/* ======================================================================== *\ ! ! * ! * This file is part of CheObs, the Modular Analysis and Reconstruction ! * Software. It is distributed to you in the hope that it can be a useful ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes. ! * It is distributed WITHOUT ANY WARRANTY. ! * ! * Permission to use, copy, modify and distribute this software and its ! * documentation for any purpose is hereby granted without fee, ! * provided that the above copyright notice appears in all copies and ! * that both that copyright notice and this permission notice appear ! * in supporting documentation. It is provided "as is" without express ! * or implied warranty. ! * ! ! ! Author(s): Thomas Bretz, 1/2009 ! ! Copyright: CheObs Software Development, 2000-2010 ! ! \* ======================================================================== */ ////////////////////////////////////////////////////////////////////////////// // // MSimReflector // // fDetectorMargin is a margin (in mm) which is given to the // MGeomCam::HitDetector. It should define a margin around the area // defined in HitDetector on the focal plane in which photons are kept. // Usually this can be 0 because photons not hitting the detector are // obsolete except they can later be "moved" inside the detector, e.g. // if you use MSimPSF to emulate a PSF by moving photons randomly // on the focal plane. To switch off this check set detector margin to -1. // ////////////////////////////////////////////////////////////////////////////// #include "MSimReflector.h" #include #include #include "MGeomCam.h" #include "MLog.h" #include "MLogManip.h" #include "MParList.h" #include "MQuaternion.h" #include "MMirror.h" #include "MReflector.h" #include "MReflection.h" #include "MCorsikaEvtHeader.h" //#include "MCorsikaRunHeader.h" #include "MPhotonEvent.h" #include "MPhotonData.h" #include "MPointingPos.h" ClassImp(MSimReflector); using namespace std; // USEFUL CORSIKA OPTIONS: // NOCLONG // -------------------------------------------------------------------------- // // Default Constructor. // MSimReflector::MSimReflector(const char* name, const char *title) : fEvt(0), fMirror0(0), fMirror1(0), fMirror2(0), fMirror3(0), fMirror4(0), /*fRunHeader(0),*/ fEvtHeader(0), fReflector(0), fGeomCam(0), fPointing(0), fNameReflector("MReflector"), fDetectorMargin(0) { fName = name ? name : "MSimReflector"; fTitle = title ? title : "Task to calculate reflection os a mirror"; } // -------------------------------------------------------------------------- // // Search for the necessary parameter containers. // Int_t MSimReflector::PreProcess(MParList *pList) { fMirror0 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane0"); if (!fMirror0) return kFALSE; fMirror1 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane1"); if (!fMirror1) return kFALSE; fMirror2 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane2"); if (!fMirror2) return kFALSE; fMirror3 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane3"); if (!fMirror3) return kFALSE; fMirror4 = (MPhotonEvent*)pList->FindCreateObj("MPhotonEvent", "MirrorPlane4"); if (!fMirror4) return kFALSE; fReflector = (MReflector*)pList->FindObject(fNameReflector, "MReflector"); if (!fReflector) { *fLog << err << fNameReflector << " [MReflector] not found..." << endl; return kFALSE; } if (fReflector->GetNumMirrors()==0) { *fLog << err << "ERROR - Reflector '" << fNameReflector << "' doesn't contain a single mirror." << endl; return kFALSE; } fGeomCam = (MGeomCam*)pList->FindObject(fNameGeomCam, "MGeomCam"); if (!fGeomCam) { if (!fNameGeomCam.IsNull()) *fLog << inf << fNameGeomCam << " [MGeomCam] not found..." << endl; fGeomCam = (MGeomCam*)pList->FindObject("MGeomCam"); if (!fGeomCam) { *fLog << err << "MGeomCam not found... aborting." << endl; return kFALSE; } } fEvt = (MPhotonEvent*)pList->FindObject("MPhotonEvent"); if (!fEvt) { *fLog << err << "MPhotonEvent not found... aborting." << endl; return kFALSE; } /* fRunHeader = (MCorsikaRunHeader*)pList->FindObject("MCorsikaRunHeader"); if (!fRunHeader) { *fLog << err << "MCorsikaRunHeader not found... aborting." << endl; return kFALSE; } */ fEvtHeader = (MCorsikaEvtHeader*)pList->FindObject("MCorsikaEvtHeader"); if (!fEvtHeader) { *fLog << err << "MCorsikaEvtHeader not found... aborting." << endl; return kFALSE; } fPointing = (MPointingPos*)pList->FindObject(/*"PointingCorsika",*/ "MPointingPos"); if (!fPointing) { *fLog << err << "MPointingPos not found... aborting." << endl; return kFALSE; } return kTRUE; } // -------------------------------------------------------------------------- // // The main point of calculating the reflection is to determine the // coincidence point of the particle trajectory on the mirror surface. // // If the position and the trajectory of a particle is known it is enough // to calculate the z-value of coincidence. x and y are then well defined. // // Since the problem (mirror) has a rotational symmetry we only have to care // about the distance from the z-axis. // // Given: // // p: position vector of particle (z=0) // u: direction vector of particle // F: Focal distance of the mirror // // We define: // // q := (px, py ) // v := (ux/uz, uy/uz) // r^2 := x^2 + y^2 // // // Distance from z-axis: // --------------------- // // q' = q - z*v (z>0) // // Calculate distance r (|q|) // // r^2 = (px-z*ux)^2 + (py-z*uy)^2 // r^2 = px^2+py^2 + z^2*(ux^2+uy^2) - 2*z*(px*ux+py*uy) // r^2 = |q|^2 + z^2*|v|^2 - 2*z* q*v // // // Spherical Mirror Surface: (distance of surface point from 0/0/0) // ------------------------- // // Sphere: r^2 + z^2 = R^2 | Parabola: z = p*r^2 // Mirror: r^2 + (z-R)^2 = R^2 | Mirror: z = p*r^2 // | // Focal length: F=R/2 | Focal length: F = 1/4p // | // r^2 + (z-2*F)^2 = (2*F)^2 | z = r^2/4F // | // z = -sqrt(4*F*F - r*r) + 2*F | // z-2*F = -sqrt(4*F*F - r*r) | // (z-2*F)^2 = 4*F*F - r*r | // z^2-4*F*z+4*F^2 = 4*F*F - r*r (4F^2-r^2>0) | z - r^2/4F = 0 // z^2-4*F*z+r^2 = 0 // // Find the z for which our particle has the same distance from the z-axis // as the mirror surface. // // substitute r^2 // // // Equation to solve: // ------------------ // // z^2*(1+|v|^2) - 2*z*(2*F+q*v) + |q|^2 = 0 | z^2*|v|^2 - 2*z*(2*F+q*v) + |q|^2 = 0 // // z = (-b +- sqrt(b*b - 4ac))/(2*a) // // a = 1+|v|^2 | a = |v|^2 // b = - 2*b' with b' = 2*F+q*v | b = - 2*b' with b' = 2*F+q*v // c = |q|^2 | c = |q|^2 // | // // substitute b := 2*b' // // z = (2*b' +- 2*sqrt(b'*b' - ac))/(2*a) // z = ( b' +- sqrt(b'*b' - ac))/a // z = (b'/a +- sqrt(b'*b' - ac))/a // // substitute f := b'/a // // z = f +- sqrt(f^2 - c/a) // // ======================================================================================= // // After z of the incident point has been determined the position p is // propagated along u to the plane with z=z. Now it is checked if the // mirror was really hit (this is implemented in HasHit). // From the position on the surface and the mirrors curvature we can // now calculate the normal vector at the incident point. // This normal vector is smeared out with MMirror::PSF (basically a // random gaussian) and then the trajectory is reflected on the // resulting normal vector. // Bool_t MMirror::ExecuteReflection(MQuaternion &p, MQuaternion &u) const { // If the z-componenet of the direction vector is normalized to 1 // the calculation of the incident points becomes very simple and // the resulting z is just the z-coordinate of the incident point. const TVector2 v(u.XYvector()/u.Z()); const TVector2 q(p.XYvector()); // Radius of curvature const Double_t G = 2*fFocalLength; // Find the incident point of the vector to the mirror // u corresponds to downward going particles, thus we use -u here const Double_t b = G - q*v; const Double_t a = v.Mod2(); const Double_t c = q.Mod2(); // Solution for q spherical (a+1) (parabolic mirror (a) instead of (a+1)) const Double_t A = fShape ? a : a+1; const Double_t f = b/A; const Double_t g = c/A; // Solution of second order polynomial (transformed: a>0) // (The second solution can be omitted, it is the intersection // with the upper part of the sphere) const Double_t z = a==0 ? c/(2*b) : f - TMath::Sqrt(f*f - g); // Move the photon along its trajectory to the x/y plane of the // mirror's coordinate frame. Therefor stretch the vector // until its z-component is the distance from the vector origin // until the vector hits the mirror surface. // p += z/u.Z()*u; // p is at the mirror plane and we want to propagate back to the mirror surface p.PropagateZ(u, z); // MirrorShape: Now check if the photon really hit the mirror or just missed it if (!HasHit(p)) return kFALSE; // Get normal vector for reflection by calculating the derivatives // of a the mirror's surface along x and y const Double_t d = fShape ? G : TMath::Sqrt(G*G - p.R2()); // The solution for the normal vector is // TVector3 n(-p.X()/d, -p.Y()/d, 1)); // Since the normal vector doesn't need to be of normal // length we can avoid an obsolete division TVector3 n(p.X(), p.Y(), -d); if (fSigmaPSF>0) n += SimPSF(n); // Changes also the sign of the z-direction of flight // This is faster giving identical results u *= MReflection(n); //u *= MReflection(p.X(), p.Y(), -d); return kTRUE; } // -------------------------------------------------------------------------- // // Converts the coordinates into the coordinate frame of the mirror. // Executes the reflection calling ExecuteReflection and converts // the coordinates back. // Depending on whether the mirror was hit kTRUE or kFALSE is returned. // It the mirror was not hit the result coordinates are wrong. // Bool_t MMirror::ExecuteMirror(MQuaternion &p, MQuaternion &u) const { // Move the mirror to the point of origin and rotate the position into // the individual mirrors coordinate frame. // Rotate the direction vector into the mirror's coordinate frame p -= fPos; p *= fTilt; u *= fTilt; // Move the photon along its trajectory to the x/y plane of the // mirror's coordinate frame. Therefor stretch the vector // until its z-component vanishes. //p -= p.Z()/u.Z()*u; // p is at the reflector plane and we want to propagate back to the mirror plane p.PropagateZ0(u); // Now try to propagate the photon from the plane to the mirror // and reflect its direction vector on the mirror. if (!ExecuteReflection(p, u)) return kFALSE; // Derotate from mirror coordinates and shift the photon back to // reflector coordinates. // Derotate the direction vector u *= fTilt.Inverse(); p *= fTilt.Inverse(); p += fPos; return kTRUE; } // Jeder Spiegel sollte eine Liste aller andern Spiegel in der // reihenfolge Ihrer Entfernung enthalten. Wir starten mit der Suche // immer beim zuletzt getroffenen Spiegel! // // -------------------------------------------------------------------------- // // Loops over all mirrors of the reflector. After doing a rough check // whether the mirror can be hit at all the reflection is executed // calling the ExecuteMirror function of the mirrors. // // If a mirror was hit its index is retuened, -1 otherwise. // // FIXME: Do to lopping over all mirrors for all photons this is the // most time consuming function in teh reflector simulation. By a more // intelligent way of finding the right mirror then just testing all // this could be accelerated a lot. // Int_t MReflector::ExecuteReflector(MQuaternion &p, MQuaternion &u) const { //static const TObjArray *arr = &((MMirror*)fMirrors[0])->fNeighbors; // This way of access is somuch faster than the program is // a few percent slower if accessed by UncheckedAt const MMirror **s = GetFirstPtr(); const MMirror **e = s+GetNumMirrors(); //const MMirror **s = (const MMirror**)fMirrors.GetObjectRef(0); //const MMirror **e = s+fMirrors.GetEntriesFast(); //const MMirror **s = (const MMirror**)arr->GetObjectRef(0); //const MMirror **e = s+arr->GetEntriesFast(); // Loop over all mirrors for (const MMirror **m=s; mfNeighbors; return m-s; } return -1; } // -------------------------------------------------------------------------- // // Converts the photons into the telscope coordinate frame using the // pointing position from MPointingPos. // // Reflects all photons on all mirrors and stores the final photons on // the focal plane. Also intermediate photons are stored for debugging. // Int_t MSimReflector::Process() { // Get arrays from event container TClonesArray &arr = fEvt->GetArray(); // Because we knwo in advance what the maximum storage space could // be we allocated it in advance (or shrink it if it was extremely // huge before) // Note, that the drawback is that an extremly large event // will take about five times its storage space // for a moment even if a lot from it is unused. // It will be freed in the next step. fMirror0->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData fMirror2->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData fMirror3->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData fMirror4->Resize(arr.GetEntriesFast()); // Free memory of allocated MPhotonData // Initialize mirror properties const Double_t F = fGeomCam->GetCameraDist()*100; // Focal length [cm] // Local sky coordinates (direction of telescope axis) const Double_t zd = fPointing->GetZdRad(); // x==north const Double_t az = fPointing->GetAzRad(); // Rotation matrix to derotate sky // For the new coordinate system see the Wiki TRotation rot; // The signs are positive because we align the incident point on ground to the telescope axis rot.RotateZ( az); // Rotate point on ground to align it with the telescope axis rot.RotateX(-zd); // tilt the point from ground to make it parallel to the mirror plane // Now get the impact point from Corsikas output const TVector3 impact(fEvtHeader->GetX(), fEvtHeader->GetY(), 0); // Counter for number of total and final events UInt_t cnt[6] = { 0, 0, 0, 0, 0, 0 }; const Int_t num = arr.GetEntriesFast(); for (Int_t idx=0; idx(arr.UncheckedAt(idx)); // w is pointing away from the direction the photon comes from // CORSIKA-orig: x(north), y(west), z(up), t(time) // NOW: x(east), y(north), z(up), t(time) MQuaternion p(dat->GetPosQ()); // z=0 MQuaternion w(dat->GetDirQ()); // z<0 // Shift the coordinate system to the telescope. Corsika's // coordinate system is always w.r.t. to the particle axis p -= impact; // Rotate the coordinates into the reflector's coordinate system. // It is assumed that the z-plane is parallel to the focal plane. // (The reflector coordinate system is defined by the telescope orientation) p *= rot; w *= rot; // ---> Simulate star-light! // w.fVectorPart.SetXYZ(0.2/17, 0.2/17, -(1-TMath::Hypot(0.3, 0.2)/17)); // Now propagate the photon to the z-plane in the new coordinate system p.PropagateZ0(w); // Store new position and direction in the reflector's coordinate frame dat->SetPosition(p); dat->SetDirection(w); (*fMirror0)[cnt[0]++] = *dat; //*static_cast(cpy0.UncheckedAt(cnt[0]++)) = *dat; // Check if the photon has hit the camera housing and holding if (fGeomCam->HitFrame(p, w)) continue; // FIXME: Do we really need this one?? //(*fMirror1)[cnt[1]++] = *dat; //*static_cast(cpy1.UncheckedAt(cnt[1]++)) = *dat; // Check if the reflector can be hit at all if (!fReflector->CanHit(p)) continue; (*fMirror2)[cnt[2]++] = *dat; //*static_cast(cpy2.UncheckedAt(cnt[2]++)) = *dat; // Now execute the reflection of the photon on the mirrors' surfaces const Int_t num = fReflector->ExecuteReflector(p, w); if (num<0) continue; // Set new position and direction (w.r.t. to the reflector's coordinate system) // Set also the index of the mirror which was hit as tag. dat->SetTag(num); dat->SetPosition(p); dat->SetDirection(w); (*fMirror3)[cnt[3]++] = *dat; //*static_cast(cpy3.UncheckedAt(cnt[3]++)) = *dat; // Propagate the photon along its trajectory to the focal plane z=F p.PropagateZ(w, F); // Store new position dat->SetPosition(p); (*fMirror4)[cnt[4]++] = *dat; //*static_cast(cpy4.UncheckedAt(cnt[4]++)) = *dat; // FIXME: It make make sense to move this out of this class // It is detector specific not reflector specific // Discard all photons which definitly can not hit the detector surface if (fDetectorMargin>=0 && !fGeomCam->HitDetector(p, fDetectorMargin)) continue; // Copy this event to the next 'new' in the list *static_cast(arr.UncheckedAt(cnt[5]++)) = *dat; } // Now we shrink the array to a storable size (for details see // MPhotonEvent::Shrink). fMirror0->Shrink(cnt[0]); //fMirror1->Shrink(cnt[1]); fMirror2->Shrink(cnt[2]); fMirror3->Shrink(cnt[3]); fMirror4->Shrink(cnt[4]); fEvt->Shrink(cnt[5]); // Doesn't seem to be too time consuming. But we could also sort later! // (after cones, inside the camera) fEvt->Sort(kTRUE); // FIXME FIXME FIXME: Set maxindex, first and last time. // SetMaxIndex(fReflector->GetNumMirrors()-1) // if (fEvt->GetNumPhotons()) // { // SetTime(fEvt->GetFirst()->GetTime(), fEvt->GetLast()->GetTime()); // } return kTRUE; } // -------------------------------------------------------------------------- // // DetectorMargin: 0 // Int_t MSimReflector::ReadEnv(const TEnv &env, TString prefix, Bool_t print) { Bool_t rc = kFALSE; if (IsEnvDefined(env, prefix, "DetectorMargin", print)) { rc = kTRUE; fDetectorMargin = GetEnvValue(env, prefix, "DetectorMargin", 0); } return rc; }