// @(#)root/physics:$Name: not supported by cvs2svn $:$Id: MRolke.cc,v 1.2 2006-10-17 16:32:52 meyer Exp $ // Author: Jan Conrad 9/2/2004 /************************************************************************* * Copyright (C) 1995-2004, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ ////////////////////////////////////////////////////////////////////////////// // // MRolke // // This class computes confidence intervals for the rate of a Poisson // in the presence of background and efficiency with a fully frequentist // treatment of the uncertainties in the efficiency and background estimate // using the profile likelihood method. // // The signal is always assumed to be Poisson. // // The method is very similar to the one used in MINUIT (MINOS). // // Two options are offered to deal with cases where the maximum likelihood // estimate (MLE) is not in the physical region. Version "bounded likelihood" // is the one used by MINOS if bounds for the physical region are chosen. Versi// on "unbounded likelihood (the default) allows the MLE to be in the // unphysical region. It has however better coverage. // For more details consult the reference (see below). // // // It allows the following Models: // // 1: Background - Poisson, Efficiency - Binomial (cl,x,y,z,tau,m) // 2: Background - Poisson, Efficiency - Gaussian (cl,xd,y,em,tau,sde) // 3: Background - Gaussian, Efficiency - Gaussian (cl,x,bm,em,sd) // 4: Background - Poisson, Efficiency - known (cl,x,y,tau,e) // 5: Background - Gaussian, Efficiency - known (cl,x,y,z,sdb,e) // 6: Background - known, Efficiency - Binomial (cl,x,z,m,b) // 7: Background - known, Efficiency - Gaussian (cl,x,em,sde,b) // // Parameter definition: // // cl = Confidence level // // x = number of observed events // // y = number of background events // // z = number of simulated signal events // // em = measurement of the efficiency. // // bm = background estimate // // tau = ratio between signal and background region (in case background is // observed) ratio between observed and simulated livetime in case // background is determined from MC. // // sd(x) = sigma of the Gaussian // // e = true efficiency (in case known) // // b = expected background (in case known) // // m = number of MC runs // // mid = ID number of the model ... // // For a description of the method and its properties: // // W.Rolke, A. Lopez, J. Conrad and Fred James // "Limits and Confidence Intervals in presence of nuisance parameters" // http://lanl.arxiv.org/abs/physics/0403059 // Nucl.Instrum.Meth.A551:493-503,2005 // // Should I use MRolke, TFeldmanCousins, TLimit? // ============================================ // 1. I guess MRolke makes TFeldmanCousins obsolete? // // Certainly not. TFeldmanCousins is the fully frequentist construction and // should be used in case of no (or negligible uncertainties). It is however // not capable of treating uncertainties in nuisance parameters. // MRolke is desined for this case and it is shown in the reference above // that it has good coverage properties for most cases, ie it might be // used where FeldmannCousins can't. // // 2. What are the advantages of MRolke over TLimit? // // MRolke is fully frequentist. TLimit treats nuisance parameters Bayesian. // For a coverage study of a Bayesian method refer to // physics/0408039 (Tegenfeldt & J.C). However, this note studies // the coverage of Feldman&Cousins with Bayesian treatment of nuisance // parameters. To make a long story short: using the Bayesian method you // might introduce a small amount of over-coverage (though I haven't shown it // for TLimit). On the other hand, coverage of course is a not so interesting // when you consider yourself a Bayesian. // // Author: Jan Conrad (CERN) // // see example in tutorial Rolke.C // // Copyright CERN 2004 Jan.Conrad@cern.ch // /////////////////////////////////////////////////////////////////////////// #include "MRolke.h" #include "TMath.h" #include "Riostream.h" ClassImp(MRolke) //__________________________________________________________________________ MRolke::MRolke(Double_t CL, Option_t * /*option*/) { //constructor fUpperLimit = 0.0; fLowerLimit = 0.0; fCL = CL; fSwitch = 0; // 0: unbounded likelihood // 1: bounded likelihood } //___________________________________________________________________________ MRolke::~MRolke() { } //___________________________________________________________________________ Double_t MRolke::CalculateInterval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em,Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m) { //calculate interval Int_t done = 0; Double_t limit[2]; limit[1] = Interval(x,y,z,bm,em,e,mid, sde,sdb,tau,b,m); if (limit[1] > 0) { done = 1; } if (fSwitch == 0) { Int_t trial_x = x; while (done == 0) { trial_x++; limit[1] = Interval(trial_x,y,z,bm,em,e,mid, sde,sdb,tau,b,m); if (limit[1] > 0) done = 1; } } return limit[1]; } //_____________________________________________________________________ Double_t MRolke::Interval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em,Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m) { // Calculates the Confidence Interval //Double_t dchi2 = Chi2Percentile(1,1-fCL); Double_t dchi2 = TMath::ChisquareQuantile(fCL, 1); Double_t tempxy[2],limits[2] = {0,0}; Double_t slope,fmid,low,flow,high,fhigh,test,ftest,mu0,maximum,target,l,f0; Double_t med = 0; Double_t maxiter=1000, acc = 0.00001; Int_t bp = 0; if ((mid != 3) && (mid != 5)) bm = (Double_t)y; if ((mid == 3) || (mid == 5)) { if (bm == 0) bm = 0.00001; } if ((mid <= 2) || (mid == 4)) bp = 1; if (bp == 1 && x == 0 && bm > 0 ){ for(Int_t i = 0; i < 2; i++) { x++; tempxy[i] = Interval(x,y,z,bm,em,e,mid,sde,sdb,tau,b,m); } slope = tempxy[1] - tempxy[0]; limits[1] = tempxy[0] - slope; limits[0] = 0.0; if (limits[1] < 0) limits[1] = 0.0; goto done; } if (bp != 1 && x == 0){ for(Int_t i = 0; i < 2; i++) { x++; tempxy[i] = Interval(x,y,z,bm,em,e,mid,sde,sdb,tau,b,m); } slope = tempxy[1] - tempxy[0]; limits[1] = tempxy[0] - slope; limits[0] = 0.0; if (limits[1] < 0) limits[1] = 0.0; goto done; } if (bp != 1 && bm == 0){ for(Int_t i = 0; i < 2; i++) { bm++; limits[1] = Interval(x,y,z,bm,em,e,mid,sde,sdb,tau,b,m); tempxy[i] = limits[1]; } slope = tempxy[1] - tempxy[0]; limits[1] = tempxy[0] - slope; if (limits[1] < 0) limits[1] = 0; goto done; } if (x == 0 && bm == 0){ x++; bm++; limits[1] = Interval(x,y,z,bm,em,e,mid,sde,sdb,tau,b,m); tempxy[0] = limits[1]; x = 1; bm = 2; limits[1] = Interval(x,y,z,bm,em,e,mid,sde,sdb,tau,b,m); tempxy[1] = limits[1]; x = 2; bm = 1; limits[1] = Interval(x,y,z,bm,em,e,mid,sde,sdb,tau,b,m); limits[1] = 3*tempxy[0] -tempxy[1] - limits[1]; if (limits[1] < 0) limits[1] = 0; goto done; } mu0 = Likelihood(0,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,1); maximum = Likelihood(0,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,2); test = 0; f0 = Likelihood(test,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,3); if ( fSwitch == 1 ) { // do this only for the unbounded likelihood case if ( mu0 < 0 ) maximum = f0; } target = maximum - dchi2; if (f0 > target) { limits[0] = 0; } else { if (mu0 < 0){ limits[0] = 0; limits[1] = 0; } low = 0; flow = f0; high = mu0; fhigh = maximum; for(Int_t i = 0; i < maxiter; i++) { l = (target-fhigh)/(flow-fhigh); if (l < 0.2) l = 0.2; if (l > 0.8) l = 0.8; med = l*low + (1-l)*high; if(med < 0.01){ limits[1]=0.0; goto done; } fmid = Likelihood(med,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,3); if (fmid > target) { high = med; fhigh = fmid; } else { low = med; flow = fmid; } if ((high-low) < acc*high) break; } limits[0] = med; } if(mu0 > 0) { low = mu0; flow = maximum; } else { low = 0; flow = f0; } test = low +1 ; ftest = Likelihood(test,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,3); if (ftest < target) { high = test; fhigh = ftest; } else { slope = (ftest - flow)/(test - low); high = test + (target -ftest)/slope; fhigh = Likelihood(high,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,3); } for(Int_t i = 0; i < maxiter; i++) { l = (target-fhigh)/(flow-fhigh); if (l < 0.2) l = 0.2; if (l > 0.8) l = 0.8; med = l * low + (1.-l)*high; fmid = Likelihood(med,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,3); if (fmid < target) { high = med; fhigh = fmid; } else { low = med; flow = fmid; } if (high-low < acc*high) break; } limits[1] = med; done: if ( (mid == 4) || (mid==5) ) { limits[0] /= e; limits[1] /= e; } fUpperLimit = limits[1]; fLowerLimit = TMath::Max(limits[0],0.0); return limits[1]; } //___________________________________________________________________________ Double_t MRolke::Likelihood(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t bm,Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m, Int_t what) { // Chooses between the different profile likelihood functions to use for the // different models. // Returns evaluation of the profile likelihood functions. switch (mid) { case 1: return EvalLikeMod1(mu,x,y,z,e,tau,b,m,what); case 2: return EvalLikeMod2(mu,x,y,em,e,sde,tau,b,what); case 3: return EvalLikeMod3(mu,x,bm,em,e,sde,sdb,b,what); case 4: return EvalLikeMod4(mu,x,y,tau,b,what); case 5: return EvalLikeMod5(mu,x,bm,sdb,b,what); case 6: return EvalLikeMod6(mu,x,z,e,b,m,what); case 7: return EvalLikeMod7(mu,x,em,e,sde,b,what); } return 0; } //_________________________________________________________________________ Double_t MRolke::EvalLikeMod1(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t e, Double_t tau, Double_t b, Int_t m, Int_t what) { // Calculates the Profile Likelihood for MODEL 1: // Poisson background/ Binomial Efficiency // what = 1: Maximum likelihood estimate is returned // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned. // what = 3: Profile Likelihood of Test hypothesis is returned // otherwise parameters as described in the beginning of the class) Double_t f = 0; Double_t zm = Double_t(z)/m; if (what == 1) { f = (x-y/tau)/zm; } if (what == 2) { mu = (x-y/tau)/zm; b = y/tau; Double_t ee = zm; f = LikeMod1(mu,b,ee,x,y,z,tau,m); } if (what == 3) { if (mu == 0){ b = (x+y)/(1.0+tau); e = zm; f = LikeMod1(mu,b,e,x,y,z,tau,m); } else { MRolke g; g.ProfLikeMod1(mu,b,e,x,y,z,tau,m); f = LikeMod1(mu,b,e,x,y,z,tau,m); } } return f; } //________________________________________________________________________ Double_t MRolke::LikeMod1(Double_t mu,Double_t b, Double_t e, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m) { // Profile Likelihood function for MODEL 1: // Poisson background/ Binomial Efficiency return 2*(x*TMath::Log(e*mu+b)-(e*mu +b)-LogFactorial(x)+y*TMath::Log(tau*b)-tau*b-LogFactorial(y) + TMath::Log(TMath::Factorial(m)) - TMath::Log(TMath::Factorial(m-z)) - TMath::Log(TMath::Factorial(z))+ z * TMath::Log(e) + (m-z)*TMath::Log(1-e)); } //________________________________________________________________________ void MRolke::ProfLikeMod1(Double_t mu,Double_t &b,Double_t &e,Int_t x,Int_t y, Int_t z,Double_t tau,Int_t m) { // Void needed to calculate estimates of efficiency and background for model 1 Double_t med = 0.0,fmid; Int_t maxiter =1000; Double_t acc = 0.00001; Double_t emin = ((m+mu*tau)-TMath::Sqrt((m+mu*tau)*(m+mu*tau)-4 * mu* tau * z))/2/mu/tau; Double_t low = TMath::Max(1e-10,emin+1e-10); Double_t high = 1 - 1e-10; for(Int_t i = 0; i < maxiter; i++) { med = (low+high)/2.; fmid = LikeGradMod1(med,mu,x,y,z,tau,m); if(high < 0.5) acc = 0.00001*high; else acc = 0.00001*(1-high); if ((high - low) < acc*high) break; if(fmid > 0) low = med; else high = med; } e = med; Double_t eta = Double_t(z)/e -Double_t(m-z)/(1-e); b = Double_t(y)/(tau -eta/mu); } //___________________________________________________________________________ Double_t MRolke::LikeGradMod1(Double_t e, Double_t mu, Int_t x,Int_t y,Int_t z,Double_t tau,Int_t m) { //gradient model Double_t eta, etaprime, bprime,f; eta = static_cast(z)/e - static_cast(m-z)/(1.0 - e); etaprime = (-1) * (static_cast(m-z)/((1.0 - e)*(1.0 - e)) + static_cast(z)/(e*e)); Double_t b = y/(tau - eta/mu); bprime = (b*b * etaprime)/mu/y; f = (mu + bprime) * (x/(e * mu + b) - 1)+(y/b - tau) * bprime + eta; return f; } //___________________________________________________________________________ Double_t MRolke::EvalLikeMod2(Double_t mu, Int_t x, Int_t y, Double_t em, Double_t e,Double_t sde, Double_t tau, Double_t b, Int_t what) { // Calculates the Profile Likelihood for MODEL 2: // Poisson background/ Gauss Efficiency // what = 1: Maximum likelihood estimate is returned // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned. // what = 3: Profile Likelihood of Test hypothesis is returned // otherwise parameters as described in the beginning of the class) Double_t v = sde*sde; Double_t coef[4],roots[3]; Double_t f = 0; if (what == 1) { f = (x-y/tau)/em; } if (what == 2) { mu = (x-y/tau)/em; b = y/tau; e = em; f = LikeMod2(mu,b,e,x,y,em,tau,v); } if (what == 3) { if (mu == 0 ) { b = (x+y)/(1+tau); f = LikeMod2(mu,b,e,x,y,em,tau,v); } else { coef[3] = mu; coef[2] = mu*mu*v-2*em*mu-mu*mu*v*tau; coef[1] = ( - x)*mu*v - mu*mu*mu*v*v*tau - mu*mu*v*em + em*mu*mu*v*tau + em*em*mu - y*mu*v; coef[0] = x*mu*mu*v*v*tau + x*em*mu*v - y*mu*mu*v*v + y*em*mu*v; TMath::RootsCubic(coef,roots[0],roots[1],roots[2]); e = roots[1]; b = y/(tau + (em - e)/mu/v); f = LikeMod2(mu,b,e,x,y,em,tau,v); } } return f; } //_________________________________________________________________________ Double_t MRolke::LikeMod2(Double_t mu, Double_t b, Double_t e,Int_t x,Int_t y,Double_t em,Double_t tau, Double_t v) { // Profile Likelihood function for MODEL 2: // Poisson background/Gauss Efficiency return 2*(x*TMath::Log(e*mu+b)-(e*mu+b)-LogFactorial(x)+y*TMath::Log(tau*b)-tau*b-LogFactorial(y)-0.9189385-TMath::Log(v)/2-(em-e)*(em-e)/v/2); } //_____________________________________________________________________ Double_t MRolke::EvalLikeMod3(Double_t mu, Int_t x, Double_t bm, Double_t em, Double_t e, Double_t sde, Double_t sdb, Double_t b, Int_t what) { // Calculates the Profile Likelihood for MODEL 3: // Gauss background/ Gauss Efficiency // what = 1: Maximum likelihood estimate is returned // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned. // what = 3: Profile Likelihood of Test hypothesis is returned // otherwise parameters as described in the beginning of the class) Double_t f = 0.; Double_t v = sde*sde; Double_t u = sdb*sdb; if (what == 1) { f = (x-bm)/em; } if (what == 2) { mu = (x-bm)/em; b = bm; e = em; f = LikeMod3(mu,b,e,x,bm,em,u,v); } if(what == 3) { if(mu == 0.0){ b = ((bm-u)+TMath::Sqrt((bm-u)*(bm-u)+4*x*u))/2.; e = em; f = LikeMod3(mu,b,e,x,bm,em,u,v); } else { Double_t temp[3]; temp[0] = mu*mu*v+u; temp[1] = mu*mu*mu*v*v+mu*v*u-mu*mu*v*em+mu*v*bm-2*u*em; temp[2] = mu*mu*v*v*bm-mu*v*u*em-mu*v*bm*em+u*em*em-mu*mu*v*v*x; e = (-temp[1]+TMath::Sqrt(temp[1]*temp[1]-4*temp[0]*temp[2]))/2/temp[0]; b = bm-(u*(em-e))/v/mu; f = LikeMod3(mu,b,e,x,bm,em,u,v); } } return f; } //____________________________________________________________________ Double_t MRolke::LikeMod3(Double_t mu,Double_t b,Double_t e,Int_t x,Double_t bm,Double_t em,Double_t u,Double_t v) { // Profile Likelihood function for MODEL 3: // Gauss background/Gauss Efficiency return 2*(x * TMath::Log(e*mu+b)-(e*mu+b)-LogFactorial(x)-1.837877-TMath::Log(u)/2-(bm-b)*(bm-b)/u/2-TMath::Log(v)/2-(em-e)*(em-e)/v/2); } //____________________________________________________________________ Double_t MRolke::EvalLikeMod4(Double_t mu, Int_t x, Int_t y, Double_t tau, Double_t b, Int_t what) { // Calculates the Profile Likelihood for MODEL 4: // Poiss background/Efficiency known // what = 1: Maximum likelihood estimate is returned // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned. // what = 3: Profile Likelihood of Test hypothesis is returned // otherwise parameters as described in the beginning of the class) Double_t f = 0.0; if (what == 1) f = x-y/tau; if (what == 2) { mu = x-y/tau; b = Double_t(y)/tau; f = LikeMod4(mu,b,x,y,tau); } if (what == 3) { if (mu == 0.0) { b = Double_t(x+y)/(1+tau); f = LikeMod4(mu,b,x,y,tau); } else { b = (x+y-(1+tau)*mu+sqrt((x+y-(1+tau)*mu)*(x+y-(1+tau)*mu)+4*(1+tau)*y*mu))/2/(1+tau); f = LikeMod4(mu,b,x,y,tau); } } return f; } //___________________________________________________________________ Double_t MRolke::LikeMod4(Double_t mu,Double_t b,Int_t x,Int_t y,Double_t tau) { // Profile Likelihood function for MODEL 4: // Poiss background/Efficiency known return 2*(x*TMath::Log(mu+b)-(mu+b)-LogFactorial(x)+y*TMath::Log(tau*b)-tau*b-LogFactorial(y) ); } //___________________________________________________________________ Double_t MRolke::EvalLikeMod5(Double_t mu, Int_t x, Double_t bm, Double_t sdb, Double_t b, Int_t what) { // Calculates the Profile Likelihood for MODEL 5: // Gauss background/Efficiency known // what = 1: Maximum likelihood estimate is returned // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned. // what = 3: Profile Likelihood of Test hypothesis is returned // otherwise parameters as described in the beginning of the class) Double_t u=sdb*sdb; Double_t f = 0; if(what == 1) { f = x - bm; } if(what == 2) { mu = x-bm; b = bm; f = LikeMod5(mu,b,x,bm,u); } if (what == 3) { b = ((bm-u-mu)+TMath::Sqrt((bm-u-mu)*(bm-u-mu)-4*(mu*u-mu*bm-u*x)))/2; f = LikeMod5(mu,b,x,bm,u); } return f; } //_______________________________________________________________________ Double_t MRolke::LikeMod5(Double_t mu,Double_t b,Int_t x,Double_t bm,Double_t u) { // Profile Likelihood function for MODEL 5: // Gauss background/Efficiency known return 2*(x*TMath::Log(mu+b)-(mu + b)-LogFactorial(x)-0.9189385-TMath::Log(u)/2-((bm-b)*(bm-b))/u/2); } //_______________________________________________________________________ Double_t MRolke::EvalLikeMod6(Double_t mu, Int_t x, Int_t z, Double_t e, Double_t b, Int_t m, Int_t what) { // Calculates the Profile Likelihood for MODEL 6: // Gauss known/Efficiency binomial // what = 1: Maximum likelihood estimate is returned // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned. // what = 3: Profile Likelihood of Test hypothesis is returned // otherwise parameters as described in the beginning of the class) Double_t coef[4],roots[3]; Double_t f = 0.; Double_t zm = Double_t(z)/m; if(what==1){ f = (x-b)/zm; } if(what==2){ mu = (x-b)/zm; e = zm; f = LikeMod6(mu,b,e,x,z,m); } if(what == 3){ if(mu==0){ e = zm; } else { coef[3] = mu*mu; coef[2] = mu * b - mu * x - mu*mu - mu * m; coef[1] = mu * x - mu * b + mu * z - m * b; coef[0] = b * z; TMath::RootsCubic(coef,roots[0],roots[1],roots[2]); e = roots[1]; } f =LikeMod6(mu,b,e,x,z,m); } return f; } //_______________________________________________________________________ Double_t MRolke::LikeMod6(Double_t mu,Double_t b,Double_t e,Int_t x,Int_t z,Int_t m) { // Profile Likelihood function for MODEL 6: // background known/ Efficiency binomial Double_t f = 0.0; if (z > 100 || m > 100) { f = 2*(x*TMath::Log(e*mu+b)-(e*mu+b)-LogFactorial(x)+(m*TMath::Log(m) - m)-(z*TMath::Log(z) - z) - ((m-z)*TMath::Log(m-z) - m + z)+z*TMath::Log(e)+(m-z)*TMath::Log(1-e)); } else { f = 2*(x*TMath::Log(e*mu+b)-(e*mu+b)-LogFactorial(x)+TMath::Log(TMath::Factorial(m))-TMath::Log(TMath::Factorial(z))-TMath::Log(TMath::Factorial(m-z))+z*TMath::Log(e)+(m-z)*TMath::Log(1-e)); } return f; } //___________________________________________________________________________ Double_t MRolke::EvalLikeMod7(Double_t mu, Int_t x, Double_t em, Double_t e, Double_t sde, Double_t b, Int_t what) { // Calculates the Profile Likelihood for MODEL 7: // background known/Efficiency Gauss // what = 1: Maximum likelihood estimate is returned // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned. // what = 3: Profile Likelihood of Test hypothesis is returned // otherwise parameters as described in the beginning of the class) Double_t v=sde*sde; Double_t f = 0.; if(what == 1) { f = (x-b)/em; } if(what == 2) { mu = (x-b)/em; e = em; f = LikeMod7(mu, b, e, x, em, v); } if(what == 3) { if(mu==0) { e = em; } else { e = ( -(mu*em-b-mu*mu*v)-TMath::Sqrt((mu*em-b-mu*mu*v)*(mu*em-b-mu*mu*v)+4*mu*(x*mu*v-mu*b*v + b * em)))/( - mu)/2; } f = LikeMod7(mu, b, e, x, em, v); } return f; } //___________________________________________________________________________ Double_t MRolke::LikeMod7(Double_t mu,Double_t b,Double_t e,Int_t x,Double_t em,Double_t v) { // Profile Likelihood function for MODEL 6: // background known/ Efficiency binomial return 2*(x*TMath::Log(e*mu+b)-(e*mu + b)-LogFactorial(x)-0.9189385-TMath::Log(v)/2-(em-e)*(em-e)/v/2); } //______________________________________________________________________ Double_t MRolke::EvalPolynomial(Double_t x, const Int_t coef[], Int_t N) { // evaluate polynomial const Int_t *p; p = coef; Double_t ans = *p++; Int_t i = N; do ans = ans * x + *p++; while( --i ); return ans; } //______________________________________________________________________ Double_t MRolke::EvalMonomial(Double_t x, const Int_t coef[], Int_t N) { // evaluate mononomial Double_t ans; const Int_t *p; p = coef; ans = x + *p++; Int_t i = N-1; do ans = ans * x + *p++; while( --i ); return ans; } //-------------------------------------------------------------------------- // // Uses Stirling-Wells formula: ln(N!) ~ N*ln(N) - N + 0.5*ln(2piN) // if N exceeds 70, otherwise use the TMath functions // // Double_t MRolke::LogFactorial(Int_t n) { if (n>69) return n*TMath::Log(n)-n + 0.5*TMath::Log(TMath::TwoPi()*n); else return TMath::Log(TMath::Factorial(n)); }