftSurface && surface!=kExitSurface/* && surface!=4*/)
|
---|
1241 | throw raytrace_error(kLeave+kInvalidOrigin, surface, kNoSurface,
|
---|
1242 | "LeavePeak - Invalid surface of origin");
|
---|
1243 |
|
---|
1244 |
|
---|
1245 | // Calculate the ordinal number of the groove correpsonding to rx
|
---|
1246 | const uint32_t ix = TMath::FloorNint(rx/fW);
|
---|
1247 |
|
---|
1248 | // FIXME: The Z-coordinate (cone.h) is actually a line through two points!!!
|
---|
1249 |
|
---|
1250 | Cone slope = fGrooves[ix].slope;
|
---|
1251 | Cone draft = fGrooves[ix].draft;
|
---|
1252 |
|
---|
1253 | //if (is_draft+1!=surface && (surface==1 || surface==2))
|
---|
1254 | // cout << "SURFACE: " << is_draft+1 << " " << surface << endl;
|
---|
1255 |
|
---|
1256 | const bool is_draft = rx>fGrooves[ix].r;
|
---|
1257 | if (is_draft)
|
---|
1258 | {
|
---|
1259 | // We are in the volume under the draft angle... taking the slope from ix+1
|
---|
1260 | if (ix<fGrooves.size()-1) // FIXME: Does that make sense?
|
---|
1261 | slope = fGrooves[ix+1].slope;
|
---|
1262 | }
|
---|
1263 | else
|
---|
1264 | {
|
---|
1265 | // We are in the volume under the slope angle... taking the draft from ix-1
|
---|
1266 | if (ix>0) // FIXME: Check whether this is correct
|
---|
1267 | draft = fGrooves[ix-1].draft;
|
---|
1268 | }
|
---|
1269 |
|
---|
1270 | if (surface==kExitSurface)
|
---|
1271 | {
|
---|
1272 | if (!fBottomReflection)
|
---|
1273 | throw raytrace_user(kLeave+kAbsorbed, surface, kExitSurface,
|
---|
1274 | "LeavePeak - Particle absorbed on the bottom");
|
---|
1275 |
|
---|
1276 | const int in = FindPeak(ix, pos, dir);
|
---|
1277 |
|
---|
1278 | // This might happen if the ray is very flat and leaving
|
---|
1279 | // the lens before hitting the border boundary of the grooves
|
---|
1280 | if (in<0)
|
---|
1281 | throw raytrace_error(kLeave+kNoSurfaceFound, kExitSurface, kNoSurface,
|
---|
1282 | "LeavePeak - No hit surface found for particle reflected at the bottom");
|
---|
1283 |
|
---|
1284 | slope = fGrooves[in].slope;
|
---|
1285 | draft = fGrooves[in==0 ? 0 : in-1].draft;
|
---|
1286 | }
|
---|
1287 |
|
---|
1288 | // FIXME: There is a chance that we can hit the same surface twice (for very horizontal rays
|
---|
1289 | // but this requires a proper selection of the hit point
|
---|
1290 |
|
---|
1291 | // We are inside the material and downgoing, so if we come from a slope surface,
|
---|
1292 | // we can only hit a draft surface after and vice versa
|
---|
1293 | if (is_draft || surface==kExitSurface)
|
---|
1294 | {
|
---|
1295 | const double z1 = CalcIntersection(pos, dir, slope);
|
---|
1296 |
|
---|
1297 | // We hit the slope angle and are currently in the volume under the draft surface
|
---|
1298 | if (z1!=0)
|
---|
1299 | {
|
---|
1300 | // Move photon to new hit position
|
---|
1301 | pos.PropagateZ(dir, z1);
|
---|
1302 |
|
---|
1303 | if (fSlopeAbsorption)
|
---|
1304 | throw raytrace_user(kLeave+kAbsorbed, surface, kSlopeSurface,
|
---|
1305 | "LeavePeak - Photon absorbed by slope surface");
|
---|
1306 |
|
---|
1307 | // Get the normal vector of the surface which was hit
|
---|
1308 | const VectorNorm norm(slope.theta_norm+RandomTheta(fPSF),
|
---|
1309 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
---|
1310 |
|
---|
1311 | // Get the optical transition of the direction vector
|
---|
1312 | const int ret = MOptics::ApplyTransition(dir, norm, n0, 1, fFresnelReflection);
|
---|
1313 |
|
---|
1314 | // Transition was Reflection - try again
|
---|
1315 | if (ret==1 || ret==2)
|
---|
1316 | return -kSlopeSurface;//LeavePeak(1, n0, lambda, pos, dir, T0)+1;
|
---|
1317 |
|
---|
1318 | // Transition was Refraction - leave
|
---|
1319 | if (ret>=3) // Transmission
|
---|
1320 | return kSlopeSurface;//EnterGroove(1, n0, lambda, pos, dir)+1;
|
---|
1321 |
|
---|
1322 | // Error occured (see ApplyTransition for details)
|
---|
1323 | throw raytrace_error(kLeave+kTransitionError, surface, kSlopeSurface,
|
---|
1324 | "LeavePeak - MOptics::ApplyTransition failed for slope surface");
|
---|
1325 | }
|
---|
1326 | }
|
---|
1327 |
|
---|
1328 | if (!is_draft || surface==kExitSurface)
|
---|
1329 | {
|
---|
1330 | const double z2 = CalcIntersection(pos, dir, draft);
|
---|
1331 |
|
---|
1332 | // We hit the draft angle from the inside and are currently in the volume under the slope angle
|
---|
1333 | if (z2!=0)
|
---|
1334 | {
|
---|
1335 | // Move photon to new hit position
|
---|
1336 | pos.PropagateZ(dir, z2);
|
---|
1337 |
|
---|
1338 | if (fDraftAbsorption)
|
---|
1339 | throw raytrace_user(kLeave+kAbsorbed, surface, kDraftSurface,
|
---|
1340 | "LeavePeak - Photon absorbed by draft surface");
|
---|
1341 |
|
---|
1342 | // Get the normal vector of the surface which was hit
|
---|
1343 | const VectorNorm norm(draft.theta_norm+RandomTheta(fPSF),
|
---|
1344 | pos.XYvector().Phi()+RandomPhi(pos.R(), fPSF));
|
---|
1345 |
|
---|
1346 | // Get the optical transition of the direction vector
|
---|
1347 | const int ret = MOptics::ApplyTransition(dir, norm, n0, 1, fFresnelReflection);
|
---|
1348 |
|
---|
1349 | // Transition was Reflection - try again
|
---|
1350 | if (ret==1 || ret==2)
|
---|
1351 | return -kDraftSurface;//LeavePeak(2, n0, lambda, pos, dir, T0)+1;
|
---|
1352 |
|
---|
1353 | // Transition was Refraction - leave
|
---|
1354 | if (ret>=3) // Transmission
|
---|
1355 | return kDraftSurface;//EnterGroove(2, n0, lambda, pos, dir)+1;
|
---|
1356 |
|
---|
1357 | // Error occured (see ApplyTransition for details)
|
---|
1358 | //cout << "ERR[TIR4]" << endl;
|
---|
1359 | throw raytrace_error(kLeave+kTransitionError, surface, kDraftSurface,
|
---|
1360 | "LeavePeak - MOptics::ApplyTransition failed for draft surface");
|
---|
1361 | }
|
---|
1362 | }
|
---|
1363 |
|
---|
1364 | if (surface==kExitSurface/* || surface==4*/)
|
---|
1365 | throw raytrace_error(kLeave+kFoundSurfaceUnavailable, kExitSurface, is_draft?kSlopeSurface:kDraftSurface,
|
---|
1366 | "LeavePeak - Ray reflected on the bottom did not hit the found surface");
|
---|
1367 |
|
---|
1368 | // The ray has left the peak at the bottom
|
---|
1369 |
|
---|
1370 | // FIXME: There is a tiny chance to escape to the side
|
---|
1371 | // As there is a slope in the bottom surface of the peak
|
---|
1372 |
|
---|
1373 | // FIXME: Theoretically, a ray can hit the same surface twice
|
---|
1374 |
|
---|
1375 | // Move photon to new hit position
|
---|
1376 | pos.PropagateZ(dir, -fH);
|
---|
1377 |
|
---|
1378 | if (pos.R()>fR)
|
---|
1379 | throw raytrace_info(kLeave+kOutsideRadius, surface, kExitSurface,
|
---|
1380 | "LeavePeak - Hit point at the bottom surface is beyond allowed radius");
|
---|
1381 |
|
---|
1382 | // Get the normal vector of the surface which was hit
|
---|
1383 | const VectorNorm norm(RandomTheta(fPSF), gRandom->Uniform(0, TMath::TwoPi()));
|
---|
1384 |
|
---|
1385 | // Get the optical transition of the direction vector
|
---|
1386 | const int ret = MOptics::ApplyTransition(dir, norm, n0, 1, fFresnelReflection);
|
---|
1387 |
|
---|
1388 | // Transition was Reflection
|
---|
1389 | // (Photon scattered back from the bottom of the lens)
|
---|
1390 | if (ret==1 || ret==2)
|
---|
1391 | return -kExitSurface;//LeavePeak(3, n0, lambda, pos, dir, T0)+1;
|
---|
1392 |
|
---|
1393 | // Transition was Refraction
|
---|
1394 | // (Photon left at the bottom of the lens)
|
---|
1395 | if (ret>=3) // Transmission
|
---|
1396 | return kPhotonHasLeft;
|
---|
1397 |
|
---|
1398 | // Error occured (see ApplyTransition for details)
|
---|
1399 | throw raytrace_error(kLeave+kTransitionError, surface, kExitSurface, "LeavePeak - MOptics::ApplyTransition failed for bottom surface");
|
---|
1400 | }
|
---|
1401 |
|
---|
1402 |
|
---|
1403 | // Differences:
|
---|
1404 | // Returns a 'reflected' vector at z=0
|
---|
1405 | // Does not propagate to z=0 at the beginning
|
---|
1406 | Int_t MFresnelLens::ExecuteOptics(MQuaternion &p, MQuaternion &u, const Short_t &wavelength) const
|
---|
1407 | {
|
---|
1408 | // Corsika Coordinates are in cm!
|
---|
1409 |
|
---|
1410 | const double lambda = wavelength==0 ? fLambda : wavelength;
|
---|
1411 | if (fAbsorptionLength.GetNp()!=0 &&
|
---|
1412 | (lambda<fAbsorptionLength.GetXmin() || lambda>fAbsorptionLength.GetXmax()))
|
---|
1413 | {
|
---|
1414 | *fLog << err << "Wavelength " << lambda << "nm out of absorption range [" << fAbsorptionLength.GetXmin() << "nm;" << fAbsorptionLength.GetXmax() << "nm]" << endl;
|
---|
1415 | return -1;
|
---|
1416 | }
|
---|
1417 |
|
---|
1418 | const double n0 = MFresnelLens::RefractiveIndex(lambda);
|
---|
1419 |
|
---|
1420 | try
|
---|
1421 | {
|
---|
1422 | int last_surface = kEntrySurface;//EnterGroove(kEntrySurface, n0, p, u);
|
---|
1423 |
|
---|
1424 | // last_surface that was hit (photon originates from)
|
---|
1425 | // 0 entrance (Z=0) or exit (Z=-fH) surface
|
---|
1426 | // 1 slope
|
---|
1427 | // 2 draft
|
---|
1428 | // 3 bottom
|
---|
1429 | // positive: photon is outside of material --> Try to enter
|
---|
1430 | // nagative: photon is inside of material --> Try to leave
|
---|
1431 |
|
---|
1432 | double T0 = 0;//last_surface<0 ? p.T() : 0;
|
---|
1433 |
|
---|
1434 | // The general assumption is: no surface can be hit twice in a row
|
---|
1435 |
|
---|
1436 | int cnt = -1;
|
---|
1437 | while (last_surface!=0)
|
---|
1438 | {
|
---|
1439 | cnt ++;
|
---|
1440 |
|
---|
1441 | // photon is outside of material --> try to enter
|
---|
1442 | if (last_surface>0)
|
---|
1443 | {
|
---|
1444 | last_surface = EnterGroove(last_surface, n0, p, u);
|
---|
1445 |
|
---|
1446 | // successfully entered --> remember time of entrance to calculate transimission
|
---|
1447 | if (last_surface<0)
|
---|
1448 | T0 = p.T();
|
---|
1449 |
|
---|
1450 | continue;
|
---|
1451 | }
|
---|
1452 |
|
---|
1453 | // photon is inside of material --> try to leave
|
---|
1454 | if (last_surface<0)
|
---|
1455 | {
|
---|
1456 | last_surface = LeavePeak(-last_surface, n0, p, u, T0);
|
---|
1457 |
|
---|
1458 | // successfully left --> apply transmission
|
---|
1459 | if (last_surface>=0)
|
---|
1460 | {
|
---|
1461 | if (!Transmission(p.T()-T0, lambda))
|
---|
1462 | throw raytrace_error(kAbsorbed, last_surface, kMaterial,
|
---|
1463 | "TraceRay - Ray absorbed in material");
|
---|
1464 | }
|
---|
1465 |
|
---|
1466 | continue;
|
---|
1467 | }
|
---|
1468 | }
|
---|
1469 |
|
---|
1470 | // To make this consistent with a mirror system,
|
---|
1471 | // we now change our coordinate system
|
---|
1472 | // Rays from the lens to the camera are up-going (positive sign)
|
---|
1473 | u.fVectorPart.SetZ(-u.Z());
|
---|
1474 |
|
---|
1475 | // In the datasheet, it looks as if F is calculated
|
---|
1476 | // towards the center of the lens. It seems things are more
|
---|
1477 | // consistent if the thickness correction in caluating the
|
---|
1478 | // slope angle is omitted and the focal distance is measured
|
---|
1479 | // from the entrance of the lens => FIXME: To be checked
|
---|
1480 | // (Propagating to F means not propagating a distance of F-H from the exit)
|
---|
1481 | //p.fVectorPart.SetZ(fH-fH/2/fN);//fH/2); Found by try-and-error
|
---|
1482 |
|
---|
1483 | // We are already at -H, adding F and setting Z=0 means going to -(F+H)
|
---|
1484 | p.fVectorPart.SetZ(0);//fH/2); Found by try-and-error
|
---|
1485 |
|
---|
1486 | return uint32_t(cnt)>=fMinHits && (fMaxHits==0 || uint32_t(cnt)<=fMaxHits) ? cnt : -1;;
|
---|
1487 | }
|
---|
1488 | catch (const raytrace_exception &e)
|
---|
1489 | {
|
---|
1490 | return -e.id();
|
---|
1491 | }
|
---|
1492 |
|
---|
1493 | /*
|
---|
1494 | try
|
---|
1495 | {
|
---|
1496 | const int cnt = EnterGroove(0, n0, lambda, p, u);
|
---|
1497 |
|
---|
1498 | // To make this consistent with a mirror system,
|
---|
1499 | // we now change our coordinate system
|
---|
1500 | // Rays from the lens to the camera are up-going (positive sign)
|
---|
1501 | u.fVectorPart.SetZ(-u.Z());
|
---|
1502 |
|
---|
1503 | // In the datasheet, it looks as if F is calculated
|
---|
1504 | // towards the center of the lens
|
---|
1505 | // (Propagating to F means not propagating a distance of F-H/2)
|
---|
1506 | p.fVectorPart.SetZ(0);
|
---|
1507 |
|
---|
1508 | return cnt>=fMinHits && (fMaxHits==0 || cnt<=fMaxHits) ? cnt : -1;
|
---|
1509 |
|
---|
1510 | }
|
---|
1511 | catch (const int &rc)
|
---|
1512 | {
|
---|
1513 | return rc;
|
---|
1514 | }
|
---|
1515 | */
|
---|
1516 | }
|
---|
1517 |
|
---|
1518 | // Differences:
|
---|
1519 | // Does propagate to z=0 at the beginning
|
---|
1520 | Int_t MFresnelLens::TraceRay(vector<MQuaternion> &vec, MQuaternion &p, MQuaternion &u, const Short_t &wavelength, bool verbose) const
|
---|
1521 | {
|
---|
1522 | // Corsika Coordinates are in cm!
|
---|
1523 |
|
---|
1524 | const double lambda = wavelength==0 ? fLambda : wavelength;
|
---|
1525 | if (fAbsorptionLength.GetNp()!=0 &&
|
---|
1526 | (lambda<fAbsorptionLength.GetXmin() || lambda>fAbsorptionLength.GetXmax()))
|
---|
1527 | {
|
---|
1528 | *fLog << err << "Wavelength " << lambda << "nm out of absorption range [" << fAbsorptionLength.GetXmin() << "nm;" << fAbsorptionLength.GetXmax() << "nm]" << endl;
|
---|
1529 | return -1;
|
---|
1530 | }
|
---|
1531 |
|
---|
1532 | const double n0 = MFresnelLens::RefractiveIndex(lambda);
|
---|
1533 |
|
---|
1534 | // Photon must be at the lens surface
|
---|
1535 | p.PropagateZ(u, 0);
|
---|
1536 | vec.push_back(p);
|
---|
1537 |
|
---|
1538 | try
|
---|
1539 | {
|
---|
1540 | int last_surface = kEntrySurface;//EnterGroove(kEntrySurface, n0, p, u);
|
---|
1541 |
|
---|
1542 | // last_surface that was hit (photon originates from)
|
---|
1543 | // 0 entrance (Z=0) or exit (Z=-fH) surface
|
---|
1544 | // 1 slope
|
---|
1545 | // 2 draft
|
---|
1546 | // 3 bottom
|
---|
1547 | // positive: photon is outside of material --> Try to enter
|
---|
1548 | // nagative: photon is inside of material --> Try to leave
|
---|
1549 |
|
---|
1550 | double T0 = 0;
|
---|
1551 |
|
---|
1552 | // The general assumption is: no surface can be hit twice in a row
|
---|
1553 |
|
---|
1554 | int cnt = -1;
|
---|
1555 | while (last_surface!=0)
|
---|
1556 | {
|
---|
1557 | cnt ++;
|
---|
1558 | vec.push_back(p);
|
---|
1559 |
|
---|
1560 | // photon is outside of material --> try to enter
|
---|
1561 | if (last_surface>0)
|
---|
1562 | {
|
---|
1563 | last_surface = EnterGroove( last_surface, n0, p, u);
|
---|
1564 | //cout << "enter = " << last_surface << endl;
|
---|
1565 |
|
---|
1566 | // successfully entered --> remember time of entrance to calculate transimission
|
---|
1567 | if (last_surface<0)
|
---|
1568 | T0 = p.T();
|
---|
1569 |
|
---|
1570 | continue;
|
---|
1571 | }
|
---|
1572 |
|
---|
1573 | // photon is inside of material --> try to leave
|
---|
1574 | if (last_surface<0)
|
---|
1575 | {
|
---|
1576 | last_surface = LeavePeak(-last_surface, n0, p, u, T0);
|
---|
1577 | //cout << "leave = " << last_surface << endl;
|
---|
1578 |
|
---|
1579 | // successfully left --> apply transmission
|
---|
1580 | if (last_surface>=0)
|
---|
1581 | {
|
---|
1582 | if (!Transmission(p.T()-T0, lambda))
|
---|
1583 | throw raytrace_error(kAbsorbed, last_surface, kMaterial,
|
---|
1584 | "TraceRay - Ray absorbed in material");
|
---|
1585 | }
|
---|
1586 |
|
---|
1587 | continue;
|
---|
1588 | }
|
---|
1589 | }
|
---|
1590 |
|
---|
1591 | vec.push_back(p);
|
---|
1592 | return cnt;
|
---|
1593 | }
|
---|
1594 | catch (const raytrace_exception &e)
|
---|
1595 | {
|
---|
1596 | if (verbose)
|
---|
1597 | *fLog << all << e.id() << ": " << e.what() << endl;
|
---|
1598 |
|
---|
1599 | // Hit point at bottom surface beyond allowed range
|
---|
1600 | // FIXME: Only if surface is kExitSurface
|
---|
1601 | if (e.id()==2342)
|
---|
1602 | vec.push_back(p);
|
---|
1603 |
|
---|
1604 | return -e.id();
|
---|
1605 | }
|
---|
1606 | }
|
---|