1 | /* ======================================================================== *\
|
---|
2 | !
|
---|
3 | ! *
|
---|
4 | ! * This file is part of MARS, the MAGIC Analysis and Reconstruction
|
---|
5 | ! * Software. It is distributed to you in the hope that it can be a useful
|
---|
6 | ! * and timesaving tool in analysing Data of imaging Cerenkov telescopes.
|
---|
7 | ! * It is distributed WITHOUT ANY WARRANTY.
|
---|
8 | ! *
|
---|
9 | ! * Permission to use, copy, modify and distribute this software and its
|
---|
10 | ! * documentation for any purpose is hereby granted without fee,
|
---|
11 | ! * provided that the above copyright notice appear in all copies and
|
---|
12 | ! * that both that copyright notice and this permission notice appear
|
---|
13 | ! * in supporting documentation. It is provided "as is" without express
|
---|
14 | ! * or implied warranty.
|
---|
15 | ! *
|
---|
16 | !
|
---|
17 | !
|
---|
18 | ! Author(s): Harald Kornmayer 1/2001 (harald@mppmu.mpg.de)
|
---|
19 | ! Author(s): Thomas Bretz 12/2000 (tbretz@uni-sw.gwdg.de)
|
---|
20 | !
|
---|
21 | ! Copyright: MAGIC Software Development, 2000-2001
|
---|
22 | !
|
---|
23 | !
|
---|
24 | \* ======================================================================== */
|
---|
25 |
|
---|
26 | //////////////////////////////////////////////////////////////////////////////
|
---|
27 | // //
|
---|
28 | // //
|
---|
29 | //////////////////////////////////////////////////////////////////////////////
|
---|
30 | #include "MElectron.h"
|
---|
31 |
|
---|
32 | #include <iostream.h>
|
---|
33 |
|
---|
34 | #include <TF1.h>
|
---|
35 | #include <TH1.h>
|
---|
36 | #include <TPad.h>
|
---|
37 | #include <TCanvas.h>
|
---|
38 | #include <TRandom.h>
|
---|
39 |
|
---|
40 | #include "MPhoton.h"
|
---|
41 |
|
---|
42 | ClassImp(MElectron);
|
---|
43 |
|
---|
44 | Double_t MElectron::Planck(Double_t *x, Double_t *k=NULL)
|
---|
45 | {
|
---|
46 | //
|
---|
47 | // Planck, per unit volume, per unit energy
|
---|
48 | //
|
---|
49 | // constants moved out of function
|
---|
50 | //
|
---|
51 | Double_t E = x[0]; // [GeV]
|
---|
52 | Double_t z = k ? k[0] : 0;
|
---|
53 |
|
---|
54 | Double_t T = 2.96*(z+1); // [K]
|
---|
55 | Double_t e = 1.602176462e-19; // [C]
|
---|
56 | Double_t kB = 1e-9/e*1.3806503e-23; // [GeV/K]
|
---|
57 |
|
---|
58 | Double_t EkT = E/kB/T;
|
---|
59 |
|
---|
60 | /*
|
---|
61 | //Double_t c = 299792458; // [m/s]
|
---|
62 | //Double_t h = 1e-9/e*6.62606876e-34; // [GeVs]
|
---|
63 | //Double_t hc = h*c; // [GeVm]
|
---|
64 | Double_t konst = 4.*TMath::Pi() * 2. / (hc*hc*hc);
|
---|
65 | return konst * E*E / (exp(EkT)-1.); // [1 / GeV / m^3 ]
|
---|
66 | */
|
---|
67 |
|
---|
68 | return E*E / (exp(EkT)-1.); // [GeV^2]
|
---|
69 | }
|
---|
70 |
|
---|
71 | Double_t MElectron::Li(Double_t *x, Double_t *k)
|
---|
72 | {
|
---|
73 | Double_t t = x[0];
|
---|
74 |
|
---|
75 | return log(1.-t)/t;
|
---|
76 | }
|
---|
77 |
|
---|
78 | Double_t MElectron::Li2(Double_t *x, Double_t *k=NULL)
|
---|
79 | {
|
---|
80 | //
|
---|
81 | // Dilog, Li2
|
---|
82 | //
|
---|
83 | Double_t z = x[0];
|
---|
84 |
|
---|
85 | TF1 IntLi("Li", Li, 0, z, 0);
|
---|
86 | Double_t integ = IntLi.Integral(0, z);
|
---|
87 |
|
---|
88 | /*
|
---|
89 | if (fabs(z)<1)
|
---|
90 | {
|
---|
91 | Double_t disum = DiSum(&z);
|
---|
92 | cout << "Disum (" << z << ") " << disum << "=" << -integ << "\t" << disum-integ << endl;
|
---|
93 | return disum;
|
---|
94 | }
|
---|
95 | */
|
---|
96 |
|
---|
97 | /*
|
---|
98 | Integral(0, 1) = konst;
|
---|
99 | Double_t konst = 1./6*TMath::Pi()*TMath::Pi();
|
---|
100 | */
|
---|
101 |
|
---|
102 | return -integ;
|
---|
103 | }
|
---|
104 |
|
---|
105 | Double_t MElectron::Flim(Double_t *x, Double_t *k=NULL) // F(omegap)-F(omegam) mit b-->1 (Maple)
|
---|
106 | {
|
---|
107 | Double_t w = x[0];
|
---|
108 |
|
---|
109 | Double_t w4 = w*4;
|
---|
110 | Double_t wsqr = w*w;
|
---|
111 |
|
---|
112 | Double_t u1 = (w*wsqr*16 + wsqr*40 + w*17 + 2)*log(w4 + 1);
|
---|
113 | Double_t u2 = -w4*(wsqr*2 + w*9 + 2);
|
---|
114 | Double_t d = w4*(w4 + 1);
|
---|
115 |
|
---|
116 | Double_t s = -w*2*(1+1); // -2*omega*(1+beta)
|
---|
117 | Double_t li2 = Li2(&s);
|
---|
118 |
|
---|
119 | Double_t res = (u1+u2)/d + li2;
|
---|
120 |
|
---|
121 | return res; //<1e-10? 0 : res;
|
---|
122 | }
|
---|
123 |
|
---|
124 | Double_t MElectron::Compton(Double_t *x, Double_t *k)
|
---|
125 | {
|
---|
126 | Double_t E0 = 511e-6; //[GeV]
|
---|
127 | Double_t E02 = E0*E0;
|
---|
128 |
|
---|
129 | Double_t epsilon = x[0];
|
---|
130 | Double_t E = k[0];
|
---|
131 | // Double_t beta = k[1];
|
---|
132 | Double_t z = k[2];
|
---|
133 |
|
---|
134 | Double_t omega = epsilon*E/E02;
|
---|
135 |
|
---|
136 | Double_t n = Planck(&epsilon, &z)/epsilon/epsilon; // [1]
|
---|
137 | return Flim(&omega)*n;
|
---|
138 | }
|
---|
139 |
|
---|
140 |
|
---|
141 | Double_t MElectron::InteractionLength(Double_t *E, Double_t *k=NULL)
|
---|
142 | {
|
---|
143 | // E = electron energy, ~ TeV(?) 1e12
|
---|
144 | // e = photon energy, ~ meV(?) 1e-3
|
---|
145 | // mc^2 = electron rest mass energy ~.5keV(?) .5e3
|
---|
146 | //
|
---|
147 | // x^-1 = int( n(epsilon)/2beta * ((mc^2)^2/eE)^2 * int ( omega*sigma(omega), omega=o-..o+), epsilon=0..inf)
|
---|
148 | //
|
---|
149 | // o+/- = omage_0 (1 +- beta)
|
---|
150 | //
|
---|
151 | // omega_0 = eE/(mc^2)^2 ~1e12*1e-3/.25e6=4e3
|
---|
152 | //
|
---|
153 | // --> x^-1 = (alpha*hc)^2/4pibetaE^2 * int(n(epsilon)/epsilon^2 *( F(o+)-F(o-)), epsilon=0..inf)
|
---|
154 | //
|
---|
155 | // F(o) = -o/4 + (9/4 + 1/o + o/2) * ln(1+2o) + 1/8(1+2o) - 3/8 + Li2(-2o)
|
---|
156 | //
|
---|
157 | // Li2(x) = int(ln(1-t)/t, t=0..x)
|
---|
158 | //
|
---|
159 | // F(o+)~F(2o) = -o/2 + (9/4 + 1/2o + o) * ln(1+4o) + 1/8(1+4o) - 3/8 + Li2(-4o)
|
---|
160 | // F(o-)~F(0) = 14/8 = 1.75
|
---|
161 |
|
---|
162 | Double_t E0 = 511e-6; // [GeV]
|
---|
163 | Double_t E02 = E0*E0; // [GeV^2]
|
---|
164 | Double_t c = 299792458; // [m/s]
|
---|
165 | Double_t e = 1.602176462e-19; // [C]
|
---|
166 | Double_t h = 1e-9/e*6.62606876e-34; // [GeVs]
|
---|
167 | Double_t hc = h*c; // [GeVm]
|
---|
168 | Double_t alpha = 1./137.; // [1]
|
---|
169 |
|
---|
170 | Double_t z = k ? k[0] : 0;
|
---|
171 |
|
---|
172 | // Double_t beta = sqrt(1-E0/E*E0/E);
|
---|
173 | Double_t beta = 1; //0.999999999999999999999999999;
|
---|
174 |
|
---|
175 | Double_t val[3] = { E[0], beta, z }; // E[GeV]
|
---|
176 |
|
---|
177 | Double_t from = 1e-17;
|
---|
178 | Double_t to = 1e-11;
|
---|
179 |
|
---|
180 | /* -------------- old ----------------
|
---|
181 | Double_t from = 1e-15;
|
---|
182 | Double_t to = 1e-11;
|
---|
183 | eps = [default];
|
---|
184 | -----------------------------------
|
---|
185 | */
|
---|
186 | TF1 func("Compton", Compton, from, to, 3); // [0, inf]
|
---|
187 |
|
---|
188 | Double_t integ = func.Integral(from, to, val, 1e-15); // [Gev] [0, inf]
|
---|
189 |
|
---|
190 | Double_t aE = alpha/E[0]; // [1/GeV]
|
---|
191 |
|
---|
192 | Double_t konst = 2.*E02/hc/beta; // [1 / GeV m]
|
---|
193 | Double_t ret = konst * (aE*aE) * integ; // [1 / m]
|
---|
194 |
|
---|
195 | Double_t ly = 3600.*24.*365.*c; // [m/ly]
|
---|
196 | Double_t pc = 1./3.258; // [pc/ly]
|
---|
197 |
|
---|
198 | return (1./ret)/ly*pc/1000; // [kpc]
|
---|
199 | }
|
---|
200 |
|
---|
201 | Double_t MElectron::GetInteractionLength(Double_t energy, Double_t z)
|
---|
202 | {
|
---|
203 | return InteractionLength(&energy, &z);
|
---|
204 | }
|
---|
205 |
|
---|
206 | Double_t MElectron::GetInteractionLength() const
|
---|
207 | {
|
---|
208 | return InteractionLength((Double_t*)&fEnergy, (Double_t*)&fZ);
|
---|
209 | }
|
---|
210 |
|
---|
211 | // --------------------------------------------------------------------------
|
---|
212 |
|
---|
213 | Double_t MElectron::p_e(Double_t *x, Double_t *k)
|
---|
214 | {
|
---|
215 | Double_t e = pow(10, x[0]);
|
---|
216 | Double_t E = k[0];
|
---|
217 | Double_t z = k[1];
|
---|
218 |
|
---|
219 | Double_t E0 = 511e-6; //[GeV]
|
---|
220 | Double_t E02 = E0*E0;
|
---|
221 |
|
---|
222 | Double_t omega = e*E/E02;
|
---|
223 |
|
---|
224 | Double_t n = Planck(&e, &z);
|
---|
225 |
|
---|
226 | Double_t F = Flim(&omega)/omega/omega;
|
---|
227 |
|
---|
228 | return n*F*1e26;
|
---|
229 | }
|
---|
230 |
|
---|
231 | Double_t MElectron::G_q(Double_t *x, Double_t *k)
|
---|
232 | {
|
---|
233 | Double_t q = x[0];
|
---|
234 | Double_t Gamma = k[0];
|
---|
235 |
|
---|
236 | Double_t Gq = Gamma*q;
|
---|
237 |
|
---|
238 | Double_t s1 = 2.*q*log(q);
|
---|
239 | Double_t s2 = (1.+2.*q);
|
---|
240 | Double_t s3 = (Gq*Gq)/(1.+Gq)/2.;
|
---|
241 |
|
---|
242 | return s1+(s2+s3)*(1.-q);
|
---|
243 | }
|
---|
244 |
|
---|
245 |
|
---|
246 | Double_t MElectron::EnergyLoss(Double_t *x, Double_t *k, Double_t *ep)
|
---|
247 | {
|
---|
248 | Double_t E = x[0];
|
---|
249 | Double_t z = k ? k[0] : 0;
|
---|
250 |
|
---|
251 | Double_t E0 = 511e-6; //[GeV]
|
---|
252 |
|
---|
253 | Double_t lolim = -log10(E)/7*4-13;
|
---|
254 |
|
---|
255 | TF1 fP("p_e", p_e, lolim, -10.8, 2);
|
---|
256 | TF1 fQ("G", G_q, 0, 1., 1);
|
---|
257 |
|
---|
258 | fP.SetParameter(0, E);
|
---|
259 | fP.SetParameter(1, z);
|
---|
260 |
|
---|
261 | Double_t e = pow(10, fP.GetRandom());
|
---|
262 |
|
---|
263 | if (ep)
|
---|
264 | *ep = e;
|
---|
265 |
|
---|
266 | Double_t omega = e*E/E0/E0;
|
---|
267 | Double_t Gamma = 4.*omega;
|
---|
268 |
|
---|
269 | // --old-- fQ.SetRange(1e-6, 1./(1.+ 2.*Gamma));
|
---|
270 | fQ.SetParameter(0, Gamma);
|
---|
271 |
|
---|
272 | Double_t q = fQ.GetRandom();
|
---|
273 | Double_t Gq = Gamma*q;
|
---|
274 |
|
---|
275 | Double_t e1 = Gq*E/(1.+Gq);
|
---|
276 |
|
---|
277 | return e1;
|
---|
278 | }
|
---|
279 |
|
---|
280 | Double_t MElectron::GetEnergyLoss(Double_t E, Double_t z, Double_t *ep)
|
---|
281 | {
|
---|
282 | return EnergyLoss(&E, &z);
|
---|
283 | }
|
---|
284 |
|
---|
285 | Double_t MElectron::GetEnergyLoss(Double_t *ep) const
|
---|
286 | {
|
---|
287 | return EnergyLoss((Double_t*)&fEnergy, (Double_t*)&fZ, ep);
|
---|
288 | }
|
---|
289 |
|
---|
290 | MPhoton *MElectron::DoInvCompton(Double_t theta)
|
---|
291 | {
|
---|
292 | static TRandom rand(0);
|
---|
293 |
|
---|
294 | Double_t E0 = 511e-6; //[GeV]
|
---|
295 |
|
---|
296 | Double_t epsilon;
|
---|
297 | Double_t e = GetEnergyLoss(&epsilon);
|
---|
298 |
|
---|
299 | // er: photon energy before interaction, rest frame
|
---|
300 | // e: photon energy after interaction, lab
|
---|
301 |
|
---|
302 | Double_t gamma = fEnergy/E0;
|
---|
303 | Double_t beta = sqrt(1.-1./(gamma*gamma));
|
---|
304 | //Double_t gammabeta = sqrt(gamma*gamma-1);
|
---|
305 |
|
---|
306 | Double_t f = fEnergy/e;
|
---|
307 |
|
---|
308 | Double_t t;
|
---|
309 | Double_t arg;
|
---|
310 | do
|
---|
311 | {
|
---|
312 | t = rand.Uniform(TMath::Pi()*2);
|
---|
313 | Double_t er = gamma*epsilon*(1.-beta*cos(t)); // photon energy rest frame
|
---|
314 | arg = (f - E0/er - 1)/(f*beta+1);
|
---|
315 | cout << "~" << flush;
|
---|
316 |
|
---|
317 | } while (arg<-1 || arg>1);
|
---|
318 |
|
---|
319 | Double_t theta1s = acos(arg);
|
---|
320 | Double_t thetas = atan(sin(t)/(gamma*(cos(t)-beta)));
|
---|
321 |
|
---|
322 | Double_t thetastar = thetas-theta1s;
|
---|
323 |
|
---|
324 | Double_t theta1 = atan(sin(thetastar)/(gamma*(cos(thetastar)+beta)));
|
---|
325 |
|
---|
326 | /*
|
---|
327 | cout << "(" << theta1/TMath::Pi()*180 << ",";
|
---|
328 | cout << theta1s/TMath::Pi()*180<< ",";
|
---|
329 | cout << arg << ")" << flush;
|
---|
330 | */
|
---|
331 |
|
---|
332 | fEnergy -= e;
|
---|
333 |
|
---|
334 | MPhoton &p = *new MPhoton(e, fZ);
|
---|
335 | p = *this;
|
---|
336 | p.SetNewDirection(theta1, rand.Uniform(TMath::Pi()*2));
|
---|
337 |
|
---|
338 | // MISSING: Electron angle
|
---|
339 | //
|
---|
340 | // E1 = fEnergy (after!)
|
---|
341 | //
|
---|
342 | // sin(t) = (epsilon sin(theta) - e sin(atan(tg)))/sqrt(E1*E1-E0*E0)
|
---|
343 |
|
---|
344 | return &p;
|
---|
345 | }
|
---|
346 |
|
---|
347 | void MElectron::DrawInteractionLength(Double_t z)
|
---|
348 | {
|
---|
349 | if (!gPad)
|
---|
350 | new TCanvas("IL_Electron", "Mean Interaction Length Electron");
|
---|
351 | else
|
---|
352 | gPad->GetVirtCanvas()->cd(3);
|
---|
353 |
|
---|
354 | TF1 f2("length", MElectron::InteractionLength, 1e3, 1e10, 0);
|
---|
355 | f2.SetParameter(0, z);
|
---|
356 |
|
---|
357 | gPad->SetLogx();
|
---|
358 | gPad->SetLogy();
|
---|
359 | gPad->SetGrid();
|
---|
360 | f2.SetLineWidth(1);
|
---|
361 |
|
---|
362 | TH1 &h=*f2.DrawCopy()->GetHistogram();
|
---|
363 |
|
---|
364 | h.SetTitle("Mean Interaction Length (Electron)");
|
---|
365 | h.SetXTitle("E [GeV]");
|
---|
366 | h.SetYTitle("x [kpc]");
|
---|
367 |
|
---|
368 | gPad->Modified();
|
---|
369 | gPad->Update();
|
---|
370 | }
|
---|
371 |
|
---|
372 | void MElectron::DrawInteractionLength() const
|
---|
373 | {
|
---|
374 | DrawInteractionLength(fZ);
|
---|
375 | }
|
---|