source: trunk/Mars/mtools/MRolke.cc@ 19916

Last change on this file since 19916 was 18957, checked in by tbretz, 7 years ago
Improved compiler warnings.
File size: 24.0 KB
Line 
1// @(#)root/physics:$Name: not supported by cvs2svn $:$Id: MRolke.cc,v 1.2 2006-10-17 16:32:52 meyer Exp $
2// Author: Jan Conrad 9/2/2004
3
4/*************************************************************************
5 * Copyright (C) 1995-2004, Rene Brun and Fons Rademakers. *
6 * All rights reserved. *
7 * *
8 * For the licensing terms see $ROOTSYS/LICENSE. *
9 * For the list of contributors see $ROOTSYS/README/CREDITS. *
10 *************************************************************************/
11
12//////////////////////////////////////////////////////////////////////////////
13//
14// MRolke
15//
16// This class computes confidence intervals for the rate of a Poisson
17// in the presence of background and efficiency with a fully frequentist
18// treatment of the uncertainties in the efficiency and background estimate
19// using the profile likelihood method.
20//
21// The signal is always assumed to be Poisson.
22//
23// The method is very similar to the one used in MINUIT (MINOS).
24//
25// Two options are offered to deal with cases where the maximum likelihood
26// estimate (MLE) is not in the physical region. Version "bounded likelihood"
27// is the one used by MINOS if bounds for the physical region are chosen. Versi// on "unbounded likelihood (the default) allows the MLE to be in the
28// unphysical region. It has however better coverage.
29// For more details consult the reference (see below).
30//
31//
32// It allows the following Models:
33//
34// 1: Background - Poisson, Efficiency - Binomial (cl,x,y,z,tau,m)
35// 2: Background - Poisson, Efficiency - Gaussian (cl,xd,y,em,tau,sde)
36// 3: Background - Gaussian, Efficiency - Gaussian (cl,x,bm,em,sd)
37// 4: Background - Poisson, Efficiency - known (cl,x,y,tau,e)
38// 5: Background - Gaussian, Efficiency - known (cl,x,y,z,sdb,e)
39// 6: Background - known, Efficiency - Binomial (cl,x,z,m,b)
40// 7: Background - known, Efficiency - Gaussian (cl,x,em,sde,b)
41//
42// Parameter definition:
43//
44// cl = Confidence level
45//
46// x = number of observed events
47//
48// y = number of background events
49//
50// z = number of simulated signal events
51//
52// em = measurement of the efficiency.
53//
54// bm = background estimate
55//
56// tau = ratio between signal and background region (in case background is
57// observed) ratio between observed and simulated livetime in case
58// background is determined from MC.
59//
60// sd(x) = sigma of the Gaussian
61//
62// e = true efficiency (in case known)
63//
64// b = expected background (in case known)
65//
66// m = number of MC runs
67//
68// mid = ID number of the model ...
69//
70// For a description of the method and its properties:
71//
72// W.Rolke, A. Lopez, J. Conrad and Fred James
73// "Limits and Confidence Intervals in presence of nuisance parameters"
74// http://lanl.arxiv.org/abs/physics/0403059
75// Nucl.Instrum.Meth.A551:493-503,2005
76//
77// Should I use MRolke, TFeldmanCousins, TLimit?
78// ============================================
79// 1. I guess MRolke makes TFeldmanCousins obsolete?
80//
81// Certainly not. TFeldmanCousins is the fully frequentist construction and
82// should be used in case of no (or negligible uncertainties). It is however
83// not capable of treating uncertainties in nuisance parameters.
84// MRolke is desined for this case and it is shown in the reference above
85// that it has good coverage properties for most cases, ie it might be
86// used where FeldmannCousins can't.
87//
88// 2. What are the advantages of MRolke over TLimit?
89//
90// MRolke is fully frequentist. TLimit treats nuisance parameters Bayesian.
91// For a coverage study of a Bayesian method refer to
92// physics/0408039 (Tegenfeldt & J.C). However, this note studies
93// the coverage of Feldman&Cousins with Bayesian treatment of nuisance
94// parameters. To make a long story short: using the Bayesian method you
95// might introduce a small amount of over-coverage (though I haven't shown it
96// for TLimit). On the other hand, coverage of course is a not so interesting
97// when you consider yourself a Bayesian.
98//
99// Author: Jan Conrad (CERN)
100//
101// see example in tutorial Rolke.C
102//
103// Copyright CERN 2004 Jan.Conrad@cern.ch
104//
105///////////////////////////////////////////////////////////////////////////
106
107
108#include "MRolke.h"
109#include "TMath.h"
110#include "Riostream.h"
111
112ClassImp(MRolke)
113
114//__________________________________________________________________________
115MRolke::MRolke(Double_t CL, Option_t * /*option*/)
116{
117 //constructor
118 fUpperLimit = 0.0;
119 fLowerLimit = 0.0;
120 fCL = CL;
121 fSwitch = 0; // 0: unbounded likelihood
122 // 1: bounded likelihood
123}
124
125//___________________________________________________________________________
126MRolke::~MRolke()
127{
128}
129
130
131//___________________________________________________________________________
132Double_t MRolke::CalculateInterval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em,Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m)
133{
134 //calculate interval
135 Int_t done = 0;
136 Double_t limit[2];
137
138 limit[1] = Interval(x,y,z,bm,em,e,mid, sde,sdb,tau,b,m);
139
140 if (limit[1] > 0) {
141 done = 1;
142 }
143
144 if (fSwitch == 0) {
145
146 Int_t trial_x = x;
147
148 while (done == 0) {
149 trial_x++;
150 limit[1] = Interval(trial_x,y,z,bm,em,e,mid, sde,sdb,tau,b,m);
151 if (limit[1] > 0) done = 1;
152 }
153 }
154
155 return limit[1];
156}
157
158
159
160
161//_____________________________________________________________________
162Double_t MRolke::Interval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em,Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m)
163{
164 // Calculates the Confidence Interval
165
166 //Double_t dchi2 = Chi2Percentile(1,1-fCL);
167 Double_t dchi2 = TMath::ChisquareQuantile(fCL, 1);
168
169 Double_t tempxy[2],limits[2] = {0,0};
170 Double_t slope,fmid,low,flow,high,fhigh,test,ftest,mu0,maximum,target,l,f0;
171 Double_t med = 0;
172 Double_t maxiter=1000, acc = 0.00001;
173 Int_t bp = 0;
174
175 if ((mid != 3) && (mid != 5)) bm = (Double_t)y;
176
177 if ((mid == 3) || (mid == 5)) {
178 if (bm == 0) bm = 0.00001;
179 }
180
181 if ((mid <= 2) || (mid == 4)) bp = 1;
182
183
184 if (bp == 1 && x == 0 && bm > 0 ){
185
186 for(Int_t i = 0; i < 2; i++) {
187 x++;
188 tempxy[i] = Interval(x,y,z,bm,em,e,mid,sde,sdb,tau,b,m);
189 }
190 slope = tempxy[1] - tempxy[0];
191 limits[1] = tempxy[0] - slope;
192 limits[0] = 0.0;
193 if (limits[1] < 0) limits[1] = 0.0;
194 goto done;
195 }
196
197 if (bp != 1 && x == 0){
198
199 for(Int_t i = 0; i < 2; i++) {
200 x++;
201 tempxy[i] = Interval(x,y,z,bm,em,e,mid,sde,sdb,tau,b,m);
202 }
203 slope = tempxy[1] - tempxy[0];
204 limits[1] = tempxy[0] - slope;
205 limits[0] = 0.0;
206 if (limits[1] < 0) limits[1] = 0.0;
207 goto done;
208 }
209
210 if (bp != 1 && bm == 0){
211 for(Int_t i = 0; i < 2; i++) {
212 bm++;
213 limits[1] = Interval(x,y,z,bm,em,e,mid,sde,sdb,tau,b,m);
214 tempxy[i] = limits[1];
215 }
216 slope = tempxy[1] - tempxy[0];
217 limits[1] = tempxy[0] - slope;
218 if (limits[1] < 0) limits[1] = 0;
219 goto done;
220 }
221
222
223 if (x == 0 && bm == 0){
224 x++;
225 bm++;
226
227 limits[1] = Interval(x,y,z,bm,em,e,mid,sde,sdb,tau,b,m);
228 tempxy[0] = limits[1];
229 x = 1;
230 bm = 2;
231 limits[1] = Interval(x,y,z,bm,em,e,mid,sde,sdb,tau,b,m);
232 tempxy[1] = limits[1];
233 x = 2;
234 bm = 1;
235 limits[1] = Interval(x,y,z,bm,em,e,mid,sde,sdb,tau,b,m);
236 limits[1] = 3*tempxy[0] -tempxy[1] - limits[1];
237 if (limits[1] < 0) limits[1] = 0;
238 goto done;
239 }
240
241 mu0 = Likelihood(0,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,1);
242
243 maximum = Likelihood(0,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,2);
244
245 test = 0;
246
247 f0 = Likelihood(test,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,3);
248
249 if ( fSwitch == 1 ) { // do this only for the unbounded likelihood case
250 if ( mu0 < 0 ) maximum = f0;
251 }
252
253 target = maximum - dchi2;
254
255 if (f0 > target) {
256 limits[0] = 0;
257 } else {
258 if (mu0 < 0){
259 limits[0] = 0;
260 limits[1] = 0;
261 }
262
263 low = 0;
264 flow = f0;
265 high = mu0;
266 fhigh = maximum;
267
268 for(Int_t i = 0; i < maxiter; i++) {
269 l = (target-fhigh)/(flow-fhigh);
270 if (l < 0.2) l = 0.2;
271 if (l > 0.8) l = 0.8;
272
273 med = l*low + (1-l)*high;
274 if(med < 0.01){
275 limits[1]=0.0;
276 goto done;
277 }
278
279 fmid = Likelihood(med,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,3);
280
281 if (fmid > target) {
282 high = med;
283 fhigh = fmid;
284 } else {
285 low = med;
286 flow = fmid;
287 }
288 if ((high-low) < acc*high) break;
289 }
290 limits[0] = med;
291 }
292
293
294 if(mu0 > 0) {
295 low = mu0;
296 flow = maximum;
297 } else {
298 low = 0;
299 flow = f0;
300 }
301
302 test = low +1 ;
303
304 ftest = Likelihood(test,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,3);
305
306 if (ftest < target) {
307 high = test;
308 fhigh = ftest;
309 } else {
310 slope = (ftest - flow)/(test - low);
311 high = test + (target -ftest)/slope;
312 fhigh = Likelihood(high,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,3);
313 }
314
315 for(Int_t i = 0; i < maxiter; i++) {
316 l = (target-fhigh)/(flow-fhigh);
317 if (l < 0.2) l = 0.2;
318 if (l > 0.8) l = 0.8;
319 med = l * low + (1.-l)*high;
320 fmid = Likelihood(med,x,y,z,bm,em,e,mid,sde,sdb,tau,b,m,3);
321
322 if (fmid < target) {
323 high = med;
324 fhigh = fmid;
325 } else {
326 low = med;
327 flow = fmid;
328 }
329 if (high-low < acc*high) break;
330 }
331 limits[1] = med;
332
333done:
334
335 if ( (mid == 4) || (mid==5) ) {
336 limits[0] /= e;
337 limits[1] /= e;
338 }
339
340
341 fUpperLimit = limits[1];
342 fLowerLimit = TMath::Max(limits[0],0.0);
343
344
345 return limits[1];
346}
347
348
349//___________________________________________________________________________
350Double_t MRolke::Likelihood(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t bm,Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m, Int_t what)
351{
352 // Chooses between the different profile likelihood functions to use for the
353 // different models.
354 // Returns evaluation of the profile likelihood functions.
355
356 switch (mid) {
357 case 1: return EvalLikeMod1(mu,x,y,z,e,tau,b,m,what);
358 case 2: return EvalLikeMod2(mu,x,y,em,e,sde,tau,b,what);
359 case 3: return EvalLikeMod3(mu,x,bm,em,e,sde,sdb,b,what);
360 case 4: return EvalLikeMod4(mu,x,y,tau,b,what);
361 case 5: return EvalLikeMod5(mu,x,bm,sdb,b,what);
362 case 6: return EvalLikeMod6(mu,x,z,e,b,m,what);
363 case 7: return EvalLikeMod7(mu,x,em,e,sde,b,what);
364 }
365
366 return 0;
367}
368
369//_________________________________________________________________________
370Double_t MRolke::EvalLikeMod1(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t e, Double_t tau, Double_t b, Int_t m, Int_t what)
371{
372 // Calculates the Profile Likelihood for MODEL 1:
373 // Poisson background/ Binomial Efficiency
374 // what = 1: Maximum likelihood estimate is returned
375 // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned.
376 // what = 3: Profile Likelihood of Test hypothesis is returned
377 // otherwise parameters as described in the beginning of the class)
378
379 Double_t f = 0;
380 Double_t zm = Double_t(z)/m;
381
382 if (what == 1) {
383 f = (x-y/tau)/zm;
384 }
385
386 if (what == 2) {
387 mu = (x-y/tau)/zm;
388 b = y/tau;
389 Double_t ee = zm;
390 f = LikeMod1(mu,b,ee,x,y,z,tau,m);
391 }
392
393 if (what == 3) {
394 if (mu == 0){
395 b = (x+y)/(1.0+tau);
396 e = zm;
397 f = LikeMod1(mu,b,e,x,y,z,tau,m);
398 } else {
399 MRolke g;
400 g.ProfLikeMod1(mu,b,e,x,y,z,tau,m);
401 f = LikeMod1(mu,b,e,x,y,z,tau,m);
402 }
403 }
404
405 return f;
406}
407
408//________________________________________________________________________
409Double_t MRolke::LikeMod1(Double_t mu,Double_t b, Double_t e, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m)
410{
411 // Profile Likelihood function for MODEL 1:
412 // Poisson background/ Binomial Efficiency
413
414 return 2*(x*TMath::Log(e*mu+b)-(e*mu +b)-LogFactorial(x)+y*TMath::Log(tau*b)-tau*b-LogFactorial(y) + TMath::Log(TMath::Factorial(m)) - TMath::Log(TMath::Factorial(m-z)) - TMath::Log(TMath::Factorial(z))+ z * TMath::Log(e) + (m-z)*TMath::Log(1-e));
415}
416
417//________________________________________________________________________
418void MRolke::ProfLikeMod1(Double_t mu,Double_t &b,Double_t &e,Int_t x,Int_t y, Int_t z,Double_t tau,Int_t m)
419{
420 // Void needed to calculate estimates of efficiency and background for model 1
421
422 Double_t med = 0.0,fmid;
423 Int_t maxiter =1000;
424 Double_t acc = 0.00001;
425 Double_t emin = ((m+mu*tau)-TMath::Sqrt((m+mu*tau)*(m+mu*tau)-4 * mu* tau * z))/2/mu/tau;
426
427 Double_t low = TMath::Max(1e-10,emin+1e-10);
428 Double_t high = 1 - 1e-10;
429
430 for(Int_t i = 0; i < maxiter; i++) {
431 med = (low+high)/2.;
432
433 fmid = LikeGradMod1(med,mu,x,y,z,tau,m);
434
435 if(high < 0.5) acc = 0.00001*high;
436 else acc = 0.00001*(1-high);
437
438 if ((high - low) < acc*high) break;
439
440 if(fmid > 0) low = med;
441 else high = med;
442 }
443
444 e = med;
445 Double_t eta = Double_t(z)/e -Double_t(m-z)/(1-e);
446
447 b = Double_t(y)/(tau -eta/mu);
448}
449
450//___________________________________________________________________________
451Double_t MRolke::LikeGradMod1(Double_t e, Double_t mu, Int_t x,Int_t y,Int_t z,Double_t tau,Int_t m)
452{
453 //gradient model
454 Double_t eta, etaprime, bprime,f;
455 eta = static_cast<double>(z)/e - static_cast<double>(m-z)/(1.0 - e);
456 etaprime = (-1) * (static_cast<double>(m-z)/((1.0 - e)*(1.0 - e)) + static_cast<double>(z)/(e*e));
457 Double_t b = y/(tau - eta/mu);
458 bprime = (b*b * etaprime)/mu/y;
459 f = (mu + bprime) * (x/(e * mu + b) - 1)+(y/b - tau) * bprime + eta;
460 return f;
461}
462
463//___________________________________________________________________________
464Double_t MRolke::EvalLikeMod2(Double_t mu, Int_t x, Int_t y, Double_t em, Double_t e,Double_t sde, Double_t tau, Double_t b, Int_t what)
465{
466 // Calculates the Profile Likelihood for MODEL 2:
467 // Poisson background/ Gauss Efficiency
468 // what = 1: Maximum likelihood estimate is returned
469 // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned.
470 // what = 3: Profile Likelihood of Test hypothesis is returned
471 // otherwise parameters as described in the beginning of the class)
472
473 Double_t v = sde*sde;
474 Double_t coef[4],roots[3];
475 Double_t f = 0;
476
477 if (what == 1) {
478 f = (x-y/tau)/em;
479 }
480
481 if (what == 2) {
482 mu = (x-y/tau)/em;
483 b = y/tau;
484 e = em;
485 f = LikeMod2(mu,b,e,x,y,em,tau,v);
486 }
487
488 if (what == 3) {
489 if (mu == 0 ) {
490 b = (x+y)/(1+tau);
491 f = LikeMod2(mu,b,e,x,y,em,tau,v);
492 } else {
493 coef[3] = mu;
494 coef[2] = mu*mu*v-2*em*mu-mu*mu*v*tau;
495 coef[1] = ( - x)*mu*v - mu*mu*mu*v*v*tau - mu*mu*v*em + em*mu*mu*v*tau + em*em*mu - y*mu*v;
496 coef[0] = x*mu*mu*v*v*tau + x*em*mu*v - y*mu*mu*v*v + y*em*mu*v;
497
498 TMath::RootsCubic(coef,roots[0],roots[1],roots[2]);
499
500 e = roots[1];
501 b = y/(tau + (em - e)/mu/v);
502 f = LikeMod2(mu,b,e,x,y,em,tau,v);
503 }
504 }
505
506 return f;
507}
508
509//_________________________________________________________________________
510Double_t MRolke::LikeMod2(Double_t mu, Double_t b, Double_t e,Int_t x,Int_t y,Double_t em,Double_t tau, Double_t v)
511{
512 // Profile Likelihood function for MODEL 2:
513 // Poisson background/Gauss Efficiency
514
515 return 2*(x*TMath::Log(e*mu+b)-(e*mu+b)-LogFactorial(x)+y*TMath::Log(tau*b)-tau*b-LogFactorial(y)-0.9189385-TMath::Log(v)/2-(em-e)*(em-e)/v/2);
516}
517
518//_____________________________________________________________________
519
520Double_t MRolke::EvalLikeMod3(Double_t mu, Int_t x, Double_t bm, Double_t em, Double_t e, Double_t sde, Double_t sdb, Double_t b, Int_t what)
521{
522 // Calculates the Profile Likelihood for MODEL 3:
523 // Gauss background/ Gauss Efficiency
524 // what = 1: Maximum likelihood estimate is returned
525 // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned.
526 // what = 3: Profile Likelihood of Test hypothesis is returned
527 // otherwise parameters as described in the beginning of the class)
528
529 Double_t f = 0.;
530 Double_t v = sde*sde;
531 Double_t u = sdb*sdb;
532
533 if (what == 1) {
534 f = (x-bm)/em;
535 }
536
537
538 if (what == 2) {
539 mu = (x-bm)/em;
540 b = bm;
541 e = em;
542 f = LikeMod3(mu,b,e,x,bm,em,u,v);
543 }
544
545
546 if(what == 3) {
547 if(mu == 0.0){
548 b = ((bm-u)+TMath::Sqrt((bm-u)*(bm-u)+4*x*u))/2.;
549 e = em;
550 f = LikeMod3(mu,b,e,x,bm,em,u,v);
551 } else {
552 Double_t temp[3];
553 temp[0] = mu*mu*v+u;
554 temp[1] = mu*mu*mu*v*v+mu*v*u-mu*mu*v*em+mu*v*bm-2*u*em;
555 temp[2] = mu*mu*v*v*bm-mu*v*u*em-mu*v*bm*em+u*em*em-mu*mu*v*v*x;
556 e = (-temp[1]+TMath::Sqrt(temp[1]*temp[1]-4*temp[0]*temp[2]))/2/temp[0];
557 b = bm-(u*(em-e))/v/mu;
558 f = LikeMod3(mu,b,e,x,bm,em,u,v);
559 }
560 }
561
562 return f;
563}
564
565//____________________________________________________________________
566Double_t MRolke::LikeMod3(Double_t mu,Double_t b,Double_t e,Int_t x,Double_t bm,Double_t em,Double_t u,Double_t v)
567{
568 // Profile Likelihood function for MODEL 3:
569 // Gauss background/Gauss Efficiency
570
571 return 2*(x * TMath::Log(e*mu+b)-(e*mu+b)-LogFactorial(x)-1.837877-TMath::Log(u)/2-(bm-b)*(bm-b)/u/2-TMath::Log(v)/2-(em-e)*(em-e)/v/2);
572}
573
574//____________________________________________________________________
575Double_t MRolke::EvalLikeMod4(Double_t mu, Int_t x, Int_t y, Double_t tau, Double_t b, Int_t what)
576{
577 // Calculates the Profile Likelihood for MODEL 4:
578 // Poiss background/Efficiency known
579 // what = 1: Maximum likelihood estimate is returned
580 // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned.
581 // what = 3: Profile Likelihood of Test hypothesis is returned
582 // otherwise parameters as described in the beginning of the class)
583
584 Double_t f = 0.0;
585
586 if (what == 1) f = x-y/tau;
587 if (what == 2) {
588 mu = x-y/tau;
589 b = Double_t(y)/tau;
590 f = LikeMod4(mu,b,x,y,tau);
591 }
592 if (what == 3) {
593 if (mu == 0.0) {
594 b = Double_t(x+y)/(1+tau);
595 f = LikeMod4(mu,b,x,y,tau);
596 } else {
597 b = (x+y-(1+tau)*mu+sqrt((x+y-(1+tau)*mu)*(x+y-(1+tau)*mu)+4*(1+tau)*y*mu))/2/(1+tau);
598 f = LikeMod4(mu,b,x,y,tau);
599 }
600 }
601 return f;
602}
603
604//___________________________________________________________________
605Double_t MRolke::LikeMod4(Double_t mu,Double_t b,Int_t x,Int_t y,Double_t tau)
606{
607 // Profile Likelihood function for MODEL 4:
608 // Poiss background/Efficiency known
609
610 return 2*(x*TMath::Log(mu+b)-(mu+b)-LogFactorial(x)+y*TMath::Log(tau*b)-tau*b-LogFactorial(y) );
611}
612
613//___________________________________________________________________
614Double_t MRolke::EvalLikeMod5(Double_t mu, Int_t x, Double_t bm, Double_t sdb, Double_t b, Int_t what)
615{
616 // Calculates the Profile Likelihood for MODEL 5:
617 // Gauss background/Efficiency known
618 // what = 1: Maximum likelihood estimate is returned
619 // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned.
620 // what = 3: Profile Likelihood of Test hypothesis is returned
621 // otherwise parameters as described in the beginning of the class)
622
623 Double_t u=sdb*sdb;
624 Double_t f = 0;
625
626 if(what == 1) {
627 f = x - bm;
628 }
629 if(what == 2) {
630 mu = x-bm;
631 b = bm;
632 f = LikeMod5(mu,b,x,bm,u);
633 }
634
635 if (what == 3) {
636 b = ((bm-u-mu)+TMath::Sqrt((bm-u-mu)*(bm-u-mu)-4*(mu*u-mu*bm-u*x)))/2;
637 f = LikeMod5(mu,b,x,bm,u);
638 }
639 return f;
640}
641
642//_______________________________________________________________________
643Double_t MRolke::LikeMod5(Double_t mu,Double_t b,Int_t x,Double_t bm,Double_t u)
644{
645 // Profile Likelihood function for MODEL 5:
646 // Gauss background/Efficiency known
647
648 return 2*(x*TMath::Log(mu+b)-(mu + b)-LogFactorial(x)-0.9189385-TMath::Log(u)/2-((bm-b)*(bm-b))/u/2);
649}
650
651//_______________________________________________________________________
652Double_t MRolke::EvalLikeMod6(Double_t mu, Int_t x, Int_t z, Double_t e, Double_t b, Int_t m, Int_t what)
653{
654 // Calculates the Profile Likelihood for MODEL 6:
655 // Gauss known/Efficiency binomial
656 // what = 1: Maximum likelihood estimate is returned
657 // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned.
658 // what = 3: Profile Likelihood of Test hypothesis is returned
659 // otherwise parameters as described in the beginning of the class)
660
661 Double_t coef[4],roots[3];
662 Double_t f = 0.;
663 Double_t zm = Double_t(z)/m;
664
665 if(what==1){
666 f = (x-b)/zm;
667 }
668
669 if(what==2){
670 mu = (x-b)/zm;
671 e = zm;
672 f = LikeMod6(mu,b,e,x,z,m);
673 }
674 if(what == 3){
675 if(mu==0){
676 e = zm;
677 } else {
678 coef[3] = mu*mu;
679 coef[2] = mu * b - mu * x - mu*mu - mu * m;
680 coef[1] = mu * x - mu * b + mu * z - m * b;
681 coef[0] = b * z;
682 TMath::RootsCubic(coef,roots[0],roots[1],roots[2]);
683 e = roots[1];
684 }
685 f =LikeMod6(mu,b,e,x,z,m);
686 }
687 return f;
688}
689
690//_______________________________________________________________________
691Double_t MRolke::LikeMod6(Double_t mu,Double_t b,Double_t e,Int_t x,Int_t z,Int_t m)
692{
693 // Profile Likelihood function for MODEL 6:
694 // background known/ Efficiency binomial
695
696 Double_t f = 0.0;
697
698 if (z > 100 || m > 100) {
699 f = 2*(x*TMath::Log(e*mu+b)-(e*mu+b)-LogFactorial(x)+(m*TMath::Log(m) - m)-(z*TMath::Log(z) - z) - ((m-z)*TMath::Log(m-z) - m + z)+z*TMath::Log(e)+(m-z)*TMath::Log(1-e));
700 } else {
701 f = 2*(x*TMath::Log(e*mu+b)-(e*mu+b)-LogFactorial(x)+TMath::Log(TMath::Factorial(m))-TMath::Log(TMath::Factorial(z))-TMath::Log(TMath::Factorial(m-z))+z*TMath::Log(e)+(m-z)*TMath::Log(1-e));
702 }
703 return f;
704}
705
706
707//___________________________________________________________________________
708Double_t MRolke::EvalLikeMod7(Double_t mu, Int_t x, Double_t em, Double_t e, Double_t sde, Double_t b, Int_t what)
709{
710 // Calculates the Profile Likelihood for MODEL 7:
711 // background known/Efficiency Gauss
712 // what = 1: Maximum likelihood estimate is returned
713 // what = 2: Profile Likelihood of Maxmimum Likelihood estimate is returned.
714 // what = 3: Profile Likelihood of Test hypothesis is returned
715 // otherwise parameters as described in the beginning of the class)
716
717 Double_t v=sde*sde;
718 Double_t f = 0.;
719
720 if(what == 1) {
721 f = (x-b)/em;
722 }
723
724 if(what == 2) {
725 mu = (x-b)/em;
726 e = em;
727 f = LikeMod7(mu, b, e, x, em, v);
728 }
729
730 if(what == 3) {
731 if(mu==0) {
732 e = em;
733 } else {
734 e = ( -(mu*em-b-mu*mu*v)-TMath::Sqrt((mu*em-b-mu*mu*v)*(mu*em-b-mu*mu*v)+4*mu*(x*mu*v-mu*b*v + b * em)))/( - mu)/2;
735 }
736 f = LikeMod7(mu, b, e, x, em, v);
737 }
738
739 return f;
740}
741
742//___________________________________________________________________________
743Double_t MRolke::LikeMod7(Double_t mu,Double_t b,Double_t e,Int_t x,Double_t em,Double_t v)
744{
745 // Profile Likelihood function for MODEL 6:
746 // background known/ Efficiency binomial
747
748 return 2*(x*TMath::Log(e*mu+b)-(e*mu + b)-LogFactorial(x)-0.9189385-TMath::Log(v)/2-(em-e)*(em-e)/v/2);
749}
750
751//______________________________________________________________________
752Double_t MRolke::EvalPolynomial(Double_t x, const Int_t coef[], Int_t N)
753{
754 // evaluate polynomial
755
756 const Int_t *p;
757 p = coef;
758 Double_t ans = *p++;
759 Int_t i = N;
760
761 do
762 ans = ans * x + *p++;
763 while( --i );
764
765 return ans;
766}
767
768//______________________________________________________________________
769Double_t MRolke::EvalMonomial(Double_t x, const Int_t coef[], Int_t N)
770{
771 // evaluate mononomial
772
773 Double_t ans;
774 const Int_t *p;
775
776 p = coef;
777 ans = x + *p++;
778 Int_t i = N-1;
779
780 do
781 ans = ans * x + *p++;
782 while( --i );
783
784 return ans;
785}
786//--------------------------------------------------------------------------
787//
788// Uses Stirling-Wells formula: ln(N!) ~ N*ln(N) - N + 0.5*ln(2piN)
789// if N exceeds 70, otherwise use the TMath functions
790//
791//
792Double_t MRolke::LogFactorial(Int_t n)
793{
794 if (n>69)
795 return n*TMath::Log(n)-n + 0.5*TMath::Log(TMath::TwoPi()*n);
796 else
797 return TMath::Log(TMath::Factorial(n));
798}
Note: See TracBrowser for help on using the repository browser.