Changeset 13404 for fact


Ignore:
Timestamp:
04/21/12 09:25:20 (13 years ago)
Author:
neise
Message:
testing version
File:
1 edited

Legend:

Unmodified
Added
Removed
  • fact/tools/pyscripts/sandbox/dneise/timecal.py

    r13368 r13404  
    88# D. Neise (TU Dortmund) April 2012
    99#
    10 import pyfact
    11 from myhisto import *
    12 from hist import *
    1310import numpy as np
    14 import numpy.random as rnd
    15 from scipy import interpolate as ip
    16 from ROOT import *
    17 from time import time
    18 from optparse import OptionParser
    19 
    20 
    2111from pyfact     import RawData
    2212from drs_spikes import DRSSpikes
     
    3626        self.calib_path = cpath
    3727        self.run = RawData(dpath, cpath, return_dict = True)
     28       
     29        if self.run.nroi != 1024:
     30            raise TypeError('Time Calibration Data must have ROI=1024, ROI of '+dpath+' is: '+str(self.run.nroi))
     31       
    3832        self.despike = DRSSpikes()
    39         self.zX = ZeroXing()
     33        self.zero_crossing_finder = ZeroXing(slope = -1) # -1 means falling edge
    4034        self.fsampling = 2.         # sampling frequency
    4135        self.freq = 250.            # testfrequency
    4236        self.P_nom = 1000./freq     # nominal Period due to testfrequency
    4337        self.DAMPING = 0.02         # Damping applied to correction
    44         self.NChip = 1              # Number of Chips
    45         self.NEvents = 300          # Number of Events to Process
    4638       
    47         self.t_nom = np.ones([run.npix, run.nroi])/fsampling
    48 
     39        # this ndarray will contain the best estimate of the true width of each slice after a __call__
     40        # but it is used to determine the current best estimate inside the __call__ as well,
     41        # since the algorithm is iteratively implemented
     42        #self.time_calib = np.linspace( 0. , 512, num=1024, endpoint=False).repeat(run.npix/9).reshape( (1024,run.npix/9) ).transpose()
     43        self.time_calib = np.ones( (self.run.npix/9, 1024) )/self.fsampling
    4944    def __call__(self):
    5045        """ the class-call method performs the actual calculation based on the input data
     
    5449        # loop over events
    5550        for event in self.run:
    56             data = despike( event['acal_data'] )
    57             start_cells = event['start_cells']
    58             MeanXing, TimeXing, NumXing = Calculate_Crossing(data, event['start_cells'])
    59 
    60 
    61     def Calculate_Crossing(self, data, start_cells):
    62         TimeXing = np.zeros(self.run.nroi)
    63         MeanXing = np.zeros(self.run.nroi)
    64         NumXing = 0
    65         CellTime = CellTimef(np.roll(t_nom, -Start))
    66        
    67         for i in range(rd.NROI-1):
    68             if (Data[i] > Mean) & (Data[i+1] < Mean):
    69                 MeanXing[NumXing] = i
     51            # in the next() method, which is called during looping,
     52            # the data is automatically amplitude calibrated.
     53            # we just need every 9th pixel, so this is a place
     54            # for optimization
     55            data = event['acal_data']
     56           
     57            # slice out every 9th channel
     58            niners_ids = range(8,self.run.npix,9) # [8, 17, 26, ..., 1430, 1439]
     59            data = data[niners_ids,:]
     60            start_cell = event['start_cells'][niners_ids,:]
     61           
     62            data = despike( data )
     63           
     64            # shift data down by the mean           # possible in one line
     65                # calculate mean
     66            mean = data.mean(1)
     67                # make mean in the same shape as data, for elementwise subtraction
     68            mean = mean.repeat(data.shape[1]).reshape(data.shape)
     69                # subtraction
     70            data = data - mean
     71           
     72            # find zero crossings with falling edge
     73            # the output is a list, of lists, of slices.
     74            # each slice, shows a zero crossing. in fact, is is the slice where
     75            # the data is still positive ... in the next slice it is negative, (or just zero).
     76            # This was called 'MeanXing' before
     77            all_crossings = self.zero_crossing_finder(data)
     78           
     79            # now we have to calculate the exact time of the crossings
     80            # but in units of nanoseconds therefor we use self.time_calib
     81            # rolled appropriately, and summed up in order to have the integral timing calibration
     82            #
     83            #the list, 'time_of_all_crossings' will contain sublists,
     84            # which in turn will contain the times, in ns, for each zero-crossing
     85            time_of_all_crossings = []
     86            # the list, 'float_slice_of_all_crossings'
     87            # is similar to the list above, but i just contains the position of the crossings
     88            # in the pipeline, but more precisely than 'all_crossings', the position is linear interpolated
     89            float_slice_of_all_crossings = []
     90           
     91            for chip_id,crossings in enumerate(all_crossings):
     92                time_of_all_crossings.append([])
     93                float_slice_of_all_crossings.append([])
     94                time = np.roll(self.time_calib[chip_id], -start_cell[chip_id]).cumsum()
     95                for crossing in crossings:
     96                    # performing linear interpolation of time of zero crossing
     97                    # what fraction of a slide is the interpolated crossing away from the integral slice id
     98                    fraction_of_slice = data[chip_id,crossing] / (data[chip_id,crossing]-data[chip_id,crossing+1])
     99                    float_slice_of_all_crossings[-1].append(fraction_of_slice + crossing)
     100                    slope = time[crossing+1] - time[crossing]
     101                    time_of_crossing = time[crossing] + slope * fraction_of_slice
     102                    time_of_all_crossings[-1].append(time_of_crossing)
     103           
     104            # Now one can use those two lists, which were just created
     105            # to calculate the number(float) of slices between two consecutive crossings
     106            # as well as the *measured* time between two crossings.
     107            # on the other hand, the period of the test signal is known to be self.P_nom
     108            # so in case the measured time is longer or shorter than the known Period
     109            # the associated time of all involved slices
     110            # is assumed to be a bit longer or short than 1./self.fsampling
     111           
     112            # first we make the sublists of the lists to be numpy.arrays
     113            for i in len(float_slice_of_all_crossings): #both list have equal length
     114                float_slice_of_all_crossings[i] = np.array(float_slice_of_all_crossings[i])
     115                time_of_all_crossings[i] = np.array(time_of_all_crossings[i])
     116           
     117            # now we can easily calculate the measured periods using np.diff()
     118            all_measured_periods = []
     119            for chip_times in time_of_all_crossings:
     120                all_measured_periods.append(np.diff(chip_times))
     121           
     122            for chid,chip_periods in enumerate(all_measured_periods):
    70123               
    71                 FirstCell = CellTime[i]
    72                 SecondCell = CellTime[i+1]
    73                
    74                 TimeXing[NumXing] = FirstCell+(SecondCell-FirstCell)/(1.-Data[i+1]/(Data[i]))*(1.-Mean/Data[i])
    75                 NumXing += 1
    76        
    77         # calculate the frequency of the testwave
    78         freqp = fsampling*NumXing*1000./1024
    79         if(np.abs(freqp-freq) > 20):
    80             print "This is not a timecalibration run!!"
    81             raise SystemExit
    82                            
    83         return MeanXing, TimeXing, NumXing
    84 
    85        
    86         for Event in range( NEvents ):
    87             print "Event ", Event
    88             Chip = 0
    89 
    90             # loop over every 9th channel in Chip
    91             for Pix in range(NPIX)[8::9]:
    92                 print "Pix ", Pix
    93                
    94                 # calculate t_nom for each pixel
    95                 MeanXing, TimeXing, NumXing = Crossing(rd.acalData[Pix], np.average(rd.acalData[Pix]), t_nom[Pix], rd.startCells[Pix], Chip)
    96                 h.list[Chip].dict["numxing"].Fill(NumXing)
    97                 #h.list[Chip].dict["start"].Fill(rd.startCells[Pix])
    98                 t_nom[Pix] = Corr(MeanXing, NumXing, TimeXing, t_nom[Pix], rd.startCells[Pix], Chip)
    99                
    100                 Chip += 1
    101                
    102             rd.next()
    103 
    104         t_nom = t_nom[8::9]
    105 
    106         if(save == "yes"):     
    107             np.save(str(dfname[-20:-8])+"_"+str(NEvents)+"x"+str(NChip), t_nom)
    108             np.savetxt(str(dfname[-20:-8])+"_"+str(NEvents)+"x"+str(NChip), t_nom)
    109 
    110         for Chip in range(NChip):
    111             for i in range(rd.NROI):
    112                 h.list[Chip].dict["int_dev"].SetBinContent(i+1, np.sum(t_nom[Chip][:i])-i*1/fsampling)
    113                 h.list[Chip].dict["diff_dev"].SetBinContent(i+1, np.sum(t_nom[Chip][i] - 1/fsampling))
    114            
    115         pyfact.SaveHistograms(h.list, str(dfname[-20:-8])+"_"+str(NEvents)+"x"+str(NChip)+".root", "RECREATE")
    116 
    117 
    118         t_f = time()
    119 
    120 
    121 
    122         print "time ellapsed            = ",  (t_f - t_s)/60., " min." 
    123         print "Speichern                = ", save
    124         print "NChip                    = ", NChip
    125         print "NEvents                  = ", NEventsp
    126         print "Histo saved as           = ", str(dfname[-20:-8])+str(NEvents)+"x"+str(NChip)+".root"
    127         if(save == "yes"):
    128             print "CellTime saved as    = ", str(dfname[-20:-8])+str(NEvents)+"x"+str(NChip)+".npy"
    129 
    130 
    131 
    132 parser = OptionParser()
    133 parser.add_option('-e', '--extended', action = 'store_true', dest='extend', default = False )
    134 (options, args) = parser.parse_args()
    135 
    136 save = "yes"
    137 
    138 if(options.extend):
    139 
    140         NChip = int(raw_input("Wieviele Chips? ([1, ... , "+str(rd.NPIX/9)+"]): "))
    141         NEventsp = int(raw_input("Wieviele Events? ([1, ... , "+str(rd.NEvents)+"]) "))
    142         save = raw_input("Soll CellTime gespeichert werden? (yes/no) ")
    143        
    144        
    145 h = hist_list(tcalHistograms, NChip, "Chip")
    146 
    147 
    148 # Functions needed for calibration
    149 
    150 # find negative-going crossings of mean value
    151 def Crossing(Data, Mean, t_nom, Start, Chip):
    152         TimeXing = np.zeros(rd.NROI)
    153         MeanXing = np.zeros(rd.NROI)
    154         NumXing = 0
    155         CellTime = CellTimef(np.roll(t_nom, -Start))
    156        
    157         for i in range(rd.NROI-1):
    158                 if ((Data[i] > Mean) & (Data[i+1] < Mean)):
    159                         MeanXing[NumXing] = i
    160                        
    161                         FirstCell = CellTime[i]
    162                         SecondCell = CellTime[i+1]
    163                        
    164                         TimeXing[NumXing] = FirstCell+(SecondCell-FirstCell)/(1.-Data[i+1]/(Data[i]))*(1.-Mean/(Data[i]))
    165                         NumXing += 1
    166        
    167         # calculate the frequency of the testwave
    168         freqp = fsampling*NumXing*1000./1024
    169         if(np.abs(freqp-freq) > 20):
    170                 print "This is not a timecalibration run!!"
    171                 raise SystemExit
    172                                                
    173         return MeanXing, TimeXing, NumXing
    174                
    175 def CrossingOliver(Data, Mean, t_nom, Start, Chip):
    176         TimeXing = np.zeros(lpipe)
    177         MeanXing = np.zeros(lpipe)
    178         NumXing = 0
    179         CellTime = CellTimef(t_nom)
    180        
    181        
    182         for i in range(lpipe-1):
    183                 if ((Data[i] > Mean) & (Data[i+1] < Mean)):
    184                         MeanXing[NumXing] = np.mod(i+Start, lpipe)
    185                        
    186                         FirstCell = CellTime[np.mod(i+Start,lpipe)]
    187                         SecondCell = CellTime[np.mod(i+1+Start, lpipe)]
    188                        
    189                         if(SecondCell < FirstCell): SecondCell =+ lpipe/fsampl
    190                        
    191                         TimeXing[NumXing] = FirstCell+(SecondCell-FirstCell)/(1.-Data[i+1]/(Data[i]))*(1.-Mean/(Data[i]))
    192                         NumXing += 1
    193                        
    194                                
    195         return MeanXing, TimeXing, NumXing
    196 
    197 # Determine time between crossings and apply correction
    198 def Corr(MeanXing, NumXing, TimeXing, t_nom, Start, Chip):
    199 
    200         # loop over mean crossings
    201         for i in range(int(NumXing-1)):
    202                 I1 = MeanXing[i]
    203                 I2 = MeanXing[i+1]
    204                 Period = TimeXing[i+1] - TimeXing[i]
    205                
    206                
    207                 if(np.abs(1-Period/P_nom) > 0.2):
    208                         #print "Skipping zero crossing due to too large deviation of period."
    209                         h.list[Chip].dict["loleftout"].Fill(MeanXing[i])
    210                         #h.list[Chip].dict["leftout"].Fill(np.mod((MeanXing[i]+Start), rd.NROI))
    211                         continue
    212                        
    213                 #h.list[Chip].dict["lomeanxing"].Fill(MeanXing[i])
    214                 h.list[Chip].dict["meanxing"].Fill(np.mod((MeanXing[i]+Start), rd.NROI))
    215                
    216                 # calculate the frequency of the testwave
    217                 freqp = 1000./Period
    218                 h.list[Chip].dict["freq"].Fill(freqp)
    219                        
    220                 C = (P_nom-Period)*DAMPING
    221                 numnom = Period*fsampling
    222                 Correction = np.zeros(rd.NROI)
    223                 Correction[I1+1:I2+1] += C/numnom
    224                 Correction[:I1+1] -= (I2-I1)*C/(numnom*(rd.NROI-(I2-I1)))
    225                 Correction[I2+1:] -= (I2-I1)*C/(numnom*(rd.NROI-(I2-I1)))
    226                
    227                 Correction = np.roll(Correction, Start)
    228                 t_nom += Correction
    229         #h.list[Chip].dict["lomeanxing"].Fill(MeanXing[-1])
    230         h.list[Chip].dict["meanxing"].Fill(np.mod((MeanXing[-1]+Start), rd.NROI))
    231                        
    232         return t_nom
    233        
    234 def CorrOliver(MeanXing, NumXing, TimeXing, t_nom, Start, Chip):
    235        
    236         CellTime = CellTimef(t_nom)
    237         for i in range(int(NumXing-1)):
    238                 I1 = MeanXing[i]
    239                 I2 = MeanXing[i+1]
    240                 Period = TimeXing[i+1] - TimeXing[i]
    241                 if(Period<0): Period += rd.NROI/fsampl
    242                
    243                 if(np.abs(1-Period/P_nom) > 0.2):
    244                         #print "Skipping zero crossing due to too large deviation of period."
    245                         continue
    246                        
    247                 Correction = (P_nom-Period)*DAMPING
    248                
    249                 # Positive correction from MeanXing[i] to MeanXing[i+1]
    250                 # and negative to all others
    251                 Time = 0
    252                 for j in range(rd.NROI):
    253                         diff = CellTime[j+1] - CellTime[j]
    254                         if ((I2>I1 and j>I1 and j<=I2) or (I2<I1 and (j<=I2 or j>I1))):
    255                                 diff += Correction/np.mod(I2-I1+rd.NROI, rd.NROI)
    256                         else:
    257                                 diff -= Correction/(rd.NROI-np.mod(I2-I1+rd.NROI, rd.NROI))
    258                         CellTime[j] = Time
    259                         Time += diff
    260                 CellTime[rd.NROI] = Time
    261        
    262         print CellTime[-1]     
    263         t_nom = t_nomf(CellTime)
    264        
    265         return t_nom
    266        
    267 
    268        
    269 # Summing up the nominal times for each cell to the total cell time.
    270 def CellTimef(t_nom):
    271         CellTime = np.zeros(rd.NROI+1)
    272         for i in range(rd.NROI):
    273                 CellTime[i+1] = CellTime[i] + t_nom[i]
    274                
    275         return CellTime
    276        
    277 # getting t_nom from CellTime
    278 def t_nomf(CellTime):
    279         t_nom = np.zeros(rd.NROI)
    280         for i in range(rd.NROI):
    281                 t_nom[i] = CellTime[i+1]-CellTime[i]
    282                
    283         return t_nom
    284        
    285 
    286 rd.next()
    287 NPIX = NChip*9
    288 NEvents = NEventsp
    289 
    290 # create array to put the calibrated times for each cell in
    291 t_nom = np.ones([NPIX, rd.NROI])/fsampling
    292 # loop over events
    293 for Event in range( NEvents ):
    294         print "Event ", Event
    295         Chip = 0
    296 
    297         # loop over every 9th channel in Chip
    298         for Pix in range(NPIX)[8::9]:
    299                 print "Pix ", Pix
    300                
    301                 # calculate t_nom for each pixel
    302                 MeanXing, TimeXing, NumXing = Crossing(rd.acalData[Pix], np.average(rd.acalData[Pix]), t_nom[Pix], rd.startCells[Pix], Chip)
    303                 h.list[Chip].dict["numxing"].Fill(NumXing)
    304                 #h.list[Chip].dict["start"].Fill(rd.startCells[Pix])
    305                 t_nom[Pix] = Corr(MeanXing, NumXing, TimeXing, t_nom[Pix], rd.startCells[Pix], Chip)
    306                
    307                 Chip += 1
    308                
    309         rd.next()
    310 
    311 t_nom = t_nom[8::9]
    312 
    313 if(save == "yes"):     
    314         np.save(str(dfname[-20:-8])+"_"+str(NEvents)+"x"+str(NChip), t_nom)
    315         np.savetxt(str(dfname[-20:-8])+"_"+str(NEvents)+"x"+str(NChip), t_nom)
    316 
    317 for Chip in range(NChip):
    318         for i in range(rd.NROI):
    319                 h.list[Chip].dict["int_dev"].SetBinContent(i+1, np.sum(t_nom[Chip][:i])-i*1/fsampling)
    320                 h.list[Chip].dict["diff_dev"].SetBinContent(i+1, np.sum(t_nom[Chip][i] - 1/fsampling))
    321        
    322 pyfact.SaveHistograms(h.list, str(dfname[-20:-8])+"_"+str(NEvents)+"x"+str(NChip)+".root", "RECREATE")
    323 
    324 
    325 t_f = time()
    326 
    327 
    328 
    329 print "time ellapsed            = ",  (t_f - t_s)/60., " min." 
    330 print "Speichern                = ", save
    331 print "NChip                    = ", NChip
    332 print "NEvents                  = ", NEventsp
    333 print "Histo saved as           = ", str(dfname[-20:-8])+str(NEvents)+"x"+str(NChip)+".root"
    334 if(save == "yes"):
    335         print "CellTime saved as        = ", str(dfname[-20:-8])+str(NEvents)+"x"+str(NChip)+".npy"
    336 
     124                for i,period in enumerate(chip_periods):
     125                    #shortcuts to the involved slices
     126                    start = all_crossings[chip][i]
     127                    end = all_crossings[chip][i+1]
     128                    interval = end-start
     129                    rest = 1024-interval
     130                   
     131                    delta_period = (self.P_nom - period) * self.DAMPING
     132                    # nominal_number_of_slices
     133                    nom_num_slices = period * self.fsampling
     134                   
     135                    # now the delta_period is distributed to all slices
     136                        # I do not exactly understand the +1 here ... error prone!!!
     137                    # the following explanation assumes delta_period is positive
     138                    # the slices between start and end get a positive correction value
     139                    # This correction value is given by delta_period / nom_num_slices
     140                    pos_fraction = delta_period / nom_num_slices
     141                    # the total positive correction sums up to
     142                    total_positive_correction = interval * pos_fraction
     143                    # the total negative correction must sum up to the sampe value
     144                    total_negative_correction = rest * (interval * (pos_fraction/rest))
     145                    # so we can call the product following 'rest' the 'neg_fraction
     146                    neg_fraction = -1 * interval/rest * important
     147                    assert total_positive_correction - total_negative_correction == 0
     148                   
     149                    correction = np.zeros(1024)
     150                    correction[start+1:end+1] = pos_fraction
     151                    correction[:start+1]      = neg_fraction
     152                    correction[end+1:]        = neg_fraction
     153                    assert correction.sum() == 0
     154                   
     155                    # now we have to add these correction values to self.time_calib
     156                    self.time_calib[chip,:] += np.roll(correction, start_cell[chip])
Note: See TracChangeset for help on using the changeset viewer.