1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of CheObs, the Modular Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appears in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Thomas Bretz, 6/2019 <mailto:tbretz@physik.rwth-aachen.de>
|
---|
19 | !
|
---|
20 | ! Copyright: CheObs Software Development, 2000-2019
|
---|
21 | !
|
---|
22 | !
|
---|
23 | \* ======================================================================== */
|
---|
24 |
|
---|
25 | //////////////////////////////////////////////////////////////////////////////
|
---|
26 | //
|
---|
27 | // MOptics
|
---|
28 | //
|
---|
29 | //////////////////////////////////////////////////////////////////////////////
|
---|
30 | #include "MOptics.h"
|
---|
31 |
|
---|
32 | #include <TRandom.h>
|
---|
33 |
|
---|
34 | #include "MQuaternion.h"
|
---|
35 | #include "MReflection.h"
|
---|
36 |
|
---|
37 | ClassImp(MOptics);
|
---|
38 |
|
---|
39 | using namespace std;
|
---|
40 |
|
---|
41 | // --------------------------------------------------------------------------
|
---|
42 | //
|
---|
43 | // Default constructor
|
---|
44 | //
|
---|
45 | MOptics::MOptics(const char *name, const char *title)
|
---|
46 | {
|
---|
47 | fName = name ? name : "MOptics";
|
---|
48 | fTitle = title ? title : "Optics base class";
|
---|
49 | }
|
---|
50 |
|
---|
51 | // --------------------------------------------------------------------------
|
---|
52 | //
|
---|
53 | // Critical angle for total reflection asin(n2/n1), or 90deg of n1<n2
|
---|
54 | // https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
|
---|
55 | //
|
---|
56 | double MOptics::CriticalAngle(double n1, double n2)
|
---|
57 | {
|
---|
58 | return n1>=n2 ? asin(n2/n1) : TMath::Pi()/2;
|
---|
59 | }
|
---|
60 |
|
---|
61 | // --------------------------------------------------------------------------
|
---|
62 | //
|
---|
63 | // This returns an approximation for the reflectivity for a ray
|
---|
64 | // passing from a medium with refractive index n1 to a medium with
|
---|
65 | // refractive index n2. This approximation is only valid for similar
|
---|
66 | // values of n1 and n2 (e.g. 1 and 1.5 but not 1 and 5). /
|
---|
67 | //
|
---|
68 | // For n1<n2 the function has to be called with theta being the
|
---|
69 | // angle between the surface-normal and the incoming ray, for
|
---|
70 | // n1>n2, alpha is the angle between the outgoing ray and the
|
---|
71 | // surface-normal.
|
---|
72 | //
|
---|
73 | // It is not valid to call the function for n1>n2 when alpha exceeds
|
---|
74 | // the critical angle. Alpha is defined in the range [0deg, 90deg]
|
---|
75 | // For Alpha [90;180], The angle is assumed the absolute value of the cosine is used.
|
---|
76 | //
|
---|
77 | // alpha must be given in radians and defined between [0deg and 90deg]
|
---|
78 | //
|
---|
79 | // Taken from:
|
---|
80 | // https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
|
---|
81 | //
|
---|
82 | double MOptics::SchlickReflectivity(double alpha, double n1, double n2)
|
---|
83 | {
|
---|
84 | const double r0 = (n1-n2)/(n1+n2);
|
---|
85 | const double r2 = r0 * r0;
|
---|
86 |
|
---|
87 | const double p = 1-cos(alpha);
|
---|
88 |
|
---|
89 | return r2 + (1-r2) * p*p*p*p*p;
|
---|
90 | }
|
---|
91 |
|
---|
92 | // --------------------------------------------------------------------------
|
---|
93 | //
|
---|
94 | // Same as SchlickReflectivity(double,double,double) but takes the direction
|
---|
95 | // vector of the incoming or outgoing ray as u and the normal vector of the
|
---|
96 | // surface. The normal vector points from n2 to n1.
|
---|
97 | //
|
---|
98 | double MOptics::SchlickReflectivity(const TVector3 &u, const TVector3 &n, double n1, double n2)
|
---|
99 | {
|
---|
100 | const double r0 = (n1-n2)/(n1+n2);
|
---|
101 | const double r2 = r0 * r0;
|
---|
102 |
|
---|
103 | const double c = -n*u;
|
---|
104 |
|
---|
105 | const double p = 1-c;
|
---|
106 |
|
---|
107 | return r2 + (1-r2) * p*p*p*p*p;
|
---|
108 | }
|
---|
109 |
|
---|
110 | // --------------------------------------------------------------------------
|
---|
111 | //
|
---|
112 | // Applies refraction to the direction vector u on a surface with the normal
|
---|
113 | // vector n for a ray coming from a medium with refractive index n1
|
---|
114 | // passing into a medium with refractive index n2. Note that the normal
|
---|
115 | // vector is defined pointing from medium n2 to medium n1 (so opposite
|
---|
116 | // of u).
|
---|
117 | //
|
---|
118 | // Note that u and n must be normalized before calling the function!
|
---|
119 | //
|
---|
120 | // Solution accoridng to (Section 6)
|
---|
121 | // https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
|
---|
122 | //
|
---|
123 | // u_out = n1/n2 * u_in + (n1/n2 * cos(theta_in) - sqrt(1-sin^2(theta_out)) * n
|
---|
124 | // sin^2(theta_out) = (n1/n2)^2 * sin^2(theta_in) = (n1/n2)^2 * (1-cos^2(theta_in))
|
---|
125 | // cos(theta_in) = +- u_in * n
|
---|
126 | //
|
---|
127 | // In case of success, the vector u is altered and true is returned. In case
|
---|
128 | // of failure (incident angle above critical angle for total internal reflection)
|
---|
129 | // vector u stays untouched and false is returned.
|
---|
130 | //
|
---|
131 | bool MOptics::ApplyRefraction(TVector3 &u, const TVector3 &n, double n1, double n2)
|
---|
132 | {
|
---|
133 | // The vector should be normalized already
|
---|
134 | // u.NormalizeVector();
|
---|
135 | // n.NormalizeVector();
|
---|
136 |
|
---|
137 | // Usually: Theta [0;90]
|
---|
138 | // Here: Theta [90;180] => c=|n*u| < 0
|
---|
139 |
|
---|
140 | const double r = n1/n2;
|
---|
141 | const double c = -n*u;
|
---|
142 |
|
---|
143 | const double rc = r*c;
|
---|
144 |
|
---|
145 | const double s2 = r*r - rc*rc; // sin(theta_out)^2 = r^2*(1-cos(theta_in)^2)
|
---|
146 |
|
---|
147 | if (s2>1)
|
---|
148 | return false;
|
---|
149 |
|
---|
150 | const double v = rc - sqrt(1-s2);
|
---|
151 |
|
---|
152 | u = r*u + v*n;
|
---|
153 |
|
---|
154 | return true;
|
---|
155 | }
|
---|
156 |
|
---|
157 | // --------------------------------------------------------------------------
|
---|
158 | //
|
---|
159 | // In addition to calculating ApplyRefraction(u.fVectorPart, n, n1, n2),
|
---|
160 | // the fourth component (inverse of the speed) is multiplied with n1/n2
|
---|
161 | // of tramission was successfull (ApplyRefraction retruned true)
|
---|
162 | //
|
---|
163 | // Note that .fVectorPart and n must be normalized before calling the function!
|
---|
164 | //
|
---|
165 | bool MOptics::ApplyRefraction(MQuaternion &u, const TVector3 &n, double n1, double n2)
|
---|
166 | {
|
---|
167 | if (!ApplyRefraction(u.fVectorPart, n, n1, n2))
|
---|
168 | return false;
|
---|
169 |
|
---|
170 | u.fRealPart *= n2/n1;
|
---|
171 | return true;
|
---|
172 | }
|
---|
173 |
|
---|
174 | // --------------------------------------------------------------------------
|
---|
175 | //
|
---|
176 | // Applies a transition from one medium (n1) to another medium (n2)
|
---|
177 | // n1 is always the medium where the photon comes from.
|
---|
178 | //
|
---|
179 | // Uses Schlick's approximation for reflection
|
---|
180 | //
|
---|
181 | // The direction of the normal vector does not matter, it is automatically
|
---|
182 | // aligned (opposite) of the direction of the incoming photon.
|
---|
183 | //
|
---|
184 | // Based on
|
---|
185 | // https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
|
---|
186 | //
|
---|
187 | // Returns:
|
---|
188 | //
|
---|
189 | // 0 error (total internal reflection from optical thin to optical thick medium)
|
---|
190 | //
|
---|
191 | // 1 total internal reflection applied
|
---|
192 | // 2 Monte Carlo reflection applied
|
---|
193 | //
|
---|
194 | // 3 nothing done (n1==n2, transmission)
|
---|
195 | // 4 refraction applied from optical thick to optically thinner medium
|
---|
196 | // 5 refraction applied from optical thin to optically thicker medium
|
---|
197 | //
|
---|
198 | int MOptics::ApplyTransitionFast(TVector3 &dir, TVector3 n, double n1, double n2)
|
---|
199 | {
|
---|
200 | if (n1==n2)
|
---|
201 | return 3;
|
---|
202 |
|
---|
203 | // The normal vector must point in the same direction as
|
---|
204 | // the photon is moving and thus cos(theta)=[90;180]
|
---|
205 | if (dir*n>0)
|
---|
206 | n *= -1;
|
---|
207 |
|
---|
208 | TVector3 u(dir);
|
---|
209 |
|
---|
210 | // From optical thick to optical thin medium
|
---|
211 | if (n1>n2)
|
---|
212 | {
|
---|
213 | // Check for refraction...
|
---|
214 | // ... if possible: use exit angle for calculating reflectivity
|
---|
215 | // ... if not possible: reflect ray
|
---|
216 | if (!ApplyRefraction(u, n, n1, n2))
|
---|
217 | {
|
---|
218 | // Total Internal Reflection
|
---|
219 | dir *= MReflection(n);
|
---|
220 | return 1;
|
---|
221 | }
|
---|
222 | }
|
---|
223 |
|
---|
224 | const double reflectivity = SchlickReflectivity(u, n, n1, n2);
|
---|
225 |
|
---|
226 | // ----- Case of reflection ----
|
---|
227 |
|
---|
228 | if (gRandom->Uniform()<reflectivity)
|
---|
229 | {
|
---|
230 | dir *= MReflection(n);
|
---|
231 | return 2;
|
---|
232 | }
|
---|
233 |
|
---|
234 | // ----- Case of refraction ----
|
---|
235 |
|
---|
236 | // From optical thick to optical thin medium
|
---|
237 | if (n1>n2)
|
---|
238 | {
|
---|
239 | // Now we know that refraction was correctly applied
|
---|
240 | dir = u;
|
---|
241 | return 4;
|
---|
242 | }
|
---|
243 |
|
---|
244 | // From optical thin to optical thick medium
|
---|
245 | // Still need to apply refraction
|
---|
246 |
|
---|
247 | if (ApplyRefraction(dir, n, n1, n2))
|
---|
248 | return 5;
|
---|
249 |
|
---|
250 | // ERROR => Total Internal Reflection not possible
|
---|
251 | // This should never happen
|
---|
252 | return 0;
|
---|
253 | }
|
---|
254 |
|
---|
255 | // --------------------------------------------------------------------------
|
---|
256 | //
|
---|
257 | // Applies a transition from one medium (n1) to another medium (n2)
|
---|
258 | // n1 is always the medium where the photon comes from.
|
---|
259 | //
|
---|
260 | // Uses Fresnel's equation for calculating reflection. Total internal
|
---|
261 | // reflection above the critical angle will always take place. Fresnel
|
---|
262 | // reflection will only be calculated if 'fresnel' is set to true (default).
|
---|
263 | // For Fresnel reflection, a random number is produced according to the
|
---|
264 | // calculated reflectivity to decide whether the ray is reflected or
|
---|
265 | // refracted.
|
---|
266 | //
|
---|
267 | //
|
---|
268 | // The direction of the normal vector does not matter, it is automatically
|
---|
269 | // aligned (opposite) of the direction of the incoming photon.
|
---|
270 | //
|
---|
271 | // Based on
|
---|
272 | // https://graphics.stanford.edu/courses/cs148-10-summer/docs/2006--degreve--reflection_refraction.pdf
|
---|
273 | //
|
---|
274 | // Returns:
|
---|
275 | //
|
---|
276 | // 0 error (total internal reflection from optical thin to optical thick medium)
|
---|
277 | //
|
---|
278 | // 1 total internal reflection applied
|
---|
279 | // 2 Monte Carlo reflection applied
|
---|
280 | //
|
---|
281 | // 3 nothing done (n1==n2, transmission)
|
---|
282 | // 4 refraction applied
|
---|
283 | //
|
---|
284 | int MOptics::ApplyTransition(TVector3 &u, TVector3 n, double n1, double n2, bool fresnel)
|
---|
285 | {
|
---|
286 | if (n1==n2)
|
---|
287 | return 3;
|
---|
288 |
|
---|
289 | // The normal vector must point in the same direction as
|
---|
290 | // the photon is moving and thus cos(theta)=[90;180]
|
---|
291 | if (u*n>0)
|
---|
292 | n *= -1;
|
---|
293 |
|
---|
294 | // Calculate refraction outgoing direction (Snell's law)
|
---|
295 | const double r = n1/n2;
|
---|
296 | const double ci = -n*u; // cos(theta_in)
|
---|
297 | const double rci = r*ci; // n1/n2 * cos(theta_in)
|
---|
298 | const double st2 = r*r - rci*rci; // sin(theta_out)^2 = r^2*(1-cos(theta_in)^2)
|
---|
299 |
|
---|
300 | if (st2>1)
|
---|
301 | {
|
---|
302 | // Total Internal Reflection
|
---|
303 | u *= MReflection(n);
|
---|
304 | return 1;
|
---|
305 |
|
---|
306 | }
|
---|
307 |
|
---|
308 | const double ct = sqrt(1-st2); // cos(theta_out) = sqrt(1 - sin(theta_out)^2)
|
---|
309 | const double rct = r*ct; // n1/n2 * cos(theta_out)
|
---|
310 |
|
---|
311 | // Calculate reflectivity for none polarized rays (Fresnel's equation)
|
---|
312 | const double Rt = (rci - ct)/(rci + ct);
|
---|
313 | const double Rp = (rct - ci)/(rct + ci);
|
---|
314 |
|
---|
315 | const double reflectivity = (Rt*Rt + Rp*Rp)/2;
|
---|
316 |
|
---|
317 | if (fresnel && gRandom->Uniform()<reflectivity)
|
---|
318 | {
|
---|
319 | // ----- Case of reflection ----
|
---|
320 | u *= MReflection(n);
|
---|
321 | return 2;
|
---|
322 | }
|
---|
323 | else
|
---|
324 | {
|
---|
325 | // ----- Case of refraction ----
|
---|
326 | u = r*u + (rci-ct)*n;
|
---|
327 | return 4;
|
---|
328 | }
|
---|
329 | }
|
---|
330 |
|
---|
331 | int MOptics::ApplyTransitionFast(MQuaternion &u, const TVector3 &n, double n1, double n2)
|
---|
332 | {
|
---|
333 | const int rc = ApplyTransitionFast(u.fVectorPart, n, n1, n2);
|
---|
334 | if (rc>=3)
|
---|
335 | u.fRealPart *= n2/n1;
|
---|
336 | return rc;
|
---|
337 | }
|
---|
338 |
|
---|
339 | int MOptics::ApplyTransition(MQuaternion &u, const TVector3 &n, double n1, double n2, bool fresnel)
|
---|
340 | {
|
---|
341 | const int rc = ApplyTransition(u.fVectorPart, n, n1, n2, fresnel);
|
---|
342 | if (rc>=3)
|
---|
343 | u.fRealPart *= n2/n1;
|
---|
344 | return rc;
|
---|
345 | }
|
---|