| 1 | /* ======================================================================== *\
|
|---|
| 2 | !
|
|---|
| 3 | ! *
|
|---|
| 4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction
|
|---|
| 5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
|---|
| 6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
|---|
| 7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
|---|
| 8 | ! *
|
|---|
| 9 | ! * Permission to use, copy, modify and distribute this software and its
|
|---|
| 10 | ! * documentation for any purpose is hereby granted without fee,
|
|---|
| 11 | ! * provided that the above copyright notice appears in all copies and
|
|---|
| 12 | ! * that both that copyright notice and this permission notice appear
|
|---|
| 13 | ! * in supporting documentation. It is provided "as is" without express
|
|---|
| 14 | ! * or implied warranty.
|
|---|
| 15 | ! *
|
|---|
| 16 | !
|
|---|
| 17 | !
|
|---|
| 18 | ! Author(s): Thomas Bretz, 6/2019 <mailto:tbretz@physik.rwth-aachen.de>
|
|---|
| 19 | !
|
|---|
| 20 | ! Copyright: CheObs Software Development, 2000-2019
|
|---|
| 21 | !
|
|---|
| 22 | !
|
|---|
| 23 | \* ======================================================================== */
|
|---|
| 24 |
|
|---|
| 25 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 26 | //
|
|---|
| 27 | // MOptics
|
|---|
| 28 | //
|
|---|
| 29 | //////////////////////////////////////////////////////////////////////////////
|
|---|
| 30 | #include "MOptics.h"
|
|---|
| 31 |
|
|---|
| 32 | #include <TRandom.h>
|
|---|
| 33 |
|
|---|
| 34 | #include "MQuaternion.h"
|
|---|
| 35 | #include "MReflection.h"
|
|---|
| 36 |
|
|---|
| 37 | ClassImp(MOptics);
|
|---|
| 38 |
|
|---|
| 39 | using namespace std;
|
|---|
| 40 |
|
|---|
| 41 | // --------------------------------------------------------------------------
|
|---|
| 42 | //
|
|---|
| 43 | // Default constructor
|
|---|
| 44 | //
|
|---|
| 45 | MOptics::MOptics(const char *name, const char *title)
|
|---|
| 46 | {
|
|---|
| 47 | fName = name ? name : "MOptics";
|
|---|
| 48 | fTitle = title ? title : "Optics base class";
|
|---|
| 49 | }
|
|---|
| 50 |
|
|---|
| 51 | // --------------------------------------------------------------------------
|
|---|
| 52 | //
|
|---|
| 53 | // Critical angle for total reflection asin(n2/n1), or 90deg of n1<n2
|
|---|
| 54 | // https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
|
|---|
| 55 | //
|
|---|
| 56 | double MOptics::CriticalAngle(double n1, double n2)
|
|---|
| 57 | {
|
|---|
| 58 | return n1>=n2 ? asin(n2/n1) : TMath::Pi()/2;
|
|---|
| 59 | }
|
|---|
| 60 |
|
|---|
| 61 | // --------------------------------------------------------------------------
|
|---|
| 62 | //
|
|---|
| 63 | // This returns an approximation for the reflectivity for a ray
|
|---|
| 64 | // passing from a medium with refractive index n1 to a medium with
|
|---|
| 65 | // refractive index n2. This approximation is only valid for similar
|
|---|
| 66 | // values of n1 and n2 (e.g. 1 and 1.5 but not 1 and 5). /
|
|---|
| 67 | //
|
|---|
| 68 | // For n1<n2 the function has to be called with theta being the
|
|---|
| 69 | // angle between the surface-normal and the incoming ray, for
|
|---|
| 70 | // n1>n2, alpha is the angle between the outgoing ray and the
|
|---|
| 71 | // surface-normal.
|
|---|
| 72 | //
|
|---|
| 73 | // It is not valid to call the function for n1>n2 when alpha exceeds
|
|---|
| 74 | // the critical angle. Alpha is defined in the range [0deg, 90deg]
|
|---|
| 75 | // For Alpha [90;180], The angle is assumed the absolute value of the cosine is used.
|
|---|
| 76 | //
|
|---|
| 77 | // alpha must be given in radians and defined between [0deg and 90deg]
|
|---|
| 78 | //
|
|---|
| 79 | // Taken from:
|
|---|
| 80 | // https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
|
|---|
| 81 | //
|
|---|
| 82 | double MOptics::SchlickReflectivity(double alpha, double n1, double n2)
|
|---|
| 83 | {
|
|---|
| 84 | const double r0 = (n1-n2)/(n1+n2);
|
|---|
| 85 | const double r2 = r0 * r0;
|
|---|
| 86 |
|
|---|
| 87 | const double p = 1-cos(alpha);
|
|---|
| 88 |
|
|---|
| 89 | return r2 + (1-r2) * p*p*p*p*p;
|
|---|
| 90 | }
|
|---|
| 91 |
|
|---|
| 92 | // --------------------------------------------------------------------------
|
|---|
| 93 | //
|
|---|
| 94 | // Same as SchlickReflectivity(double,double,double) but takes the direction
|
|---|
| 95 | // vector of the incoming or outgoing ray as u and the normal vector of the
|
|---|
| 96 | // surface. The normal vector points from n2 to n1.
|
|---|
| 97 | //
|
|---|
| 98 | double MOptics::SchlickReflectivity(const TVector3 &u, const TVector3 &n, double n1, double n2)
|
|---|
| 99 | {
|
|---|
| 100 | const double r0 = (n1-n2)/(n1+n2);
|
|---|
| 101 | const double r2 = r0 * r0;
|
|---|
| 102 |
|
|---|
| 103 | const double c = -n*u;
|
|---|
| 104 |
|
|---|
| 105 | const double p = 1-c;
|
|---|
| 106 |
|
|---|
| 107 | return r2 + (1-r2) * p*p*p*p*p;
|
|---|
| 108 | }
|
|---|
| 109 |
|
|---|
| 110 | // --------------------------------------------------------------------------
|
|---|
| 111 | //
|
|---|
| 112 | // Applies refraction to the direction vector u on a surface with the normal
|
|---|
| 113 | // vector n for a ray coming from a medium with refractive index n1
|
|---|
| 114 | // passing into a medium with refractive index n2. Note that the normal
|
|---|
| 115 | // vector is defined pointing from medium n2 to medium n1 (so opposite
|
|---|
| 116 | // of u).
|
|---|
| 117 | //
|
|---|
| 118 | // Note that u and n must be normalized before calling the function!
|
|---|
| 119 | //
|
|---|
| 120 | // Solution accoridng to (Section 6)
|
|---|
| 121 | // https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
|
|---|
| 122 | //
|
|---|
| 123 | // u_out = n1/n2 * u_in + (n1/n2 * cos(theta_in) - sqrt(1-sin^2(theta_out)) * n
|
|---|
| 124 | // sin^2(theta_out) = (n1/n2)^2 * sin^2(theta_in) = (n1/n2)^2 * (1-cos^2(theta_in))
|
|---|
| 125 | // cos(theta_in) = +- u_in * n
|
|---|
| 126 | //
|
|---|
| 127 | // In case of success, the vector u is altered and true is returned. In case
|
|---|
| 128 | // of failure (incident angle above critical angle for total internal reflection)
|
|---|
| 129 | // vector u stays untouched and false is returned.
|
|---|
| 130 | //
|
|---|
| 131 | bool MOptics::ApplyRefraction(TVector3 &u, const TVector3 &n, double n1, double n2)
|
|---|
| 132 | {
|
|---|
| 133 | // The vector should be normalized already
|
|---|
| 134 | // u.NormalizeVector();
|
|---|
| 135 | // n.NormalizeVector();
|
|---|
| 136 |
|
|---|
| 137 | // Usually: Theta [0;90]
|
|---|
| 138 | // Here: Theta [90;180] => c=|n*u| < 0
|
|---|
| 139 |
|
|---|
| 140 | const double r = n1/n2;
|
|---|
| 141 | const double c = -n*u;
|
|---|
| 142 |
|
|---|
| 143 | const double rc = r*c;
|
|---|
| 144 |
|
|---|
| 145 | const double s2 = r*r - rc*rc; // sin(theta_out)^2 = r^2*(1-cos(theta_in)^2)
|
|---|
| 146 |
|
|---|
| 147 | if (s2>1)
|
|---|
| 148 | return false;
|
|---|
| 149 |
|
|---|
| 150 | const double v = rc - sqrt(1-s2);
|
|---|
| 151 |
|
|---|
| 152 | u = r*u + v*n;
|
|---|
| 153 |
|
|---|
| 154 | return true;
|
|---|
| 155 | }
|
|---|
| 156 |
|
|---|
| 157 | // --------------------------------------------------------------------------
|
|---|
| 158 | //
|
|---|
| 159 | // In addition to calculating ApplyRefraction(u.fVectorPart, n, n1, n2),
|
|---|
| 160 | // the fourth component (inverse of the speed) is multiplied with n1/n2
|
|---|
| 161 | // of tramission was successfull (ApplyRefraction retruned true)
|
|---|
| 162 | //
|
|---|
| 163 | // Note that .fVectorPart and n must be normalized before calling the function!
|
|---|
| 164 | //
|
|---|
| 165 | bool MOptics::ApplyRefraction(MQuaternion &u, const TVector3 &n, double n1, double n2)
|
|---|
| 166 | {
|
|---|
| 167 | if (!ApplyRefraction(u.fVectorPart, n, n1, n2))
|
|---|
| 168 | return false;
|
|---|
| 169 |
|
|---|
| 170 | u.fRealPart *= n2/n1;
|
|---|
| 171 | return true;
|
|---|
| 172 | }
|
|---|
| 173 |
|
|---|
| 174 | // --------------------------------------------------------------------------
|
|---|
| 175 | //
|
|---|
| 176 | // Applies a transition from one medium (n1) to another medium (n2)
|
|---|
| 177 | // n1 is always the medium where the photon comes from.
|
|---|
| 178 | //
|
|---|
| 179 | // Uses Schlick's approximation for reflection
|
|---|
| 180 | //
|
|---|
| 181 | // The direction of the normal vector does not matter, it is automatically
|
|---|
| 182 | // aligned (opposite) of the direction of the incoming photon.
|
|---|
| 183 | //
|
|---|
| 184 | // Based on
|
|---|
| 185 | // https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
|
|---|
| 186 | //
|
|---|
| 187 | // Returns:
|
|---|
| 188 | //
|
|---|
| 189 | // 0 error (total internal reflection from optical thin to optical thick medium)
|
|---|
| 190 | //
|
|---|
| 191 | // 1 total internal reflection applied
|
|---|
| 192 | // 2 Monte Carlo reflection applied
|
|---|
| 193 | //
|
|---|
| 194 | // 3 nothing done (n1==n2, transmission)
|
|---|
| 195 | // 4 refraction applied from optical thick to optically thinner medium
|
|---|
| 196 | // 5 refraction applied from optical thin to optically thicker medium
|
|---|
| 197 | //
|
|---|
| 198 | int MOptics::ApplyTransitionFast(TVector3 &dir, TVector3 n, double n1, double n2)
|
|---|
| 199 | {
|
|---|
| 200 | if (n1==n2)
|
|---|
| 201 | return 3;
|
|---|
| 202 |
|
|---|
| 203 | // The normal vector must point in the same direction as
|
|---|
| 204 | // the photon is moving and thus cos(theta)=[90;180]
|
|---|
| 205 | if (dir*n>0)
|
|---|
| 206 | n *= -1;
|
|---|
| 207 |
|
|---|
| 208 | TVector3 u(dir);
|
|---|
| 209 |
|
|---|
| 210 | // From optical thick to optical thin medium
|
|---|
| 211 | if (n1>n2)
|
|---|
| 212 | {
|
|---|
| 213 | // Check for refraction...
|
|---|
| 214 | // ... if possible: use exit angle for calculating reflectivity
|
|---|
| 215 | // ... if not possible: reflect ray
|
|---|
| 216 | if (!ApplyRefraction(u, n, n1, n2))
|
|---|
| 217 | {
|
|---|
| 218 | // Total Internal Reflection
|
|---|
| 219 | dir *= MReflection(n);
|
|---|
| 220 | return 1;
|
|---|
| 221 | }
|
|---|
| 222 | }
|
|---|
| 223 |
|
|---|
| 224 | const double reflectivity = SchlickReflectivity(u, n, n1, n2);
|
|---|
| 225 |
|
|---|
| 226 | // ----- Case of reflection ----
|
|---|
| 227 |
|
|---|
| 228 | if (gRandom->Uniform()<reflectivity)
|
|---|
| 229 | {
|
|---|
| 230 | dir *= MReflection(n);
|
|---|
| 231 | return 2;
|
|---|
| 232 | }
|
|---|
| 233 |
|
|---|
| 234 | // ----- Case of refraction ----
|
|---|
| 235 |
|
|---|
| 236 | // From optical thick to optical thin medium
|
|---|
| 237 | if (n1>n2)
|
|---|
| 238 | {
|
|---|
| 239 | // Now we know that refraction was correctly applied
|
|---|
| 240 | dir = u;
|
|---|
| 241 | return 4;
|
|---|
| 242 | }
|
|---|
| 243 |
|
|---|
| 244 | // From optical thin to optical thick medium
|
|---|
| 245 | // Still need to apply refraction
|
|---|
| 246 |
|
|---|
| 247 | if (ApplyRefraction(dir, n, n1, n2))
|
|---|
| 248 | return 5;
|
|---|
| 249 |
|
|---|
| 250 | // ERROR => Total Internal Reflection not possible
|
|---|
| 251 | // This should never happen
|
|---|
| 252 | return 0;
|
|---|
| 253 | }
|
|---|
| 254 |
|
|---|
| 255 | // --------------------------------------------------------------------------
|
|---|
| 256 | //
|
|---|
| 257 | // Applies a transition from one medium (n1) to another medium (n2)
|
|---|
| 258 | // n1 is always the medium where the photon comes from.
|
|---|
| 259 | //
|
|---|
| 260 | // Uses Fresnel's equation for calculating reflection. Total internal
|
|---|
| 261 | // reflection above the critical angle will always take place. Fresnel
|
|---|
| 262 | // reflection will only be calculated if 'fresnel' is set to true (default).
|
|---|
| 263 | // For Fresnel reflection, a random number is produced according to the
|
|---|
| 264 | // calculated reflectivity to decide whether the ray is reflected or
|
|---|
| 265 | // refracted.
|
|---|
| 266 | //
|
|---|
| 267 | //
|
|---|
| 268 | // The direction of the normal vector does not matter, it is automatically
|
|---|
| 269 | // aligned (opposite) of the direction of the incoming photon.
|
|---|
| 270 | //
|
|---|
| 271 | // Based on
|
|---|
| 272 | // https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
|
|---|
| 273 | //
|
|---|
| 274 | // Returns:
|
|---|
| 275 | //
|
|---|
| 276 | // 0 error (total internal reflection from optical thin to optical thick medium)
|
|---|
| 277 | //
|
|---|
| 278 | // 1 total internal reflection applied
|
|---|
| 279 | // 2 Monte Carlo reflection applied
|
|---|
| 280 | //
|
|---|
| 281 | // 3 nothing done (n1==n2, transmission)
|
|---|
| 282 | // 4 refraction applied
|
|---|
| 283 | //
|
|---|
| 284 | int MOptics::ApplyTransition(TVector3 &u, TVector3 n, double n1, double n2, bool fresnel)
|
|---|
| 285 | {
|
|---|
| 286 | if (n1==n2)
|
|---|
| 287 | return 3;
|
|---|
| 288 |
|
|---|
| 289 | // The normal vector must point in the same direction as
|
|---|
| 290 | // the photon is moving and thus cos(theta)=[90;180]
|
|---|
| 291 | if (u*n>0)
|
|---|
| 292 | n *= -1;
|
|---|
| 293 |
|
|---|
| 294 | // Calculate refraction outgoing direction (Snell's law)
|
|---|
| 295 | const double r = n1/n2;
|
|---|
| 296 | const double ci = -n*u; // cos(theta_in)
|
|---|
| 297 | const double rci = r*ci; // n1/n2 * cos(theta_in)
|
|---|
| 298 | const double st2 = r*r - rci*rci; // sin(theta_out)^2 = r^2*(1-cos(theta_in)^2)
|
|---|
| 299 |
|
|---|
| 300 | if (st2>1)
|
|---|
| 301 | {
|
|---|
| 302 | // Total Internal Reflection
|
|---|
| 303 | u *= MReflection(n);
|
|---|
| 304 | return 1;
|
|---|
| 305 |
|
|---|
| 306 | }
|
|---|
| 307 |
|
|---|
| 308 | const double ct = sqrt(1-st2); // cos(theta_out) = sqrt(1 - sin(theta_out)^2)
|
|---|
| 309 | const double rct = r*ct; // n1/n2 * cos(theta_out)
|
|---|
| 310 |
|
|---|
| 311 | // Calculate reflectivity for none polarized rays (Fresnel's equation)
|
|---|
| 312 | const double Rt = (rci - ct)/(rci + ct);
|
|---|
| 313 | const double Rp = (rct - ci)/(rct + ci);
|
|---|
| 314 |
|
|---|
| 315 | const double reflectivity = (Rt*Rt + Rp*Rp)/2;
|
|---|
| 316 |
|
|---|
| 317 | if (fresnel && gRandom->Uniform()<reflectivity)
|
|---|
| 318 | {
|
|---|
| 319 | // ----- Case of reflection ----
|
|---|
| 320 | u *= MReflection(n);
|
|---|
| 321 | return 2;
|
|---|
| 322 | }
|
|---|
| 323 | else
|
|---|
| 324 | {
|
|---|
| 325 | // ----- Case of refraction ----
|
|---|
| 326 | u = r*u + (rci-ct)*n;
|
|---|
| 327 | return 4;
|
|---|
| 328 | }
|
|---|
| 329 | }
|
|---|
| 330 |
|
|---|
| 331 | int MOptics::ApplyTransitionFast(MQuaternion &u, const TVector3 &n, double n1, double n2)
|
|---|
| 332 | {
|
|---|
| 333 | const int rc = ApplyTransitionFast(u.fVectorPart, n, n1, n2);
|
|---|
| 334 | if (rc>=3)
|
|---|
| 335 | u.fRealPart *= n2/n1;
|
|---|
| 336 | return rc;
|
|---|
| 337 | }
|
|---|
| 338 |
|
|---|
| 339 | int MOptics::ApplyTransition(MQuaternion &u, const TVector3 &n, double n1, double n2, bool fresnel)
|
|---|
| 340 | {
|
|---|
| 341 | const int rc = ApplyTransition(u.fVectorPart, n, n1, n2, fresnel);
|
|---|
| 342 | if (rc>=3)
|
|---|
| 343 | u.fRealPart *= n2/n1;
|
|---|
| 344 | return rc;
|
|---|
| 345 | }
|
|---|